UNIT-1V

Design for flexural resistance:

Types of flexural failure

1. Fracture of steel:- A minimum longitudinal reinforcement of 0.2% of the total concrete

area shall be provided in all the cases except in the case of pre stressed units of small
sections. This reinforcement may be further reduced to 0.15% in the case of HYSD bars.
The percentage of steel provided, both tensioned & un-tensioned taken together should be
sufficient so that when the concrete in pre compressed tensile zone cracks, the steel is in
position to take up the additional tensile stress, transferred on to it by the cracking of the
adjacent fiber of concrete & a sudden failure is avoided.

2. Failure of over reinforced section:- When the effective reinforcement index , which is

expressed in terms of the percentage of reinforcement, the compressive strength of the
concrete and the tensile strength of the steel, exceeds a certain range of values, the
section is said to be over reinforced. Generally, over-reinforced members fall by the
sudden crushing of concrete, the failure being characterized by small deflection and
narrow cracks. The area of steel being comparatively large, the stresses developed in steel
at failure of the member may not reach the tensile strength & in many cases it may well
be within the proof stress of the tendon.

3. Failure of under reinforced section:- If the cross-section is provided with a steel greater

than the minimum prescribed above, the failure is characterized by an excessive
elongation of steel followed by crushing of concrete. This type of behaviors is generally
desirable since there is considerable warning before the impending failure. As such, it is
common practice to design the under-reinforced sections, which become more important

in case of statically indeterminate structure.

Design methods:
Strain compatibility method
Assumptions:

1. The stress distribution in the compression zone of concrete can be defined by
means of coefficients applied to the characteristic compressive strength & the
average compressive stress & the position of the centre of compression can be
assessed.



2. The distribution of concrete strain is linear. (i.e. the plane section normal to axis
remains plane after bending)

3. The resistance of concrete in tension is neglected.
4. The maximum compressive strain in concrete at failure reaches at a particular
level.
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Fig. Stress-Strain Distribution at Failure

Total compressive force. C, =k f_ bx
Total tensile force. T, =4, 1,
The ultimate flexural strength of the concrete. M, =k f bx(d — K,x)

Where,
f.; ?Characteristic strength of the prestressing concrete

b—>Effective width

x =>Neutral axis depth

A, = Area of prestressing tendons

f,» 7 Characteristic tensile strength of the prestressing tendon

k, = A constant whose value varies from 0.5-0.7 for f,, = 60-20 Mpa

k, =2 A constant whose value varies from 0.42-0.47 for f, = 60-20 Mpa

The typical stress strain characteristic of different types of tendons used in prestressed
concrete as recommended by IS1343 is given in the figure below.
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Fig. Characteristic of Hognestad et al’s stress block
Steps

1. Compute the effective strain €;,in steel due to prestress after allowing for all

losses from the stress-strain curve of steel.



o

Assume a trial value for neutral axis depth x & evaluate (£, —¢€,, )

3. Using the stress-strain curve for steel. determine the value of stress in steel at
failure f, corresponding to &,

4. Compute total compression C & tension 7.
5. If C = T the assumed value of x is OK. Otherwise if tension is less than the
compression decrease the value of x & vice versa to repeat the process 2-4 again.

6. Evaluate moment of resistance (ultimate moment). M =4_f,, (d —kx)

Example

A pretensioned concrete beam with a rectangular section. 100 mm wide by 160 mm deep.
is prestressed by 10 high—tensile wire of 2.5 mm diameter located at an eccentricity of 40
mm. The initial force in each wire is 6.8 kN. The strain loss in wires due to elastic
shortening. creep and shrinkage of concrete is estimated to be 0.0012 units. The
characteristic cube strength of the concrete is 40 N/mm’. Given the load-strain curve of
2.5 mm diameter steel wire (fig below). estimate the ultimate flexural strength of the
section using strain compatibility method.

/

" oy

7

4l
0.006 0,008 0.010 0.012 0.014

Sirain

Fig. 7.6 Load-Strain Curve for 2.5 mm Wire




Solution:-

From the above figure (Hognestad stress block) we can have for fa.= 40 N/mm’,
g, =0.0033.k; =057 : ka=0.45.

