
1

SOFTWARE ENGINEERING
UNIT-1

1. The Nature of Software
Defining Software
Software Application Domains
Legacy Software

2. The Unique Nature of WebApps
3. Software Engineering
4. The Software Process
5. Software Engineering Practice

The Essence of Practice
General Principles

6. Software Myths

7. A Generic Process Model
Defining a Framework Activity
Identifying a Task Set
Process Patterns

8. Process Assessment and Improvement
9. Prescriptive Process Models

9.1The Waterfall Model
9.2Incremental Process Models
9.3Evolutionary Process
Models 9.4Concurrent Models
9.5A Final Word on Evolutionary Processes

10. Specialized Process Models
Component-Based Development
The Formal Methods Model
Aspect-Oriented Software Development

11. The Unified Process
A Brief History
Phases of the Unified Process

12. Personal and Team Process Models
Personal Software Process (PSP)
Team Software Process (TSP)

13. Process Technology
14. Product and Process

1. The Nature of Software
Today, software takes on a dual role. It is a product, and at the same time, the

vehicle for delivering a product.
As a product, it delivers the computing potential embodied by computer hardware

or more broadly, by a network of computers that are accessible by local hardware.
Whether it resides within a mobile phone or operates inside a mainframe computer,
software is an information transformer—producing, managing, acquiring, modifying,
displaying, or transmitting information that can be as simple as a single bit or as
complex as a multimedia presentation derived from data acquired from dozens of
independent sources.

As the vehicle used to deliver the product, software acts as the basis for the control
of the computer (operating systems), the communication of information (networks), and
the creation and control of other programs (software tools and environments).

Software delivers the most important product of our time—information. It transforms
personal data (e.g., an individual’s financial transactions) so that the data can be more
useful in a local context.

Software manages business information to enhance competitiveness;
Software provides a gateway to worldwide information networks (e.g., the Internet).
Software provides the means for acquiring information in all of its forms.
Software role has undergone significant change over the last half-century.
Software industry has become a dominant factor industrialized world.

Engineering Discipline:

• Engineering is a disciplined approach with some organized steps in a managed
way to construction, operation, and maintenance of software.

• Engineering of a product goes through a series of stages, i.e., planning,
analysis and specification, design, construction, testing, documentation,
and deployment.

• The disciplined approach may lead to better results.

• The general stages for engineering the software include feasibility study and
preliminary investigation, requirement analysis and specification, design,
coding, testing, deployment, operation, and maintenance.

Software Crisis:

• Software crisis, the symptoms of the problem of engineering the software, began to
enforce the practitioners to look into more disciplined software engineering
approaches for software development.

• The software industry has progressed from the desktop PC to network-
based computing to service-oriented computing nowadays.

• The development of programs and software has become complex with
increasing requirements of users, technological advancements, and computer
awareness among people.

• Software crisis symptoms

• complexity,

• hardware versus software cost,

• Lateness and costliness,

• poor quality,

• unmanageable nature,

• immaturity,

• lack of planning and management practices,

• Change, maintenance and migration,

• etc.

What is Software Engineering?

• The solution to these software crises is to introduce systematic software
engineering practices for systematic software development, maintenance,
operation, retirement, planning, and management of software.

• The systematic means the methodological and pragmatic way of
development, operation and maintenance of software.

• Systematic development of software helps to understand problems and satisfy
the client needs.

• Development means the construction of software through a series of activities,
i.e., analysis, design, coding, testing, and deployment.

• Maintenance is required due to the existence of errors and faults, modification
of existing features, addition of new features, and technological advancements.

• Operational software must be correct, efficient, understandable, and usable for work
at the client site.

• IEEE defines

The systematic approach to the development, operation, maintenance, and
retirement of software.

Defining Software
Software is:
(1) instructions (computer programs) that when executed provide desired features,
function, and performance;
(2) data structures that enable the programs to adequately manipulate information, and
(3) descriptive information in both hard copy and virtual forms that describes the
operation and use of the programs.

Software characteristics
• Software has logical properties rather than physical.

• Software is mobile to change.

• Software is produced in an engineering manner rather than in classical sense.

• Software becomes obsolete but does not wear out or die.

• Software has a certain operating environment, end user, and customer.

• Software development is a labor-intensive task

Software is a logical rather than a physical system element. Therefore, software has
characteristics that are considerably different than those of hardware:

1. Software is developed or engineered; it is not manufactured in the classical sense.
Although some similarities exist between software development and hardware

manufacturing, the two activities are fundamentally different.

In both activities, high quality is achieved through good design, but the manufacturing
phase for hardware can introduce quality problems that are nonexistent (or easily
corrected) for software.

Both activities are dependent on people, but the relationship between people applied
and work accomplished is entirely different.

Both activities require the construction of a “product,” but the approaches are
different. Software costs are concentrated in engineering. This means that software
projects cannot be managed as if they were manufacturing projects.

2. Software doesn’t “wear out.”

The above picture depicts failure rate as a function of time for hardware. The
relationship, often called the “bathtub curve,” indicates that hardware exhibits relatively
high failure rates early in its life (these failures are often attributable to design or
manufacturing defects); defects are corrected and the failure rate drops to a steady-state
level (hopefully, quite low) for some period of time.

As time passes, however, the failure rate rises again as hardware components suffer from the
cumulative effects of dust, vibration, abuse, temperature extremes, and many other environmental
maladies

Stated simply, the hardware begins to wear out.
Software doesn’t “wear out.”

But Software does
deteriorate!

The above picture explains the software failure in development process. During
development process, software will undergo change. As changes are made, it is likely
that errors will be introduced, causing the failure rate curve to spike as shown in the
“actual curve”. Before the curve can return to the original steady-state failure rate,
another change is requested, causing the curve to spike again. Slowly, the minimum
failure rate level begins to rise—the software is deteriorating due to change.

3. Although the industry is moving toward component-based construction,
most software continues to be custom built.

As an engineering discipline evolves, a collection of standard design components is
created. Standard screws and off-the-shelf integrated circuits are only two of thousands of
standard components that are used by mechanical and electrical engineers as they design
new systems.

The reusable components have been created so that the engineer can concentrate on
the truly innovative elements of a design, that is, the parts of the design that represent
something new.

In the hardware world, component reuse is a natural part of the engineering process.
In the software world, it is something that has only begun to be achieved on a broad
scale.
A software component should be designed and implemented so that it can be reused in

many different programs. For example, today’s interactive user interfaces are built with
reusable components that enable the creation of graphics windows, pull-down menus, and
a wide variety of interaction mechanisms. The data structures and processing detail
required to build the interface are contained within a library of reusable components for
interface construction.

Software Application Domains
(Types of Software or Categories of Software)

Today, seven broad categories of computer software present continuing challenges
for software engineers:

i. System software—a collection of programs written to service other programs.

System software processes complex, but determinate information structures.
e.g., compilers, editors, and file management utilities

Systems applications process largely indeterminate data.
(e.g., operating system components, drivers, networking software, telecommunications
processors)

ii. Application software—stand-alone programs that solve a specific business need.
Applications in this area process business or technical data in a way that facilitates
business operations or management/technical decision making.
e.g., point-of-sale transaction processing, real-time manufacturing process control.

iii. Engineering/scientific software—is a special software to implement Engineering and
Scientific applications. Applications range from astronomy to volcanology, from
automotive stress analysis to space shuttle orbital dynamics, and from molecular biology
to automated manufacturing. However, modern applications within the
engineering/scientific area are moving away from conventional numerical algorithms.
Computer-aided design, system simulation, and other interactive applications have begun
to take on real-time and even system software characteristics.

iv. Embedded software—resides within a product or system and is used to implement and
control features and functions for the end user and for the system itself.

e.g., key pad control for a microwave oven.
Provide significant function and control capability

e.g., digital functions in an automobile such as fuel control, dashboard displays, and
braking systems.

v. Product-line software—designed to provide a specific capability for use by many
different customers.
e.g., inventory control products, word processing, spreadsheets, computer graphics,
multimedia, entertainment, database management, and personal and business financial
applications.

vi. Web applications—called “WebApps,” this network-centric software category spans a
wide array of applications. WebApps are linked with hypertext files. WebApps are
evolving into sophisticated computing environments that not only provide stand-alone
features, computing functions, and content to the end user, but also are integrated with
corporate databases and business applications.

vii. Artificial intelligence software— makes use of nonnumerical algorithms to solve
complex problems of straightforward analysis.

