
SOFTWARE ENGINEERING
UNIT-6

1. Software Maintenance: Software maintenance,

2. Maintenance Process Models,

3. Maintenance Cost,

4. Software Configuration Management.

5. Software Reuse: what can be Reused?

6. Why almost No Reuse So Far?

7. Basic Issues in Reuse Approach,

8. Reuse at Organization Level.

1. SOFTWARE MAINTENANCE

 The mention of the word maintenance brings up the image of a screw driver, wielding
mechanic with soiled hands holding onto a bagful of spare parts.

 It would be the objective of this chapter to give idea of the software maintenance
projects, and to familiarise you with the latest techniques in software maintenance.

 Software maintenance denotes any changes made to a software product after it has
been delivered to the customer. Maintenance is necessity for almost any kind of
product.

 However, most products need maintenance due to the wear and tear caused by use.
 On the other hand, software products do not need maintenance on this count, but need

maintenance to correct errors, enhance features, port to new platforms, etc.

CHARACTERISTICS OF SOFTWARE MAINTENANCE
 In this section, we first classify the different maintenance efforts into a few classes.

Types of Software Maintenance
 There are three types of software maintenance, which are described as follows:
 Corrective: Corrective maintenance of a software product is necessary either to

rectify the bugs observed while the system is in use.
 Adaptive: A software product might need maintenance when the customers need the

product to run on new platforms, on new operating systems, or when they need the
product to interface with new hardware or software.

 Perfective: A software product needs maintenance to support the new features that
users want it to support, to change different functionalities of the system according to
customer demands, or to enhance the performance of the system.

Characteristics of Software Evolution
 Lehman and Belady have studied the characteristics of evolution of several software

products [1980].
 They have expressed their observations in the form of laws.
 Their important laws are presented in the following subsection. But a word of caution

here is that these are generalisations and may not be applicable to specific cases and
also most of these observations concern large software projects and may not be
appropriate for the maintenance and evolution of very small products.

 Lehman’s first law: A software product must change continually or become
progressively less useful. Every software product continues to evolve after its
development through maintenance efforts.

 Lehman’s second law: The structure of a program tends to degrade as more and
more maintenance is carried out on it.

 Lehman’s third law: Over a program’s lifetime, its rate of development is
approximately constant. The rate of development can be quantified in terms of the
lines of code written or modified.

 Therefore this law states that the rate at which code is written or modified is
approximately the same during development and maintenance.

SOFTWARE REVERSE ENGINEERING
 Software reverse engineering is the process of recovering the design and the

requirements specification of a product from an analysis of its code.

 The purpose of reverse engineering is to facilitate maintenance work by improving the
understandability of a system and to produce the necessary documents for a legacy
system.

 Reverse engineering is becoming important, since legacy software products lack
proper documentation, and are highly unstructured. Even well-designed products
become legacy software as their structure degrades through a series of maintenance
efforts.

 A way to carry out these cosmetic changes is shown schematically in Figure 13.1.
 After the cosmetic changes have been carried out on a legacy software, the proces of

extracting the code, design, and the requirements specification can begin.
 These activities are schematically shown in Figure 13.2. In order to extract the design, a

full understanding of the code is needed. Some automatic tools can be used to derive the
data flow and control flow diagram from the code.

 The structure chart (module invocation sequence and data interchange among modules)
should also be extracted. The SRS document can be written once the full code has been
thoroughly understood and the design extracted.

2. SOFTWARE MAINTENANCE PROCESS MODELS

 The activities involved in a software maintenance project are
o (i) the extent of modification to the product required,
o (ii) the resources available to the maintenance team,
o (iii) the conditions of the existing product (e.g., how structured it is, how well

documented it is, etc.),
o (iv) the expected project risks, etc.

 When the changes needed to a software product are minor and straightforward, the
code can be directly modified and the changes appropriately reflected in all the
documents.

 Two broad categories of process models can be proposed.
First model
 The first model is preferred for projects involving small reworks where the code is

changed directly and the changes are reflected in the relevant documents later.
 This maintenance process is graphically presented in Figure 13.3.

 In this approach, the project starts by gathering the requirements for changes. The
requirements are next analysed to formulate the strategies to be adopted for code
change.

 At this stage, the association of at least a few members of the original development
team goes a long way in reducing the cycle time, especially for projects involving
unstructured and inadequately documented code.

 The availability of a working old system to the maintenance engineers at the
maintenance site greatly facilitates the task of the maintenance team as they get a
good insight into the working of the old system and also can compare the working of
their modified system with the old system.

 Also, debugging of the reengineered system becomes easier as the program traces of
both the systems can be compared to localise the bugs.