As per figure strain due to load of 6.8 kN in wire is 0.0073

So effective strain in steel after all losses is given by

g, =(0.0073-0.0012)=0.0061

First trial
Assuming x = 60 mm

From the strain diagram (& —&,_)=0.0033

Therefore. £, =(0.0033+0.0061)=0.0094
Corresponding force in the wire =8.4 kKN
Total tensile force = 10 = 8.4 = 84 kN.
Total compressive force = (k- £, -b-x)
_ (0.57x40x100x60)

1000
Since tension is less than compression, x is decreased for second trial

=136.8 kN

Second trial
_Assuming x = 43 mm

From the strain diagram (&, — &, )=0.0059
£, =(0.0059+0.0061)=0.012

Corresponding force in the wire =9.9kN

Total tensile force =(10x9.9) =99 kN
. (0.57x40x100x43) )

Total compressive force = =98 kN

1000
Since tension is nearly equal to compression, strain compatibility is established.

M,=A,f,(d—kx)
=90 x 10° (120 - 0.45 x 43)
=9.96 x 10° Nmm
=0.96 kNm




Indian code (as per IS 1343 1980)

Assumption
1. The plane sections normal to the axis remain plane after bending.
2. The maximum strain in concrete at outermost compression fibre is taken as 0.35%
in bending regardless of the strength of concrete.
3. The relationship between stress & strain distribution in concrete is assumed to be

parabolic. The maxinmun compressive stress is equal to 0.446 1,

Where, fzx—2 Characteristic strength of the concrete

=

The tensile strength of concrete is ignored.

th

The steel & concrete are bonded completely.
6. The stresses in bonded prestressing tendons are derived from the respective stress-
strain curve for the particular steel.
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M_ —>Ultimate moment of resistance of the section
[, = Tensile strength developed in tendons at the failure stage of the beam

Jf, = Characteristic tensile strength of the prestressing steel

f,. 2 Effective prestress in tendon after losses



A4, = Area of prestressing tendons

d = Effective depth
b —>Effective width
x, ?Neutral axis depth

Then moment of resistance, M, = f,, 4, (d —0.42x, )
The value of f, depends upon the effective reinforcement ratio
4,7,
\ bdf,,

For pre-tensioned & post-tensioned members with an effective bond between concrete &
tendon, the value of f,, & x, are given in table 11 of IS1343. The effective prestress f

after all losses should not be less than 0.45 S, For post-tensioned rectangular beams with
un-bonded tendons. the value of f, & x, are influenced by the effective span to depth

ratios, and their values for different span/depth ratios are given in Table-12 of IS1343.

TAELE 11 CONDITIONS AT THE ULTIMATE LIMIT STATE FOR
RECTANGULAR BEAMS WITH PRE-TENSIONED TENDONS OR WITH
POST-TENSIONED TENDONS HAVING EFFECTIVE BOND

AT STRESS IN TENSION AS A PROPORTION RATIO OF THE DEPTH OF NEUTRAL
Bp

—t OF THE DESIGN STRENGTH AXIS TO THAT OF THE CENTROID OF
bdf F; THE TENDON IN THE TENSION ZONE
Pu "u‘rd
0.87 fp
Pre-tensioning  Post-tensioning Pre-tensioning Post-tensioning
with effective with effective
hond bond
(1) (2) (3) (4) (5)

0.025 1.0 1.0 0.054 0.054
0.05 1.0 1.0 0.109 0.109
0.10 1.0 1.0 0.217 0.217
0.15 1.0 1.0 D.326 0.316
0.20 1.0 095 0. 435 0414
026 1.0 0.90 0.542 0. 488
0.30 1.0 0.85 0.655 0.558
0.40 0.9 0.7 0.783 0.653



TABLE 12 CONDITIONS AT THE ULTIMATE LIMIT STATE FOR
POST-TENSIONED RECTANGULAR BEAMS HAVING
UNBONDED TENDONS
( Clause B-1)