Applications within this area include robotics, expert systems, pattern recognition
(image and voice), artificial neural networks, theorem proving, and game playing.

viii. Open-world computing—Software related to wireless networking may soon lead to true
pervasive, distributed computing. The challenge for software engineers will be to develop
systems and application software that will allow mobile devices, personal computers, and
enterprise systems to communicate across vast networks.

ix. Netsourcing—the World Wide Web is rapidly becoming a computing engine as well as a
content provider. The challenge for software engineers is to architect simple (e.g.,
personal financial planning) and sophisticated applications that provide a benefit to
targeted end-user markets worldwide.

x. Open source—a growing trend that results in distribution of source code for systems
applications (e.g., operating systems, database, and development environments) so that
many people can contribute to its development.

The challenge for software engineers is to build source code that is self-descriptive,
but more importantly, to develop techniques that will enable both customers and
developers to know what changes have been made and how those changes manifest
themselves within the software.

 Legacy Software
Older programs —often referred to as legacy software—have been the focus of

continuous attention and concern since the 1960s. Dayani-Fard and his colleagues [Day99]
describe legacy software in the following way:

Legacy software systems . . . were developed decades ago and have been continually
modified to meet changes in business requirements and computing platforms. The
maintenance of such systems is causing headaches for large organizations who find them
costly to maintain and risky to evolve.

Liu and his colleagues [Liu98] extend this description by noting that “many legacy
systems remain supportive to core business functions and are ‘indispensable’ to the
business.” Hence, legacy software is characterized by longevity and business criticality.

Unfortunately, there is sometimes one additional characteristic that is present in legacy
software—poor quality.
Legacy systems sometimes have inextensible designs, convoluted code, poor or
nonexistent documentation, test cases and results that were never archived, a poorly
managed change history—the list can be quite long.

The only reasonable answer may be: Do nothing, at least until the legacy system must
undergo some significant change. If the legacy software meets the needs of its users and
runs reliably, it isn’t broken and does not need to be fixed. However, as time passes,
legacy systems often evolve for one or more of the following reasons:

• The software must be adapted to meet the needs of new computing environments
or technology.

• The software must be enhanced to implement new business requirements.
• The software must be extended to make it interoperable with other more modern
systems or databases.

• The software must be re-architected to make it viable within a network environment.

When these modes of evolution occur, a legacy system must be reengineered, so that it
remains useful in the future. The goal of modern software engineering is to “devise
methodologies that are founded on the notion of evolution”; that is, the notion that
software systems continually change, new software systems are built from the old ones,
and . . . all must interoperate and cooperate with each other”.

2. The Unique Nature of WebApps
Web Apps means Web Applications. WebApps have evolved into sophisticated
computing tools that not only provide stand-alone function to the end user, but also have
been integrated with corporate databases and business applications.

Web engineers to provide computing capability along with informational content.
Web-based systems and applications were born.

WebApps are one of a number of distinct software categories. And yet, it can be
argued that WebApps are different.

The following attributes are encountered in the vast majority of WebApps.

i. Network intensiveness. A WebApp resides on a network and must serve the needs of a
different types of clients. The network may enable worldwide access and communication
(i.e., the Internet) or more limited access and communication (e.g., a corporate Intranet).

ii. Concurrency. A large number of users may access the WebApp at one time. In many
cases, the patterns of usage among end users will vary greatly.

iii. Unpredictable load. The number of users of the WebApp may vary by orders of
magnitude from day to day. One hundred users may show up on Monday; 10,000 may
use the system on Thursday.

iv. Performance. WebApp should work effectively in terms of processing speed. If a
WebApp user must wait too long (for access, for serverside processing, for client-side
formatting and display), he or she may decide to go elsewhere.

v. Availability. Although expectation of 100 percent availability is unreasonable, users of
popular WebApps often demand access on a 24/7/365 basis. Users in Australia or Asia
might demand access during times when traditional domestic software applications in
North America might be taken off-line for maintenance.

vi. Data driven. The primary function of many WebApps is to use hypermedia to present
text, graphics, audio, and video content to the end user. In addition, WebApps are
commonly used to access information that exists on databases that are not an integral part
of the Web-based environment (e.g., e-commerce or financial applications).

vii. Content sensitive. The quality and aesthetic (beauty) nature of content remains an
important determinant of the quality of a WebApp.

viii. Continuous evolution. (Updated version) -Unlike conventional application software
that evolves over a series of planned, chronologically spaced releases, Web applications
evolve continuously. It is not unusual for some WebApps (specifically, their content) to
be updated on a minute-by-minute schedule or for content to be independently computed
for each request.

ix. Immediacy. Although immediacy—the compelling need to get software to market
quickly—is a characteristic of many application domains, WebApps often exhibit a time-
to-market that can be a matter of a few days or weeks.7

x. Security. Because WebApps are available via network access, it is difficult, if not
impossible, to limit the population of end users who may access the application. In order
to protect sensitive content and provide secure modes of data transmission, strong
security measures must be implemented throughout the infrastructure that supports a
WebApp and within the application itself.

xi. Aesthetics. An undeniable part of the appeal of a WebApp is its look and feel. When an
application has been designed to market or sell products or ideas, aesthetics may have as
much to do with success as technical design.

3. Software Engineering

What is Software Engineering?
software engineering practices for systematic software development, maintenance,
operation, retirement, planning, and management of software.

• The systematic means the methodological and pragmatic way of development,
operation and maintenance of software.

• Systematic development of software helps to understand problems and satisfy the
client needs.

• Development means the construction of software through a series of activities, i.e.,
analysis, design, coding, testing, and deployment.

• Maintenance is required due to the existence of errors and faults, modification of
existing features, addition of new features, and technological advancements.

• Operational software must be correct, efficient, understandable, and usable for work at the
client site.

• IEEE defines
The systematic approach to the development, operation, maintenance, and retirement of
software.

Software Engineering -
• It follows that a concerted effort should be made to understand the problem before a

software solution is developed.

. It follows that design becomes a unique activity.

• It follows that software should exhibit high quality.

• It follows that software should be maintainable, software in all of its forms and across all of

its application domains should be engineered.

4. The Software Process

 A process is a collection of activities, actions, and tasks that are performed when
some work product is to be created.

 An activity strives to achieve a broad objective (e.g., communication with
stakeholders) and is applied regardless of the application domain, size of the project,
complexity of the effort, or degree of rigor with which software engineering is to be
applied.

 An action (e.g., architectural design) encompasses a set of tasks that produce a major
work product (e.g., an architectural design model).

 A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that
produces a tangible outcome.

In the context of software engineering, a process is not a rigid prescription for how to
build computer software. Rather, it is an adaptable approach that enables the people doing the
work (the software team) to pick and choose the appropriate set of work actions and tasks.
The intent is always to deliver software in a timely manner and with sufficient quality to
satisfy those who have sponsored its creation and those who will use it.

A process framework establishes the foundation for a complete software engineering
process by identifying a small number of framework activities that are applicable to all
software projects, regardless of their size or complexity. In addition, the process framework
encompasses a set of umbrella activities that are applicable across the entire software
process.