Second model
 The second model is preferred for projects where the amount of rework required is

significant.
 This approach can be represented by a reverse engineering cycle followed by a

forward engineering cycle. Such an approach is also known as software re-
engineering. This process model is depicted in Figure 13.4.

 The reverse engineering cycle is required for legacy products.
 During the reverse engineering, the old code is analysed (abstracted) to extract the

module specifications.
 The module specifications are then analysed to produce the design.
 The design is analysed (abstracted) to produce the original requirements specification.
 The change requests are then applied to this requirements specification to arrive at the

new requirements specification.
 At this point a forward engineering is carried out to produce the new code.

3. ESTIMATION OF MAINTENANCE COST
 We had earlier pointed out that maintenance efforts require about 60 per cent of the

total life cycle cost for a typical software product.
 However, maintenance costs vary widely from one application domain to another.
 For embedded systems, the maintenance cost can be as much as 2 to 4 times the

development cost.
 Boehm [1981] proposed a formula for estimating maintenance costs as part of his

Constructive Cost Model - COCOMO cost estimation model.
 Boehm’s maintenance cost estimation is made in terms of a quantity called the

Annual Change Traffic (ACT).
 Boehm defined ACT as the fraction of a software product’s source instructions which

undergo change during a typical year either through addition or deletion. where,
KLOC added is the total kilo lines of source code added during maintenance.

 KLOC deleted is the total KLOC deleted during maintenance.
 Thus, the code that is changed, should be counted in both the code added and code

deleted.
 The annual change traffic (ACT) is multiplied with the total development cost to

arrive at the maintenance cost:
Maintenance cost = ACT × Development cost

 Most maintenance cost estimation models, however, give only approximate results
because they do not take into account several factors such as experience level of the
engineers, and familiarity of the engineers with the product, hardware requirements,
software complexity, etc.

4. SOFTWARE CONFIGURATION MANAGEMENT
 The results (also called as the deliverables) of a large software development effort

typically consist of a large number of objects, e.g., source code, design document,
SRS document, test document, user’s manual, etc.

 These objects are usually referred to and modified by a number of software
developers through out the life cycle of the software.

 The state of each deliverable object changes as development progresses and also as
bugs are detected and fixed.

 The configuration of the software is the state of all project deliverables at any point of
time; and software configuration management deals with effectively tracking and
controlling the configuration of a software during its life cycle.

Software revision versus version
 A new version of software is created when there is significant change in functionality,

technology, or the hardware it runs on, etc.
 On the other hand, a new release is created if there is only a bug fix, minor

enhancements to the functionality, usability, etc.
 Even the initial delivery might consist of several versions and more versions might be

added later on.
 For example, one version of a mathematical computation package might run on Unix-

based machines, another on Microsoft Windows and so on.
 As a software is released and used by the customer, errors are discovered that need

correction.
 Enhancements to the functionalities of the software may also be needed.
 A new release of software is an improved system intended to replace an old one.

Necessity of Software Configuration Management
 There are several reasons for putting an object under configuration management. The

following are some of the important problems.
 Problems associated with concurrent access: Possibly the most important reason for

configuration management is to control the access to the different deliverable objects.
 Providing a stable development environment: When a project work is underway,

the team members need a stable environment to make progress.
 System accounting and maintaining status information: System accounting

denotes keeping track of who made a particular change to an object and when the
change was made.

 Handling variants: Existence of variants (software versions) of a software product
causes some peculiar problems. Suppose you have several variants of the same
module, and find that a bug exists in one of them. Then, it has to be fixed in all
versions and revisions.

 To do it efficiently, you should not have to fix it in each and every version and
revision of the software separately. Making a change to one program should be
reflected appropriately in all relevant versions and revisions.

Configuration Management Activities
 Configuration management is carried out through two principal activities:
 Configuration identification: It involves deciding which parts of the system should

be kept track.
 Configuration control: Configuration control is the process of managing changes to

controlled objects. It ensures that changes to a system happen smoothly.
A configuration management tool helps to keep track the current state of the project.
The configuration management tool enables the developer to change various
components in a controlled manner.

 Source code control system (SCCS) and RCS: SCCS and RCS are two popular
configuration management tools available on most Unix systems.

5. SOFTWARE REUSE
 Software products are expensive. Therefore, software project managers are always

worried about the high cost of software development .
 A possible way to reduce development cost is to reuse parts from previously

developed software.
 In addition to reduced development cost and time, reuse also leads to higher quality of

the developed products since the reusable components are ensured to have high
quality.

 A reuse approach that is of late gaining prominence is component-based development.
Component-based software development is different from the traditional software
development in the sense that software is developed by assembling software from off-
the-shelf components.