A f STRESS IN TENDONS AS A PROPORTION RATIO OF DEPTH OF NEUTRAL AXIS
2P OF THE EFFECTIVE PRESTRESS fpnffp TO THAT OF THE CENTROID OF THE

bd f . FOR VALUES OF l/d TENDONS IN THE TENSION ZONE
EFFECTIVE SPAN ) xy/d FOR VALUES OF l/d
(Er-rfcm-'s DEPTH EFFECTIVE SPAN
[EFFEUWE DEPTH]
30 20 10 30 20 10
(1) (2 (3) (4) (3) (6) M
0.025 123 1.34 145 0.10 0.10 0.10
0.05 1.21 1.32 1.45 0.16 0.16 0.18
0.10 1.18 1.26 1.45 0.30 0.32 0.36
0.15 1.14 1.20 1.36 0.44 0.46 0.52
0.20 1.11 1.16 1.27 0.56 0.58 0.64

Moment of resistance of flanged section

The ultimate moment of resistance of flanged sections in which the neufral axis falls
outside the flange is computed by combining the moment of resistance of web & flange
portion & considering the stress block is shown below.
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If Ap, = Area of prestressing steel for web
Apr = Area of prestressing steel for flange
D¢ Thickness of flange

Then. 4, =(4,, +4,,)

But. A, =045f,(b- bw}[%]

After evaluating Apy. the value of Apy 15 obtained as

A.w - (AP _Apf)

4,7,
pw/ p
For effective reinforcement ratio of the corresponding values of
bdfo ]
{fpﬂ 0.8?};) & (%) are obtained from Table — 11 of IS 1343 1980. The moment of

resistance of the flange section is obtained from the expression

M, =f,A4,(d-042x,)+0.45f,(b-b,)D,(d-0.5D,)



Example

A pretensioned prestressed concrete beam having a rectangular section 150 mm wide
350 mm deep has an effective cover of 50 mm If fi = 40 N/mm’ & fp=1600N mm?® &
the area of prestressing steel 4p = 461 mm’. caleulate the ultimate flexural strength of

the section using IS code method.

Solution:-

Given data,

Characteristic strength of concrete. f=40 N/mm’
Charactenistic strength of tendon. f, = 1600 N mm”
Area of tendon. 4, =461 mm®;

Width, b = 150 mm

Effective depth. d = 300 mm

The effective reinforcement ratio is given by

fod, =( 1600 % 461 ]:o.m
fibd | | 40x150%300

From Table- 11, the corresponding values of the ratios are

w | 0.9 and[x—“]={}.?83
0.87f, d.

o fru =(0.870.9x1600)=1253 N/mm’

-.x, =(0.783x300) =234,9 mm
Hence, the ultimate flexural strength of the section is
M=f,4, (d-042x,)

1253x461(300-0.42x234.9)

116x10° Nmm =116 kNm

Example

A pretensioned T-section has a flange, which 1s 300 mm wide 200 mm thick. The rib 1s
150 mm wide by 350 mm deep. The effective depth of the cross section is 500 mm.
Given: 4, =200 mm?, £=50 N/mm’ & Jp=1600 N mm?, estimate the ultimate moment

capacity of the T-section using IS code method.

Solution:-

Given data,

Characteristic strength of concrete, (=50 N mm’
Characteristic strength of tendon. f; = 1600 N/mm?



Area of tendon, 4, =200 mm’:
Width, b = 300 mm: Depth, d = 500 mm

Assuming that the neutral axis falls within the flange. the value of b = 300 mm for

computations of effective reinforcement ratio.

A, _( 1600 % 200 ]
fabd |\ 50x300x500

From Table- 11, the corresponding values of the ratios are

i =1.0 and (x—“]=0.09
0.87f, d.

o £, =(0.87%1600)=1392 N/mm’

=0.04

i (0.()9)( 500) =45 mm

The assumption that the neutral axis falls within the flange is correct. Hence, the ultimate

flexural strength of the section is:
M=f,4,(d-042x,)

= 1392x200(500—0.42x 45)
= 134x10° Nmm = 134 kNm



Deflections

Factors influencing deflection:
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Imposed load & self load

Magnitude of prestressing force

Cable profile

Second moment of area of cross-section
Modulus of elasticity of concrete
Shrinkage. ereep & relaxation of steel stress
Span of the member