A generic process framework for software engineering encompasses five activities:
i. Communication. Before any technical work can commence, it is critically important

to communicate and collaborate with the customer (and other stakeholders11 The
intent is to understand stakeholders’ objectives for the project and to gather
requirements that help define software features and functions.

ii. Planning. Any complicated journey can be simplified if a map exists. A software
project is a complicated journey, and the planning activity creates a “map” that helps
guide the team as it makes the journey. The map—called a software project plan—
defines the software engineering work by describing the technical tasks to be
conducted, the risks that are likely, the resources that will be required, the work
products to be produced, and a work schedule.

iii. Modeling. Whether you’re a landscaper, a bridge builder, an aeronautical engineer, a
carpenter, or an architect, you work with models every day. You create a “sketch” of
the thing so that you’ll understand the big picture—what it will look like
architecturally, how the constituent parts fit together, and many other characteristics.
If required, you refine the sketch into greater and greater detail in an effort to better
understand the problem and how you’re going to solve it. A software engineer does
the same thing by creating models to better understand software requirements and the
design that will achieve those requirements.

iv. Construction. This activity combines code generation (either manual or automated)
and the testing that is required to uncover errors in the code.

v. Deployment. The software (as a complete entity or as a partially completed
increment) is delivered to the customer who evaluates the delivered product and

provides feedback based on the evaluation. These five generic framework activities
can be used during the development of small, simple programs, the creation of large
Web applications, and for the engineering of large, complex computer-based systems.
The details of the software process will be quite different in each case, but the
framework activities remain the same.

For many software projects, framework activities are applied iteratively as a project
progresses. That is,

communication,
planning,
modeling,
construction, and
deployment are applied repeatedly through a number of project iterations. Each project

iteration produces a software increment that provides stakeholders with a subset of overall
software features and functionality. As each increment is produced, the software becomes
more and more complete.
Software engineering process framework activities are complemented by a number of
umbrella activities. In general, umbrella activities are applied throughout a software project
and help a software team manage and control progress, quality, change, and risk.

Typical umbrella activities include:
Software project tracking and control—allows the software team to assess progress against
the project plan and take any necessary action to maintain the schedule.
Risk management—assesses risks that may affect the outcome of the project or the quality
of the product.
Software quality assurance—defines and conducts the activities required to ensure software
quality.
Technical reviews—assesses software engineering work products in an effort to uncover and
remove errors before they are propagated to the next activity.
Measurement—defines and collects process, project, and product measures that assist the
team in delivering software that meets stakeholders’ needs; can be used in conjunction with
all other framework and umbrella activities.
Software configuration management—manages the effects of change throughout the
software process.
Reusability management—defines criteria for work product reuse (including software
components) and establishes mechanisms to achieve reusable components.
Work product preparation and production—encompasses the activities required to create
work products such as models, documents, logs, forms, and lists. Each of these umbrella
activities is discussed in detail later in this book.

The software engineering process is not a rigid prescription that must be followed
dogmatically by a software team. Rather, it should be agile and adaptable (to the problem, to
the project, to the team, and to the organizational culture). Therefore, a process adopted for
one project might be significantly different than a process adopted for another project.
Among the differences are
• Overall flow of activities, actions, and tasks and the
interdependencies among them
• Degree to which actions and tasks are defined within each framework activity
• Degree to which work products are identified and required

• Manner in which quality assurance activities are applied

• Manner in which project tracking and control activities are applied
• Overall degree of detail and rigor with which the process is described
• Degree to which the customer and other stakeholders are involved with the project
• Level of autonomy given to the software team
• Degree to which team organization and roles are prescribed

5. Software Engineering Practice

Generic software process model composed of a set of activities that establish a framework
for software engineering practice. Generic framework activities—communication, planning,
modeling, construction, and deployment—and umbrella activities establish a skeleton
architecture for software engineering work.

The Essence of Practice
George Polya outlined the essence of problem solving, and consequently, the essence
of software engineering practice:
1. Understand the problem (communication and analysis).
2. Plan a solution (modeling and software design).
3. Carry out the plan (code generation).
4. Examine the result for accuracy (testing and quality assurance).
In the context of software engineering, these commonsense steps lead to a series of essential
questions

i. Understand the problem. It’s sometimes difficult to admit, but most of us suffer
from hubris when we’re presented with a problem. We listen for a few seconds and

then think. Understanding isn’t always that easy. It’s worth spending a little time answering a
few simple questions:
• Who has a stake in the solution to the problem? That is, who are the stakeholders?
• What are the unknowns? What data, functions, and features are required to properly solve
the problem?
• Can the problem be compartmentalized? Is it possible to represent smaller problems that
may be easier to understand?
• Can the problem be represented graphically? Can an analysis model be created?

ii. Plan the solution. Now you understand the problem (or so you think) and
you can’t wait to begin coding. Before you do, slow down just a bit and do a little design:

• Have you seen similar problems before? Are there patterns that are recognizable in a
potential solution? Is there existing software that implements the data, functions, and features
that are required?
• Has a similar problem been solved? If so, are elements of the solution reusable?
• Can subproblems be defined? If so, are solutions readily apparent for
the subproblems?
• Can you represent a solution in a manner that leads to effective implementation?
Can a design model be created?

iii. Carry out the plan. The design you’ve created serves as a road map for the
system you want to build. There may be unexpected detours, and it’s possible that you’ll
discover an even better route as you go, but the “plan” will allow you to proceed without
getting lost.
• Does the solution conform to the plan? Is source code traceable to the design model?
• Is each component part of the solution provably correct? Have the design and code been
reviewed, or better, have correctness proofs been applied to the algorithm?

iv. Examine the result. You can’t be sure that your solution is perfect, but you
can be sure that you’ve designed a sufficient number of tests to uncover as many
errors as possible.

• Is it possible to test each component part of the solution? Has a reasonable testing strategy
been implemented?
• Does the solution produce results that conform to the data, functions, and features that
are required? Has the software been validated against all stakeholder requirements? It
shouldn’t surprise you that much of this approach is common sense. In fact, it’s reasonable to
state that a commonsense approach to software engineering will never lead you astray.

General Principles
David Hooker has proposed seven principles that focus on software engineering practice as a
whole. They are reproduced in the following.
The First Principle: The Reason It All Exists

A software system exists for one reason: to provide value to its users. All decisions
should be made with this in mind. Before specifying a system requirement, before noting a
piece of system functionality, before determining the hardware platforms or development
processes, ask yourself questions such as: “Does this add real value to the system?” If the
answer is “no,” don’t do it. All other principles support this one.

The Second Principle: KISS (Keep It Simple, Stupid!)
Software design is not a random process. There are many factors to consider in any

design effort. All design should be as simple as possible, but no simpler. This facilitates
having a more easily understood and easily maintained system.

Features should be discarded in the name of simplicity. Indeed, the more elegant
designs are usually the more simple ones. Simple also does not mean “quick and dirty.” In
fact, it often takes a lot of thought and work over multiple iterations to simplify. The payoff is
software that is more maintainable and less error-prone.

The Third Principle: Maintain the Vision
A clear vision is essential to the success of a software project. Without one, a project

almost unfailingly ends up being “of two [or more] minds” about itself. Without conceptual
integrity, a system threatens to become a patchwork of incompatible designs, held together by
the wrong kind of screws. . . . Compromising the architectural vision of a software system
weakens and will eventually break even the well-designed systems. Having an empowered
architect who can hold the vision and enforce compliance helps ensure a very successful
software project.

The Fourth Principle: What You Produce, Others Will Consume
Seldom is an industrial-strength software system constructed and used in a vacuum. In

some way or other, someone else will use, maintain, document, or otherwise depend on being
able to understand your system. So, always specify, design, and implement knowing someone

else will have to understand what you are doing. The audience for any product of software
development is potentially large.

Specify with an eye to the users. Design, keeping the implementers in mind. Code
with concern for those that must maintain and extend the system. Someone may have to
debug the code you write, and that makes them a user of your code. Making their job easier
adds value to the system.