 Software development with reuse is very similar to a modern hardware engineer
building an electronic circuit by using standard types of ICs and other components.

WHAT CAN BE REUSED?
 Before discussing the details of reuse techniques, it is important to deliberate about

the kinds of the artifacts associated with software development that can be reused.
Almost all artifacts associated with software development, including project plan and
test plan can be reused. However, the prominent items that can be effectively reused
are:

Requirements specification
Design
Code
Test cases
Knowledge

 Knowledge is the most abstract development artifact that can be reused. Out of all the
reuse artifacts, reuse of knowledge occurs automatically without any conscious effort
in this direction.

 A planned reuse of knowledge can increase the effectiveness of reuse. For this, the
reusable knowledge should be systematically extracted and documented. But, it is
usually very difficult to extract and document reusable knowledge.

6. WHY ALMOST NO REUSE SO FAR?
 Engineers working in software development organisations often have a feeling that

the current system that they are developing is similar to the last few systems built.

 However, no attention is paid on how not to duplicate what can be reused from
previously developed systems.

 Everything is being built from the old system.
 The current system falls behind schedule and no one has time to figure out how the

similarity between the current system and the systems developed in the past can be
exploited.

 Even those organisations which start the process of reusing programs
 Creation of components that are reusable in different applications is a difficult

problem.
 It is very difficult to anticipate the exact components that can be reused across

different applications.
 But, even when the reusable components are carefully created and made available for

reuse, programmers prefer to create their own, because the available components are
difficult to understand and adapt to the new applications.

 In this context, the following observation is significant:
o The routines of mathematical libraries are being reused very successfully by

almost every programmer.
o No one in their mind would think of writing a routine to compute sine or

cosine.
o Let us investigate why reuse of commonly used mathematical functions is so

easy.
o Everyone has clear ideas about what kind of argument should implement, the

type of processing to be carried out and the results returned.
o Secondly, mathematical libraries have a small interface.

7. BASIC ISSUES IN ANY REUSE PROGRAM
 The following are some of the basic issues that must be clearly understood for starting

any reuse program:
Component creation.
Component indexing and storing.
Component search.
Component understanding.
Component adaptation.
Repository maintenance.

Component creation:
 For component creation, the reusable components have to be first identified. Selection

of the right kind of components having potential for reuse is important.
Component indexing and storing

 Indexing requires classification of the reusable components so that they can be easily
searched when we look for a component for reuse.

 The components need to be stored in a relational database management system
(RDBMS) or an object-oriented database system (ODBMS) for efficient access when
the number of components becomes large.

Component searching
 The programmers need to search for right components matching their requirements in

a database of components. To be able to search components efficiently, the
programmers require a proper method to describe the components that they are
looking for.

Component understanding
 The programmers need a precise and sufficiently complete understanding of what the

component does to be able to decide whether they can reuse the component.
 To facilitate understanding, the components should be well documented and should

do something simple.
Component adaptation

 Often, the components may need adaptation before they can be reused, since a
selected component may not exactly fit the problem at hand.

 However, tinkering with the code is also not a satisfactory solution because this is
very likely to be a source of bugs.

Repository maintenance
 A component repository once is created requires continuous maintenance.
 New components, as and when created have to be entered into the repository.
 The faulty components have to be tracked.
 Further, when new applications emerge, the older applications become . In this case,

the obsolete components might have to be removed from the repository.
A REUSE APPROACH

 A promising approach that is being adopted by many organisations is to introduce a
building block approach into the software development process. For this, the reusable
components need to be identified after every development project is completed.

 The reusability of the identified components has to be enhanced and these have to be
cataloged into a component library.

 It must be clearly understood that an issue crucial to every reuse effort is the
identification of reusable components.

 Domain analysis is a promising approach to identify reusable components.
 The domain analysis approach to create reusable components.

Domain Analysis
 The aim of domain analysis is to identify the reusable components for a problem

domain.
Reuse domain

 A reuse domain is a technically related set of application areas.
Evolution of a reuse domain

 The ultimate results of domain analysis is development of problem oriented
languages. The problem-oriented languages are also known as application generators.

Component Classification
 Components need to be properly classified in order to develop an effective indexing

and storage scheme. We have already remarked that hardware reuse has been very
successful.

Searching
 The domain repository may contain thousands of reuse items. In such large domains,

what is the most efficient way to search an item that one is looking for?
Repository Maintenance

 Repository maintenance involves entering new items, retiring those items which are
no more necessary, and modifying the search attributes of items to improve the
effectiveness of search.