Fixity condition

Short-term deflection of uncracked members

Mohr's theorem 0
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Fig. Slope and deflection of beam
If 8 —2Slope of the elastic curve at 4

AD=Intercept between the tangent at C & vertical at 4

a—>Deflection at the centre for symmetrically loaded simply supported beam
A= Area of the beam between 4 and C

x—2Distance of the centroid of the BMD between 4 and C from the left support
EI2Flexural rigidity of the beam

Then by Mohr’s first theorem

Area of BMD A

Slope = 8=

Flexural rigidity EI



According to Mohr’s second theorem

moment of area of BMD

Intercept, a=
Flexural rigidity

Effect of tendon profile on deflection

1. Straight tendon
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It P-> Effective prestressing force

e=> Eccentricity
L2 Length of the beam
Then.
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Deflection. a = —



2. Trapezoidal tendon
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3. Parabolic tendons (Central Anchors)
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4. Parabolic tendons (Eccentric Anchors)
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5. Sloping tendon (Eccentric Anchors)
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6. Parabolic and straight Tendon
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7. Parabolic & straight tendons (Eccentric Anchors)
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Load due to external loading
If g = Self weight of the beam per metre

g = Uniformly distributed superimposed load per metre
5(g+q) o

384ET

Then. Downward deflection. a =

Example
A conerete beam with cross-sectional area of 32x10°mm’ & the radius of gyration is
72mm is prestressed by a parabolic cable carrying an effective stress of 1000 N/mm?.
The span of the beam is 8 m. The cable, composed of 6 wires of Tmm diameter, has an
eccentricity of S0mm at the centre & zero at the supports. Neglecting all losses, find the
central deflection of the beam as follows:

(a) self-weight + prestress

(b) self-weight + prestress + live load of 2 kN/m.

Solution: -

Data Provided:

Cross sectional area of beam, 4= 32x10° mm’

Modulus of elasticity. E = 38 kN/mm?: Dead weight of concrete, D= 24 kN/mm’;
Radius of gyration , i = 72 mm: Span, L =8 m =8000 mm:

Eccentricity, e =50 mum

I=A47=(32x10° x722) =166 x10° mm*

Prestressing force, P = {6 x38.5% 1000) = 231000 N =231 kN

32x10°
10°

Self weight. g =( X 24] =0.77 kN/m =0.00077 kN/mm

5gL’ 5% 0.00077 x 8000*
¢ |= 6.5 mm
384EI 384x 38x166x10

5PeL“]_ 5% 231x 50x 8000*
ASEI 48x38x166x10°

Downward deflection due to self weight = (

Upward deflection due to prestressing force ={ ]=12.2 min

Downward deflection due to live load = (Dﬁ—i x 2) =16.9 mm

(a) Deflection due to (self-weight + prestress) =(12.2 - 6.5) = 5.7 mm(T)
(b) Deflection due to (self-weight + prestress + live load) = (6.5-12.2+16.9) =11.2 mm(])



g 6.3 A rectangular concrete beam of cross-section 150 mm wide and
300mmdeeplsumplysupponedovcraspanof8mandnsprestrusedbymeansofa
symmetric parabolic cable, at a distance of 75 mm from the bottom of the beam at mid
span and 125 mm from the top of the beam at support sections. If the force in the cable
is 350 kN and the modulus of elasticity of concrete is 38 kN/mm?, calculate:

(a) the deflection at mid-span when the beam is supporting its own weight and

(b) the concentrated load which must be applied at mid-span to restore it to the

level of supports.
P = 350 kN, E,. = 38 kN/mm’,
I =3375 % 10° mm* e, = 75 mm, e, =25mm
Net deflection due to the prestressing force
A (=5 X 75 + 25)
“aE YT | G x38x 3375 %10°
= 12.7 mm (upwards)
If-weight of the beam, g = (0.15 x 0.30 x 24) = 1.08 kN/m
=0.00108 kN/mm

) , 5x0.00108 X 8000*
Downward deflection due to self-weight= | — - ~—— | =4.5 mm

384 x 38 x 3375 x 10°

(a) Deflection due to (prestress + self-weight) = (-12.7 +4.5) =-8.2 mm (upwards)
(b) If Q = concentrated load required at the centre of span,

or | _
Then, [@] =8.2

[8.2x48x38x3375 x 10° )
= | — - =909 kN

8000°

Prediction of long time deflection:

The deformations of prestressed members change with time as a result of creep and
shrinkage of concrete and relaxation of stress in steel. The deflection of prestressed
members can be computed relative to a given datum, if the magnitude and longitudinal
distribution of curvatures for the beam span are known for that instant based on the
load history, which includes the prestressing forces and the live loads.