The Fifth Principle: Be Open to the Future
A system with a long lifetime has more value. In today’s computing environments,

where specifications change on a moment’s notice and hardware platforms are obsolete just a
few months old, software lifetimes are typically measured in months instead of years.
However, true “industrial-strength” software systems must endure far longer. To do this
successfully, these systems must be ready to adapt to these and other changes. Systems that
do this successfully are those that have been designed this way from the start. Never design
yourself into a corner.

Always ask “what if,” and prepare for all possible answers by creating systems that
solve the general problem, not just the specific one.14 This could very possibly lead to the
reuse of an entire system. This advice can be dangerous if it is taken to extremes. Designing
for the “general problem” sometimes requires performance compromises and can make
specific solutions inefficient.

The Sixth Principle: Plan Ahead for Reuse
Reuse saves time and effort.15Achieving a high level of reuse is arguably the hardest goal to
accomplish in developing a software system. The reuse of code and designs has been
proclaimed as a major benefit of using object-oriented technologies. However, the return on
this investment is not automatic. To leverage the reuse possibilities that object-oriented [or
conventional] programming provides requires forethought and planning. There are many
techniques to realize reuse at every level of the system development process. . . . Planning
ahead for reuse reduces the cost and increases the value of both the reusable components
and the systems into which they are incorporated.

The Seventh principle: Think!
This last principle is probably the most overlooked. Placing clear, complete thought

before action almost always produces better results. When you think about something, you
are more likely to do it right. You also gain knowledge about how to do it right again. If you
do think about something and still do it wrong, it becomes a valuable experience. A side
effect of thinking is learning to recognize when you don’t know something, at which point
you can research the answer.

When clear thought has gone into a system, value comes out. Applying the first six
principles requires intense thought, for which the potential rewards are enormous. If every
software engineer and every software team simply followed Hooker’s seven principles, many
of the difficulties we experience in building complex computer based systems would be
eliminated.

6. Software Myths

 Software myths—erroneous beliefs about software and the process that is used to
build it—can be traced to the earliest days of computing.

 Myths have a number of attributes that make them insidious. For instance, they appear
to be reasonable statements of fact (sometimes containing elements of truth), they
have an intuitive feel, and they are often announced by experienced practitioners who
“know the score.”

 Today, most knowledgeable software engineering professionals recognize myths for
what they are—misleading attitudes that have caused serious problems for managers
and practitioners alike.

 However, old attitudes and habits are difficult to modify, and remnants of software
myths remain.

 Software Myths are three types
1. Managers Myths
2. Customers Myths (and other non-technical stakeholders)
3. Practitioners Myths

i. Management myths. Managers with software responsibility, like managers in most
disciplines, are often under pressure to maintain budgets, keep schedules from slipping,
and improve quality. Like a drowning person who grasps at a straw, a software manager
often grasps at belief in a software myth, if that belief will lessen the pressure (even
temporarily).

Myth: We already have a book that’s full of standards and procedures for building software.
Won’t that provide my people with everything they need to know?
Reality: The book of standards may very well exist, but is it used?

Are software practitioners aware of its existence?
Does it reflect modern software engineering practice?
Is it complete?
Is it adaptable?
Is it streamlined to improve time-to-delivery while still maintaining a

focus on quality?
In many cases, the answer to all of these questions is “no.”

Myth: If we get behind schedule, we can add more programmers and catch up.
Reality: Software development is not a mechanistic process like manufacturing. In the words
of Mr. Brooks “adding people to a late software project makes it later.”

At first, this statement may seem counterintuitive. However, as new people are added,
people who were working must spend time educating the newcomers, thereby reducing the
amount of time spent on productive development effort.

People can be added but only in a
planned and well coordinated manner.

Myth: If I decide to outsource the software project to a third party, I can just relax and let
that firm build it.
Reality: If an organization does not understand how to manage and control software projects
internally, it will invariably struggle when it outsources software projects.

ii. Customer myths. A customer who requests computer software may be a person at
the next desk, a technical group down the hall, the marketing/sales department, or an
outside company that has requested software under contract. In many cases, the
customer believes myths about software because software managers and practitioners
do little to correct misinformation. Myths lead to false expectations (by the customer)
and, ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—we can fill
in the details later.
Reality: Although a comprehensive and stable statement of requirements is not always
possible, an ambiguous “statement of objectives” is a recipe for disaster. Unambiguous
requirements (usually derived iteratively) are developed only through effective and
Continuous communication between customer and developer.

Myth: Software requirements continually change, but change can be easily accommodated
because software is flexible.
Reality: It is true that software requirements change, but the impact of change varies with the
time at which it is introduced. When requirements changes are requested early (before design
or code has been started), the cost impact is relatively small. However, as time passes, the
cost impact grows rapidly—resources have been committed, a design framework has been
established, and change can requires additional resources and major design modification.

iii. Practitioner’s myths. Myths that are still believed by software practitioners have
been fostered by over 50 years of programming culture. During the early days,
programming was viewed as an art form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.
Reality: Someone once said that “the sooner you begin ‘writing code,’ the longer it’ll take
you to get done.” Industry data indicate that between 60 and 80 percent of all effort expended
on software will be expended after it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.
Reality: One of the most effective software quality assurance mechanisms can be applied
from the inception of a project—the technical review. Software reviews are a “quality filter”
that have been found to be more effective than testing for finding certain classes of software
defects.

Myth: The only deliverable work product for a successful project is the working program.
Reality: A working program is only one part of a software configuration that includes many
elements. A variety of work products (e.g., models, documents, plans) provide a foundation
for successful engineering and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary documentation
and will invariably slow us down.
Reality: Software engineering is not about creating documents. It is about creating a quality
product. Better quality leads to reduced rework. And reduced rework results in faster delivery
times. Many software engineers have adopted an “agile” approach that accommodates change
incrementally, thereby controlling its impact and cost.

1

SOFTWARE ENGINEERING
UNIT-1B

7. A Generic Process Model

Defining a Framework Activity

Identifying a Task Set

Process Patterns

8. Process Assessment and Improvement

9. Prescriptive Process Models

 The Waterfall Model

 Incremental Process Models

 Evolutionary Process Models

 Concurrent Models

10. Specialized Process Models

 Component-Based Development

 The Formal Methods Model

 Aspect-Oriented Software Development

11. The Unified Process

 A Brief History

 Phases of the Unified Process

12. Personal and Team Process Models

 Personal Software Process (PSP)

 Team Software Process (TSP)

13. Process Technology

14. Product and Process

7. A GENERIC PROCESS MODEL

A process was defined as a collection of work activities, actions, and tasks that are
performed when some work product is to be created. Each of these activities, actions, and
tasks reside within a framework or model that defines their relationship with the process
and with one another.

 The software process is represented schematically in the above figure.
 Referring to the figure, each framework activity is populated by a set of

software engineering actions.
 Each software engineering action is defined by a task set that identifies

o the work tasks that are to be completed,
o the work products that will be produced,
o the quality assurance points that will be required, and
o the milestones that will be used to indicate progress.

 A generic process framework for software engineering defines five framework
activities

o communication,
o planning,
o modeling,
o construction, and
o deployment.

 In addition, a set of umbrella activities—project tracking and control, risk
management, quality assurance, configuration management, technical reviews,
and others—are applied throughout the process.

 The process flow—describes how the framework activities and the actions and
tasks that occur within each framework activity are organized with respect to
sequence and time and is illustrated in the above Figure.

 A linear process flow executes each of the five framework activities in
sequence, beginning with communication and culminating with deployment
which is shown in the following Figure.

 An iterative process flow repeats one or more of the activities before proceeding
to the next (shown in the following Figure).

 An evolutionary process flow executes the activities in a “circular” manner.
Each circuit through the five activities leads to a more complete version of the
software (shown in the following Figure).