Reuse without Modifications

 Once standard solutions emerge, no modifications to the program parts may be
necessary. One can directly plug in the parts to develop his application. Reuse without
modification is much more useful than the classical program libraries.

 Application generators have been applied successfully to data processing application,
user interface, and compiler development. Application generators are less successful
with the development of applications with close interaction with hardware such as
real-time systems.

8. REUSE AT ORGANISATION LEVEL
 Reusability should be a standard part in all software development activities including

specification, design, implementation, test, etc.
 Ideally, there should be a steady flow of reusable components. In practice, however,

things are not so simple.
 Extracting reusable components from projects that were completed in the past

presents an important difficulty not encountered while extracting a reusable
component from an ongoing project—typically, the original developers are no longer
available for consultation.

 Development of new systems leads to an collection of related products, since
reusability ranges from items whose reusability is immediate to those items whose
reusability is highly improbable.

 Achieving organisation-level reuse requires adoption of the following
steps: Assess of an item’s potential for reuse.
Refine the item for greater reusability.
Enter the product in the reuse repository.

Assessing a product’s potential for reuse
 Assessment of a components reuse potential can be obtained from an analysis of a

questionnaire circulated among the developers.
 The questionnaire can be devised to assess a component’s reusability.
 The programmers working in similar application domain can be used to answer the

questionnaire about the product’s reusability.
 Depending on the answers given by the programmers, either the component be taken

up for reuse as it is, it is modified and refined before it is entered into the reuse
repository, or it is ignored.

 A sample questionnaire to assess a component’s reusability is the following:
o Is the component’s functionality required for implementation of systems in the

future?
o How common is the component’s function within its domain?
o Would there be a duplication of functions within the domain if the component

is taken up?
o Is the component hardware dependent?
o Is the design of the component optimised enough?
o If the component is non-reusable, then can it be decomposed to yield some

reusable components?
o Can we parametrise a non-reusable component so that it becomes reusable?

Refining products for greater reusability

 For a product to be reusable, it must be relatively easy to adapt it to different contexts.
Machine dependency must be abstracted out or localised using data encapsulation
techniques.

 The following refinements may be carried out:
 Name generalisation: The names should be general, rather than being directly related

to a specific application.
 Operation generalisation: Operations should be added to make the component more

general. Also, operations that are too specific to an application can be removed.
 Exception generalisation: This involves checking each component to see which

exceptions it might generate. For a general component, several types of exceptions
might have to be handled.

 Handling portability problems: Programs typically make some assumption
regarding the representation of information in the underlying machine.

 These assumptions are in general not true for all machines. The programs also often
need to call some operating system functionality and these calls may not be the same
on all machines.

 Also, programs use some function libraries, which may not be available on all host
machines.

 A portability solution to overcome these problems is shown in Figure 14.1.

 The portability solution suggests that rather than call the operating system and I/O
procedures directly, abstract versions of these should be called by the application
program.

 Also, all platform-related calls should be routed through the portability interface.

Current State of Reuse
 In spite of all the shortcomings of the state-of-the-art reuse techniques, it is the

experience of several organisations that most of the factors inhibiting an effective
reuse program are non-technical.

 Some of these factors are the following: Need for commitment from the top
management.

o Adequate documentation to support reuse.
o Adequate incentive to reward those who reuse. Both the people
o contributing new reusable components and those reusing the existing

components should be rewarded to start a reuse program and keep it going.
o Providing access to and information about reusable components.

 Organisations are often hesitant to provide an open access to the reuse repository for
the fear of the reuse components finding a way to their competitors.

	1. SOFTWARE MAINTENANCE
	CHARACTERISTICS OF SOFTWARE MAINTENANCE
	Types of Software Maintenance
	Characteristics of Software Evolution
	SOFTWARE REVERSE ENGINEERING

	2. SOFTWARE MAINTENANCE PROCESS MODELS
	First model
	Second model
	3. ESTIMATION OF MAINTENANCE COST
	4. SOFTWARE CONFIGURATION MANAGEMENT
	Software revision versus version
	Necessity of Software Configuration Management
	Configuration Management Activities

	5. SOFTWARE REUSE
	WHAT CAN BE REUSED?

	6. WHY ALMOST NO REUSE SO FAR?
	7. BASIC ISSUES IN ANY REUSE PROGRAM
	Component creation:
	Component indexing and storing
	Component searching
	Component understanding
	Component adaptation
	Repository maintenance
	Domain Analysis
	Reuse domain
	Evolution of a reuse domain
	Component Classification
	Searching
	Repository Maintenance
	Reuse without Modifications

	8. REUSE AT ORGANISATION LEVEL
	Assessing a product’s potential for reuse
	Refining products for greater reusability
	Current State of Reuse