The prestressed concrete member develops deformations under the influence of
two usually opposing effects, which are the prestress and transverse loads. The pet
curvature @ at a section at any given stage is obtained.

0= P + O



Prediction of long time deflection

‘;‘6:‘ = gﬁmr + 'Efﬁpr
¢'ma‘ - {1 T ¢)¢I

Where. ¢,, 2 Change of curvature due to transverse load.

¢, 2 Change of curvature due to prestress

¢, 2 Total curvature
¢ =2 Creep coefficient

¢, = Initial curvature immediately after the application of transverse load.

According to ACI committee.
__Pie (B-Rl (B+B)es

= E EI 2ET
Pie| L L,
=>¢, =—|1-S2+|1-—%
O Ef[ F, [ 2R, H
Where, P, > Initial prestress

P, - Prestress after time ¢

e—>Eccentricity of the prestressing force at the section
EI2Flexural rigidity
L, =(P, - B,) >Shrinkage and creep

Thus the total deflection after time ¢ obtained from the above expression is
(1+4) 1 ( " W ¢
a;=a.(1+P-a. |1-——+|1-—=
r it ip
E | 2

I/
Where, a, = Initial deflection due to transverse load
a,, = Initial deflection due to prestress
a —> Final deflection after time ¢
Simplified method

ap,= {an —day %:|(1 + 9‘5')

Here .
+ve(positive) sign refers upward deflection.

-ve(negative) sign refers downward deflection.






Example:

A concrete beam having a rectangular section 100 mm wide and 300 mm deep is
prestressed by a parabolic cable carrying an mitial force of 240 kN. The cable has an
eccentricity of 50 mm at the centre of the span is concentric at the supports. If the span of
the beam 1s 10m and live load is 2 kN/m. Estimate the long time deflection after 6 months
if E=38 kiN/mm’ & creep coefficient ¢h= 2.0, loss of prestress = 20% of the mitial stress
after 6 months. Estimate the long time deflection at the center of the span at the stage

assuming that the DL & LL are simultaneously applied after the release of prestress.

Solution:-

Here. Given

P, =240 kN.

I=225%10°

e =50 min

¢p=2.0
DL=0.1x0.3x24=0.72kN/m
LL=2kN/m

Loss of prestress = 20% of P,

Short time deflection:

5Pel’ }_[5 x 240 x 50 x (10 x 1000)*

= =14.7 mm
48ET 48x 38x225x10° } Lt

Initial deflection due to prestress =(
5(g + q)L*

Deflection due to self weight and live loads =
= 384ET

384 x 38 % 225x10°

=41.5mm (|)
Therefore. net deflection =41.5 - 14.7 = 26.8 mm (]).

{5 % (0.00072 x +0.002)(10 x 1000)* ]

Long time deflection:

L L
The long time deflection, a, =a,(1+¢)—a,|1-—=+|1-—X
E i :( 9'15] rpl: I_: ( 21:: 9-{’
0.2P 0.2P
=41.5(1+2)-14.7 |1- L+ 1- Lx2
P 2P

=(124.5-38)=86.5mm(])



Using simplified formula

a; ={aﬂ —-a, %j(l+¢:)