 A parallel process flow executes one or more activities in parallel with other
activities
e.g., modeling for one aspect of the software might be executed in parallel
with construction of another aspect of the software. (shown in the following
figure)

 Defining a Framework Activity
There are five framework activities, they are

o communication,
o planning,
o modeling,
o construction, and
o deployment.

These five framework activities provide a basic definition of Software Process. These
Framework activities provides basic information like What actions are appropriate for a
framework activity, given the nature of the problem to be solved, the characteristics of the
people doing the work, and the stakeholders who are sponsoring the project?

1. Make contact with stakeholder via telephone.
2. Discuss requirements and take notes.
3. Organize notes into a brief written statement of requirements.
4. E-mail to stakeholder for review and approval.

If the project was considerably more complex with many stakeholders, each with a different
set of requirements, the communication activity might have six distinct actions: inception,
elicitation, elaboration, negotiation, specification, and validation. Each of these software
engineering actions would have many work tasks and a number of distinct work products.

 Identifying a Task Set
 Each software engineering action can be represented by a number of different task sets—
 Each a collection of software engineering

o work tasks,
o related work products,
o quality assurance points, and
o project milestones.

 Choose a task set that best accommodates the needs of the project and the characteristics
of software team.

 This implies that a software engineering action can be adapted to the specific needs of the
software project and the characteristics of the project team.

 Process Patterns
 Every software team encounters problems as it moves through the software process.
 It would be useful if proven solutions to these problems were readily available to the team

so that the problems could be addressed and resolved quickly.
 A process pattern1 describes a process-related problem that is encountered during

software engineering work, identifies the environment in which the problem has been
encountered, and suggests one or more proven solutions to the problem.

 Stated in more general terms, a process pattern provides you with a template a consistent
method for describing problem solutions within the context of the software process.

 By combining patterns, a software team can solve problems and construct a process that
best meets the needs of a project.

 Patterns can be defined at any level of abstraction.
 In some cases, a pattern might be used to describe a problem and solution associated with

a complete process model (e.g., prototyping).

 In other situations, patterns can be used to describe a problem and solution associated
with a framework activity (e.g., planning) or an action within a framework activity (e.g.,
project estimating).

 Ambler has proposed a template for describing a process pattern:
Pattern Name. The pattern is given a meaningful name describing it within the context of the
software process (e.g., TechnicalReviews).

Forces (Environment). The environment in which the pattern is encountered and the issues
that make the problem visible and may affect its solution.

Type. The pattern type is specified. Ambler suggests three types:

1. Stage pattern—defines a problem associated with a framework activity for the process.
Since a framework activity encompasses multiple actions and work tasks, a stage pattern
incorporates multiple task patterns (see the following) that are relevant to the stage
(framework activity).

An example of a stage pattern might be EstablishingCommunication. This pattern
would incorporate the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering action or work
task and relevant to successful software engineering practice (e.g., RequirementsGathering
is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the process,
even when the overall flow of activities is iterative in nature. An example of a phase pattern
might be SpiralModel or Prototyping.

Initial context. Describes the conditions under which the pattern applies. Prior to the
initiation of the pattern:

(1) What organizational or team-related activities have already occurred?
(2) What is the entry state for the process?
(3) What software engineering information or project information already exists?
For example, the Planning pattern (a stage pattern) requires that
(1) customers and software engineers have established a collaborative
communication;
(2) successful completion of a number of task patterns [specified] for the
Communication pattern has occurred; and

(3) the project scope, basic business requirements, and project constraints are known.

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. This section describes how
the initial state of the process (that exists before the pattern is implemented) is modified as a
consequence of the initiation of the pattern.

Resulting Context. Describes the conditions that will result once the pattern has been
successfully implemented. Upon completion of the pattern:

(1) What organizational or team-related activities must have occurred?
(2) What is the exit state for the process?

(3) What software engineering information or project information has been
developed?

Related Patterns. Provide a list of all process patterns that are directly related to this one.
This may be represented as a hierarchy or in some other diagrammatic form. For example, the
stage pattern Communication encompasses the task patterns:
ProjectTeam, CollaborativeGuidelines, ScopeIsolation, RequirementsGathering,
ConstraintDescription, and ScenarioCreation.

Known Uses and Examples. Indicate the specific instances in which the pattern is
applicable. For example, Communication is mandatory at the beginning of every software
project, is recommended throughout the software project, and is mandatory once the
deployment activity is under way.

Conclusion on Process Patterns
 Process patterns provide an effective mechanism for addressing problems associated with

any software process.
 The patterns enable you to develop a hierarchical process description that begins at a high

level of abstraction (a phase pattern).
 The description is then refined into a set of stage patterns that describe framework

activities
 Once process patterns have been developed, they can be reused for the definition of

process variants..

8. PROCESS ASSESSMENT AND IMPROVEMENT

 The existence of a software process is no guarantee that software will be delivered on
time, that it will meet the customer’s needs.

 Process patterns must be coupled with solid software engineering practice
 In addition, the process itself can be assessed to ensure that it meets a set of basic process

criteria that have been shown to be essential for a successful software engineering.
A number of different approaches to software process assessment and improvement have

been proposed over the past few decades:
1. Standard CMMI Assessment Method for Process Improvement (SCAMPI)—

provides a five-step process assessment model that incorporates five phases: initiating,
diagnosing, establishing, acting, and learning. The SCAMPI method uses the SEI CMMI as
the basis for assessment.

2. CMM-Based Appraisal for Internal Process Improvement (CBA IPI)— provides
a diagnostic technique for assessing the relative maturity of a software organization; uses the
SEI CMM as the basis for the assessment.

3. SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software
process assessment. The intent of the standard is to assist organizations in developing an
objective evaluation of the efficacy of any defined software process.

4. ISO 9001:2000 for Software—a generic standard that applies to any organization
that wants to improve the overall quality of the products, systems, or services that it

provides. Therefore, the standard is directly applicable to software organizations and
companies.

9. PRESCRIPTIVE PROCESS MODELS

 Prescriptive process models were originally proposed to bring order to the chaos
(disorder) of software development. History

 these models have brought a certain amount of useful structure to software
engineering work and have provided a reasonably effective road map for software
teams.

 The edge of chaos is defined as “a natural state between order and chaos, a grand
compromise between structure and surprise”.

 The edge of chaos can be visualized as an unstable, partially structured state.
 It is unstable because it is constantly attracted to chaos or to absolute order.
 The prescriptive process approach in which order and project consistency are

dominant issues.
 “prescriptive” means prescribe a set of process elements

o framework activities,
o software engineering actions,
o tasks,
o work products,
o quality assurance, and
o change control mechanisms for each project.

 Each process model also prescribes a process flow (also called a work flow)—that is,
the manner in which the process elements are interrelated to one another.

 All software process models can accommodate the generic framework activities, but
each applies a different emphasis to these activities and defines a process flow that
invokes each framework activity in a different manner.

 The Waterfall Model

The waterfall model, sometimes called the classic life cycle, suggests a systematic sequential
approach to software development that begins with customer specification of requirements
and progresses through planning, modeling, construction, and deployment.

Context: Used when requirements are reasonably well understood.

Advantage: It can serve as a useful process model in situations where requirements are fixed
and work is to proceed to complete in a linear manner.

The problems that are sometimes encountered when the waterfall model is applied are:

i. Real projects rarely follow the sequential flow that the model proposes. Although
the linear model can accommodate iteration, it does so indirectly. As a result,
changes can cause confusion as the project team proceeds.

ii. It is often difficult for the customer to state all requirements explicitly. The
waterfall model requires this and has difficulty accommodating the natural
uncertainty that exist at the beginning of many projects.

iii. The customer must have patience. A working version of the programs will not be
available until late in the project time-span. If a major blunder is undetected then
it can be disastrous until the program is reviewed.

V-model

 A variation in the representation of the waterfall model is called the V-model.
Represented in the above Figure.

 The V-model depicts the relationship of quality assurance actions to the actions
associated with communication, modeling, and early construction activities.

 As a software team moves down the left side of the V, basic problem requirements are
refined into progressively more detailed and technical representations of the problem
and its solution.

 Once code has been generated, the team moves up the right side of the V, essentially
performing a series of tests (quality assurance actions) that validate each of the
models created as the team moved down the left side.

 In reality, there is no fundamental difference between the classic life cycle and the V-
model.

 The V-model provides a way of visualizing how verification and validation actions
are applied to earlier engineering work.

 Incremental Process Models

 There are many situations in which initial software requirements are reasonably well
defined, but the overall scope of the development effort difficulty to implement linear
process.

 Need to provide a limited set of software functionality to users quickly and then refine
and expand on that functionality in later software releases.

 In such cases, you can choose a process model that is designed to produce the
software in increments.

 The incremental model combines elements of linear and parallel process flows. The
above Figure shows the incremental model which applies linear sequences

 Each linear sequence produces deliverable “increments” of the software in a manner
that is similar to the increments produced by an evolutionary process flow.

 For example, MS-Word software developed using the incremental paradigm might
deliver

o basic file management, editing, and document production functions in the first
increment;

o more sophisticated editing and document production capabilities in the second
increment;

o spelling and grammar checking in the third increment; and
o advanced page layout capability in the fourth increment.
o It should be noted that the process flow for any increment can incorporate the

prototyping paradigm.
 When an incremental model is used, the first increment is often a core product. That

is, basic requirements are addressed but many supplementary features remain
undelivered. The core product is used by the customer. As a result of use evaluation, a
plan is developed for the next increment.

 The plan addresses the modification of the core product to better meet the needs of the
customer and the delivery of additional features and functionality.

 This process is repeated following the delivery of each increment, until the complete
product is produced.

 The incremental process model focuses on the delivery of an operational product with
each increment.

 Early increments are stripped-down versions of the final product, but they do provide
capability that serves the user and also provide a platform for evaluation by the user.

 Incremental development is particularly useful when staffing is unavailable for a
complete implementation by the business deadline that has been established for the
project.

 Early increments can be implemented with fewer people. If the core product is well
received, then additional staff (if required) can be added to implement the next
increment.

 Evolutionary Process Models

Evolutionary process models produce with each iteration produce an increasingly more
complete version of the software with every iteration.

Evolutionary models are iterative. They are characterized in a manner that enables software
engineers to develop increasingly more complete versions of the software.

 Prototyping.

 Prototyping is more commonly used as a technique that can be implemented within
the context of anyone of the process model.

 The prototyping paradigm begins with communication. The software engineer and
customer meet and define the overall objectives for the software, identify whatever
requirements are known, and outline areas where further definition is mandatory.

 Prototyping iteration is planned quickly and modeling occurs. The quick design leads
to the construction of a prototype. The prototype is deployed and then evaluated by
the customer/user.

 Iteration occurs as the prototype is tuned to satisfy the needs of the customer, while at
the same time enabling the developer to better understand what needs to be done.

Example:
 If a customer defines a set of general objectives for software, but does not identify

detailed input, processing, or output requirements, in such situation prototyping
paradigm is best approach.

 If a developer may be unsure of the efficiency of an algorithm, the adaptability of an
operating system then he can go for this prototyping method.

Advantages:

 The prototyping paradigm assists the software engineer and the customer to better
understand what is to be built when requirements are fuzzy.

 The prototype serves as a mechanism for identifying software requirements. If a
working prototype is built, the developer attempts to make use of existing program
fragments or applies tools.

 Prototyping can be problematic for the following reasons:
 The customer sees what appears to be a working version of the software, unaware that

the prototype is held together “with chewing gum and baling wire”, unaware that in
the rush to get it working we haven’t considered overall software quality or long-term
maintainability.

 When informed that the product must be rebuilt so that high-levels of quality can be
maintained, the customer cries foul and demands that “a few fixes” be applied to
make the prototype a working product. Too often, software development relents.

 The developer often makes implementation compromises in order to get a prototype
working quickly. An inappropriate operating system or programming language may
be used simply because it is available and known; an inefficient algorithm may be
implemented simply to demonstrate capability. After a time, the developer may
become comfortable with these choices and forget all the reasons why they were
inappropriate. The less-than-ideal choice has now become an integral part of the
system.

 The Spiral Model.

 The Spiral model is proposed by Barry Boehm.
 The spiral model is an evolutionary software process model that couples the iterative

nature of prototyping with the controlled and systematic aspects of the waterfall
model.

 It provides the potential for rapid development of increasingly more complete
versions of the software.

 Using the spiral model, software is developed in a series of evolutionary releases.
During early iterations, the release might be a paper model or prototype. During later
iterations, increasingly more complete versions of the engineered system are

 Anchor point milestones- a combination of work products and conditions that are
attained along the path of the spiral- are noted for each evolutionary pass.

 The first circuit around the spiral might result in the development of product
specification; subsequent passes around the spiral might be used to develop a
prototype and then progressively more sophisticated versions of the software.

 Each pass through the planning region results in adjustments to the project plan. Cost
and schedule are adjusted based on feedback derived from the customer after delivery.
In addition, the project manager adjusts the planned number of iterations required to
complete the software.

 It maintains the systematic stepwise approach suggested by the classic life cycle
but incorporates it into an iterative framework that more realistically reflects the
real world.

 The first circuit around the spiral might represent a “concept development project”
which starts at the core of the spiral and continues for multiple iterations until concept
development is complete.

 If the concept is to be developed into an actual product, the process proceeds outward
on the spiral and a “new product development project” commences.

 Later, a circuit around the spiral might be used to represent a “product enhancement
project.” In essence, the spiral, when characterized in this way, remains operative
until the software is retired.

 Concurrent Models

 The concurrent development model, sometimes called concurrent engineering, allows
a software team to represent iterative and concurrent elements of any of the process
models.

 For example, the modeling activity defined for the spiral model is accomplished by
invoking one or more of the following software engineering actions: prototyping,
analysis, and design.

 The above Figure provides a schematic representation of one software engineering
activity within the modeling activity using a concurrent modeling approach.

 The activity—modeling—may be in any one of the states - noted at any given time.
 Similarly, other activities, actions, or tasks (e.g., communication or construction)

can be represented in an analogous manner.
 All software engineering activities exist concurrently but reside in different states.

 For example, early in a project the communication activity (not shown in the figure)
has completed its first iteration and exists in the awaiting changes state.

 The modeling activity (which existed in the inactive state while initial
communication was completed, now makes a transition into the under development
state.

 If, however, the customer indicates that changes in requirements must be made, the
modeling activity moves from the under development state into the awaiting
changes state.

 Concurrent modeling defines a series of events that will trigger transitions from state
to state for each of the software engineering activities, actions, or tasks.

 For example, during early stages of design an inconsistency in the requirements
model is uncovered. This generates the event analysis model correction, which will
trigger the requirements analysis action from the done state into the awaiting
changes state.

 Concurrent modeling is applicable to all types of software development and provides
an accurate picture of the current state of a project.

 Each activity, action, or task on the network exists simultaneously with other
activities, actions, or tasks. Events generated at one point in the process network
trigger transitions among the states.

10. SPECIALIZED PROCESS MODELS
 Specialized process models take on many of the characteristics of one or more of the

traditional models.

 Component-Based Development
 Commercial off-the-shelf (COTS) software components, developed by vendors who

offer them as products, provide targeted functionality with well-defined interfaces
that enable the component to be integrated into the software that is to be built.

 The component-based development model incorporates many of the characteristics of
the spiral model.

 It is evolutionary in nature, demanding an iterative approach to the creation of
software.