=(41.5-14.7 x 0.8)(1 +2)=89.1 mm(])

| ExAMPLEG:S | A sunpl;.r supported beam with a uniform section spanning over 6m
is pmt-tvmsmned by two cables, both of which have an eccentricity of 100 mm below
the centroid of the section at mid-span. The first cable is parabolic and is anchored at
an eccentricity of 100 mm above the centroid at each end, the second cable is straight
and parallel to the line joining the supports. The cross-sectional area of each cable is
100 mm? and they carry an initial stress of 1200 N/mm?. The concrete has a cross-
section of 2 x 10* mm? and a radius of gyration of 120 mm.
The beam supports two concentrated loads of 20 kN each at the third points of the
span, E, = 38 kN/mm®, Calculate using Lin’s simplified method
{(a) the instantaneous deflection at the centre of span: and
(b) the deflection at the centre of span afier 2 years, assuming 20 per cent loss in
prestress and the effective modulus of elasticity to be one-third of the short-term

modulus of elasticity.
A =2 % 10* mm* i =120 mm
I=Ai* = (2% 10" x 120%) = 288 % 10° mm"*
P=120kN ;= e, = 100 mm
L = 6000 mm

Self-weight, g =0.00048 kN/mm
Concentrated loads at third points of span, Q = 20 kN
{a) Downward deflection due to self-weight of the beam

5 x 0,00048 % 6000*
= = (74 mm
384 % 38 x 288 % 10°
Downward deflection due to concentrated loads = HQE
| G4BET
= M’f = 14.10 mm
648 x 38 x 288 % 10°
Deflection due to prestressing force
Deflection due to the parabolic cable = [ 3 EE!] (-5, + &;)

=[ 120 x 6000°

~5x 100 + 100) = -3.27 ard
43:-(33}(233}(1[]5]{ x 100+100) mm (upward)



—Pel? 2
Deflection due to the straight cable = [ Pel ] = _[liﬂxlﬂl}xﬁﬁm ]

8EI 8 x 38 x 288 x 106

=—4.92 mm (upward)
Instantaneous deflection due to (prestress + self-weight + live loads)
=(-3.27-4.92) + 0.74 + 14.10 = 6.65 mm (downward)
(b) At the end of two years,

E.= % and loss of prestress = 20%

Upward deflection =3 [0.8 (3.27 + 4.92)] = 19.65 mm
Downward deflection = 3 (0.74 + 14.10) = 44.52 mm
Net downward deflection = (44.52 - 19.65) = 24.87 mm

.

- 'IIHI.I A prestressed concrete beam having a cross-sectional area (A) of
5 % 10* mm? is simply supported over a span of 10 m. It supports a uniformly distrib-
uted imposed load of 3 kN/m, half of which is non-permanent. The tendon follows a
trapezoidal profile with an eccentricity of 100 mm within the middle-third of the span
and varies linearly from the third-span points to zero at the supports. The area of
tendons A, = 350 mm? have effective prestress of 1290 N/mm® immediately after
transfer. Using the following data, calculate

1. the short-term deflections, and

2. the long-term deﬂﬂctmns

Assume I, = 4.5 x 10" mm* Density of concrete = 23.6 kN/m*
E 34 kN/mm? Creep coefficient =
A =5 10° mm? Concrete shrinkage, £, = 450 x 1078
E, = 200 kN/mm* Relaxation of steel stress = 10%

1. Short-term deflection
Initial prestressing force, P =(350x 1290} =4,51,500 N

] sx 10
Self-weight of the beam = 0F %236 =1.18 kN/m
Non-permanent load = 1.5 kN/m

Permanent load = dead load + sustained live-load
=(1.18 + 1.5) = 2.68 kN/m

(i) Deflection due to the prestressing force Referring to Fig. 6.3 and substituting
the value of L and L, in the equation for deflection, we have

Pe 2 2
a,=-——I|[2I +6 +3
3 .f[ Iy + 6L Ly +315]
L, =3.333 mand L, = 1.666 m and ¢ = 100 mm. Thus,

4,51,500 % 100
6x34x10° x4.5%10°

=-31 mm (upwards)

] [2 % 3333% + 6(3333 x 1666) + 3 x 16667]



(ii) Deflection due to non-permanent load (live-load)
g= 15 kN/m

[Sqﬂ‘] [ Sx1.5% (10 x10*)*
q: ———— = ——ne - -

3345'!. . ] = 12.8 mm (downwards)

384 3 34 X 10° x 4.5% 10°

(iii) Deflection due to permanent load (sustained load)
£=2.68 kN/m

Sgrt 5x 2.68x (10x10*)*
a,=|-———=|=
¥\ 3B4ET | | 384 x 34 x 10° x 4.5x 10°

] = 22.8 mm (downwards)