 However, the component-based development model constructs applications from
prepackaged software components.

 Modeling and construction activities begin with the identification of candidate
components.

 These candidate components can be designed as either conventional software
modules or object-oriented classes or packages of classes.

 Regardless of the technology that is used to create the components, the component-
based development model incorporates the following steps:
1. Available component-based products are researched and evaluated for the
application domain in question.
2. Component integration issues are considered.
3. A software architecture is designed to accommodate the components.
4. Components are integrated into the architecture.
5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusability
provides software engineers with a number of measurable benefits.

 The Formal Methods Model
 The formal methods model encompasses a set of activities that leads to formal

mathematical specification of computer software.
 Formal methods enable you to specify, develop, and verify a computer-based system

by applying a rigorous, mathematical notation.
 A variation on this approach, called clean room software engineering, is currently

applied by some software development organizations.
 When formal methods are used during development, they provide a mechanism for

eliminating many of the problems that are difficult to overcome using other software
engineering paradigms.

 Ambiguity, incompleteness, and inconsistency can be discovered and corrected more
easily—not through the review, but through the application of mathematical analysis.

 When formal methods are used during design, they serve as a basis for program
verification and “discover and correct errors” that might otherwise go undetected.

 The development of formal models is currently quite time consuming and expensive.
 Because few software developers have the necessary background to apply formal

methods, extensive training is required.
 It is difficult to use the models as a communication mechanism for technically

unsophisticated customers.

 Aspect-Oriented Software Development
 Localized software characteristics are modeled as components (e.g., objectoriented

classes) and then constructed within the context of a system architecture.
 As modern computer-based systems become more sophisticated (and complex),

certain concerns—customer required properties or areas of technical interest—span
the entire architecture.

 Some concerns are high-level properties of a system (e.g., security, fault tolerance).
Other concerns affect functions (e.g., the application of business rules), while others
are systemic (e.g., task synchronization or memory management).

 When concerns cut across multiple system functions, features, and information, they
are often referred to as crosscutting concerns.

 Aspectual requirements define those crosscutting concerns that have an impact across
the software architecture.

 Aspect-oriented software development (AOSD), often referred to as aspect-oriented
programming (AOP), is a relatively new software engineering paradigm that
provides a process and methodological approach for defining, specifying, designing,
and constructing aspects—“mechanisms beyond subroutines and inheritance for
localizing the expression of a crosscutting concern”.

 aspect-oriented component engineering (AOCE): AOCE uses a concept of
horizontal slices through vertically-decomposed software components, called
“aspects”.

 Components may provide or require one or more “aspect details” relating to a
particular aspect, such as a viewing mechanism, extensible affordance and interface
kind (user interface aspects);

o event generation,
o transport and receiving (distribution aspects);
o data store/retrieve and indexing (persistency aspects);
o authentication,
o encoding and access rights (security aspects);

o transaction atomicity,
o concurrency control and logging strategy (transaction aspects); and so on.

 Each aspect detail has a number of properties, relating to functional and/or non-
functional characteristics of the aspect detail.

 The evolutionary model is appropriate as aspects are identified and then constructed.
 The parallel nature of concurrent development is essential because aspects are

engineered independently.

11. THE UNIFIED PROCESS

 The unified process related to “use case driven, architecture-centric, iterative and
incremental” software process.

 The Unified Process is an attempt to draw on the best features and characteristics of
traditional software process models.

 The Unified Process recognizes the importance of customer communication and
streamlined methods for describing the customer’s view of a system.

 It emphasizes the important role of software architecture and “helps the architect
focus on the right goals.

 It suggests a process flow that is iterative and incremental.
 During the early 1990s James Rumbaugh [Rum91], Grady Booch [Boo94], and Ivar

Jacobson [Jac92] began working on a “unified method”.
 The result was UML—a unified modeling language that contains a robust notation

for the modeling and development of object-oriented systems.
 By 1997, UML became a de facto industry standard for object-oriented software

development.
 UML is used to represent both requirements and design models.
 UML provided the necessary technology to support object-oriented software

engineering practice, but it did not provide the process framework.
 Over the next few years, Jacobson, Rumbaugh, and Booch developed the Unified

Process, a framework for object-oriented software engineering using UML.
 Today, the Unified Process (UP) and UML are widely used on object-oriented

projects of all kinds.
 The iterative, incremental model proposed by the UP can and should be adapted to

meet specific project needs.

11.1 Phases of the Unified Process

 The above figure depicts the different phases in Unified Process.
 The inception phase of the UP encompasses both customer communication and

planning activities.
o By collaborating with stakeholders, business requirements for the software are

identified;
o a rough architecture for the system is proposed; and
o a plan for the iterative, incremental nature of the ensuing project is developed.
o Fundamental business requirements are described.
o The architecture will be refined.
o Planning identifies resources, assesses major risks, defines a schedule, and

establishes a basis for the phases.
 The elaboration phase encompasses the communication and modeling activities of

the generic process model.
o Elaboration refines and expands the preliminary use cases that were developed

as part of the inception phase and expands the architectural representation to
include five different views of the software—the use case model, the
requirements model, the design model, the implementation model, and the
deployment model.

o In some cases, elaboration creates an “executable architectural baseline” that
represents a “first cut” executable system.

o The architectural baseline demonstrates the viability of the architecture but
does not provide all features and functions required to use the system.

o In addition, the plan is carefully reviewed.
o Modifications to the plan are often made at this time.

 The construction phase of the UP is identical to the construction activity defined for
the generic software process. Using the architectural model as input, the construction
phase develops or acquires the software components that will make each use case
operational for end users.

o The elaboration phase reflect the final version of the software increment.

o All necessary and required features and functions for the software increment
are then implemented in source code.

o As components are being implemented, unit tests are designed and executed
for each.

o In addition, integration activities are conducted.
o Use cases are used to derive a suite of acceptance tests that are executed prior

to the initiation of the next UP phase.
 The transition phase of the UP encompasses the latter stages of the generic

construction activity and the first part of the generic deployment (delivery and
feedback) activity.

o Software is given to end users for beta testing and user feedback reports both
defects and necessary changes.

o In addition, the software team creates the necessary support information (e.g.,
user manuals, troubleshooting guides, installation procedures) that is required
for the release.

o At the conclusion of the transition phase, the software increment becomes a
usable software release.

 The production phase of the UP coincides with the deployment activity of the generic
process.

o During this phase, the ongoing use of the software is monitored, support for
the operating environment (infrastructure) is provided, and defect reports and
requests for changes are submitted and evaluated.

o It is likely that at the same time the construction, transition, and production
phases are being conducted.

o Work may have already begun on the next software increment.
o This means that the five UP phases do not occur in a sequence, but rather with

staggered concurrency.

 A software engineering workflow is distributed across all UP phases.
 In the context of UP, a workflow is a task set
 That is, a workflow identifies the tasks required to accomplish an important software

engineering action and the work products that are produced as a consequence of
successfully completing the tasks.

 It should be noted that not every task identified for a UP workflow is conducted for
every software project.

 The team adapts the process (actions, tasks, subtasks, and work products) to meet its
needs.

12. PERSONAL AND TEAM PROCESS MODELS
 Software process model has been developed at a corporate or organizational level.
 It can be effective only if it is helpful to significant adaptation to meet the needs of the

project team that is actually doing software engineering work.
 In an ideal setting, it create a process that best fits your needs, and at the same time,

meets the broader needs of the team and the organization.
 Alternatively, the team itself can create its own process, and at the same time meet the

narrower needs of individuals and the broader needs of the organization.
 It is possible to create a “personal software process” and/or a “team software

process.”
 Both require hard work, training, and coordination, but both are achievable.

 Personal Software Process (PSP)
 Every developer uses some process to build computer software.
 The process may be temporary; may change on a daily basis; may not be efficient,

effective, or even successful; but a “process” does exist.
 Personal process, an individual must move through four phases, each requiring

training and careful instrumentation.
 The Personal Software Process (PSP) emphasizes personal measurement of both the

work product that is produced and the resultant quality of the work product.
 In addition PSP makes the practitioner responsible for project planning (e.g.,

estimating and scheduling) and empowers the practitioner to control the quality of all
software work products that are developed.

 The PSP model defines five framework activities:
1. Planning. This activity isolates requirements and develops both size and resource
estimates. In addition, a defect estimate (the number of defects projected for the
work) is made. All metrics are recorded on worksheets or templates. Finally,
development tasks are identified and a project schedule is created.
2. High-level design. External specifications for each component to be constructed
are developed and a component design is created. Prototypes are built when
uncertainty exists. All issues are recorded and tracked.
3. High-level design review. Formal verification methods (Chapter 21) are applied to
uncover errors in the design. Metrics are maintained for all important tasks and work
results.
4. Development. The component-level design is refined and reviewed. Code is
generated, reviewed, compiled, and tested. Metrics are maintained for all important
tasks and work results.
5. Postmortem. Using the measures and metrics collected (this is a substantial
amount of data that should be analyzed statistically), the effectiveness of the process
is determined. Measures and metrics should provide guidance for modifying the
process to improve its effectiveness.

 PSP stresses the need to identify errors early and, just as important, to understand the
types of errors that you are likely to make. This is accomplished through a rigorous
assessment activity performed on all work products you produce.

 PSP represents a disciplined, metrics-based approach to software engineering that
may lead to culture shock for many practitioners. However, when PSP is properly
introduced to software engineers [Hum96], the resulting improvement in software
engineering productivity and software quality are significant [Fer97].

 However, PSP has not been widely adopted throughout the industry. The reasons,
sadly, have more to do with human nature and organizational inertia than they do with
the strengths and weaknesses of the PSP approach.

 PSP is intellectually challenging and demands a level of commitment (by practitioners
and their managers) that is not always possible to obtain. Training is relatively
lengthy, and training costs are high.

 The required level of measurement is culturally difficult for many software people.
Can PSP be used as an effective software process at a personal level? The answer is
an unequivocal “yes.” But even if PSP is not adopted in its entirely, many of the
personal process improvement concepts that it introduces are well worth learning.

 Team Software Process (TSP)
 Team Software Process (TSP) build a “self-directed” project team that organizes

itself to produce high-quality software.
 Build self-directed teams that plan and track their work, establish goals, and own their

processes and plans. These can be pure software teams or integrated product teams
(IPTs) of 3 to about 20 engineers.

 Show managers how to coach and motivate their teams and how to help them sustain
peak performance.

 Accelerate software process improvement by making CMM Level 5 behavior normal
and expected.

 Provide improvement guidance to high-maturity organizations.
 Facilitate university teaching of industrial-grade team skills.
 A self-directed team has a consistent understanding of its overall goals and objectives;

defines roles and responsibilities for each team member; tracks quantitative project
data (about productivity and quality);

 TSP identifies a team process that is appropriate for the project and a strategy for
implementing the process;

 TSP defines local standards that are applicable to the team’s software engineering
work; continually assesses risk and reacts to it; and tracks, manages, and reports
project status.

 TSP defines the following framework activities:
o project launch,
o high-level design,
o implementation,
o integration and test, and
o postmortem.

 These activities enable the team to plan, design, and construct software in a
disciplined manner while at the same time quantitatively measuring the process and
the product.

 The postmortem sets the stage for process improvements.
 TSP makes use of a wide variety of scripts, forms, and standards that serve to guide

team members in their work.
 TSP recognizes that the best software teams are self-directed.
 Team members set

o project objectives,
o adapt the process to meet their needs,
o control the project schedule, and
o analysis of the metrics collected,
o work continually to improve the team’s approach to software engineering.

 Like PSP, TSP is a rigorous approach to software engineering that provides distinct
and quantifiable benefits in productivity and quality.

 The team must make a full commitment to the process and must undergo thorough
training to ensure that the approach is properly applied.

13. PROCESS TECHNOLOGY
 Process technology tools have been developed to help software organizations analyze

their current process, organize work tasks, control and monitor progress, and manage
technical quality.

 Process technology tools allow a software organization to build an automated model
of the process framework, task sets, and umbrella activities.

 The model, normally represented as a network, can then be analyzed to determine
typical workflow and examine alternative process structures that might lead to
reduced development time or cost.

 Once an acceptable process has been created, other process technology tools can be
used to allocate, monitor, and even control all software engineering activities, actions,
and tasks defined as part of the process model.

 Each member of a software team can use such tools to develop a checklist of work
tasks to be performed, work products to be produced, and quality assurance activities
to be conducted.

 The process technology tool can also be used to coordinate the use of other software
engineering tools that are appropriate for a particular work task.

 PRODUCT AND PROCESS
 If the process is weak, the end product will undoubtedly suffer.
 But an obsessive overreliance on process is also dangerous.
 Product is final developed software
 Process is set of activities, actions and tasks to develop product.
 structured programming languages (product) followed by structured analysis methods

(process) followed by data encapsulation (product) followed by the current emphasis
on the Software Engineering Institute’s Software Development Capability Maturity
Model (process).

 These swings are harmful in and of themselves because they confuse the average
software practitioner.

 So software analyst must concentrate on Product by streamline the Process.
 All of human activity may be a process, but each of us derives a sense of self-worth

from those activities that result (Product) in a representation.
 Thinking of a reusable artifact as only product or only process either obscures the

context and ways to use it or obscures the fact that each use results in product that
will, in turn, be used as input to some other software development activity.

 The duality of product and process is one important element in keeping creative
people engaged as software engineering continues to evolve.

	UNIT-1
	​ Defining Software
	​ Defining a Framework Activity
	Engineering Discipline:
	Software Crisis:
	What is Software Engineering?

	​ Defining Software
	Software characteristics
	1. Software is developed or engineered; it is not manufactured in the classical sense.
	2. Software doesn’t “wear out.”

	Stated simply, the hardware begins to wear out.
	3. Although the industry is moving toward component-based construction, most software continues to be custom built.

	​ Software Application Domains
	(Types of Software or Categories of Software)

	​ Legacy Software
	2. The Unique Nature of WebApps
	3. Software Engineering

	4. The Software Process
	communication, planning, modeling, construction, and
	Degree to which work products are identified and required
	Degree to which the customer and other stakeholders are involved with the project
	Can you represent a solution in a manner that leads to effective implementation?

	​ General Principles

	6. Software Myths
	In many cases, the answer to all of these questions is “no.”
	People can be added but only in a planned and well coordinated manner.
	SOFTWARE ENGINEERING UNIT-1B
	communication,
	​ Defining a Framework Activity
	communication,
	​ Identifying a Task Set
	​ Process Patterns
	ProjectTeam, CollaborativeGuidelines, ScopeIsolation, RequirementsGathering, ConstraintDescription, and ScenarioCreation.
	8. PROCESS ASSESSMENT AND IMPROVEMENT
	9. PRESCRIPTIVE PROCESS MODELS
	​ The Waterfall Model
	​ V-model
	​ Incremental Process Models
	​ Evolutionary Process Models
	​ Prototyping.
	Example:
	Advantages:
	​ The Spiral Model.
	​ Concurrent Models
	10. SPECIALIZED PROCESS MODELS
	​ Component-Based Development
	​ The Formal Methods Model
	​ Aspect-Oriented Software Development
	11. THE UNIFIED PROCESS
	11.1 Phases of the Unified Process
	12. PERSONAL AND TEAM PROCESS MODELS
	​ Personal Software Process (PSP)
	​ Team Software Process (TSP)
	project launch,
	13. PROCESS TECHNOLOGY
	​ PRODUCT AND PROCESS