(iv) Short-term deflections
{a) When the non-permanent load is acting, the short-term deflection is given

by
a,=(-31+ 12.8 + 22.8) = 4.6 mm (downwards)

(b) When the non-permanent load is not acting, the short-term deflection is
given by
a, = (-31 +22.8) = -8.2 mm (upwards)

2. Long-term deflection Stress in concrete at the level of steel

4,51,500 | [ 4,51,500 % 100 x 100 \
A ks . ~ | = 19 N/mm*
[5:«;1-:1" ] [ 45x 10* ]
(& -(2)
%=\E ) \'%
=588

(a) Loss due to Relaxation = 10% = 129 N/mm*
(b) Loss due to shrinkage = (450 x 107 x 200 x 10%) = 90 N/mm’?
(c) Loss due to creep = (2 % 5.88 % 19) = 223 N/fmm?
Total loss = 442 N/mm?
P = Initial prestressing force = 4,51,500 N
8P = Loss of prestressing force = (442 x 350) = 1,54,700 N
(P - 8P) = Final prestressing force = (4,51,500 — 1,54,700) = 2,96,800 N

(4,51,500 +2,96,800)
2

(i) Long-term deflection due to prestress
a,= (Deflection due to the initial - [Deflection due to loss of
prestressing force (P)) prestressing force (6F)]
+ (Deflection due to the average prestressing force
due to creep with ¢=2) '

1,54,700 x 31 374,150 % 31
‘31‘( 4,51,500 ]*[ 4,51,500 ]2
=31-10.6 + 51.4 = 72 mm (upwards)

(ii) Long-term deflection due to permanent load
ag =(1+¢) {short-term deflection)
=(1+2)(22.8) = 68.4 mm (downwards)

Average prestressmg force = [ :| =3,74,150N




(iii) Long-term deflection due to non-permanent load
a, = 12.8 mm (downwards)
The total long-term deflection is computed as,
{2) When the non permanent load is acting:
Mid-span deflection = (-72 + 68.4 + 12.8) = 9.2 mm (downwards)

(b} When the non-permanent load is not acting:
Mid-span deflection = (-72 + 68.4) = -3.6 mm (upwards)

A prestressed concrete beam of rectangular section, 120 mm wide
and 300 mm deep, spans over 6 m. The beam is prestressed by a straight cable carrying
an effective force of 180 kN at an eccentricity of 500 mm. If it supports an imposed
load of 4 kN/m and the modulus of elasticity of concrete is 38 kN/mm?, compute the
deflection at the following stages and check whether they comply with the IS code
specifications.

(a) upward deflection under (prestress + self-weight), and
(b) final downward deflection under (prestress + self-weight + imposed load)
including the effects of creep and shrinkage. Assume the creep coefficient to be

1.80.
P =180 kN Self-weight, g = 0.86 N/mm
¢ = 30 mm Imposed load, g = 4 N/mm
1=27x%10" mm* E, =38 kN/mm’
L = 6000 mm

Deflection due to the prestressing force
Pel? | _[ 180 50 x 60007

P[EEI ]-[SXSBXZTXIW

Deflection due to the self-weight of the beam

Sgrt 5% 0.86 x 6000*
= = = |.4 mm
384 EI 384 x 38 x 10° x 27 x 107

] = 4.0 mm (upward)

Deflection due to self-weight and live load
| ste+ql* | 5 % 4.86 x 6000*
| 384Er 384 x 38 x 10° x 27 x 107

(a) Deflection due to (prestress + self-weight) = (4.0 + 1.4)=-2.6 mm
Permissible upward deflection as per draft IS: 1343

span 6000
= [ﬁ] = (ﬁ] =20 mm
Hence, the upward deflection is within permissible limits.
(b) Deflection due to (prestress + self-weight + live load) including effects of creep
and shrinkage
=(-40+800 (1 + ¢ =(400(1 + 1.B) = 11.2 mm
Permissible downward deflection as per [S: 1343

()2

Hence, the final downward deflection is within permissible limits.

]=E.Gmm






