Uult -y

(-)
Rigital Seaveh, Teee (pe)
A
= B DT T¢ Cpecial +ype of Bmm%} tvee ©n whith €ver
gtoves BIvary numbes (ov) B¥Mary e\p_ment
- hn ‘5606'(01 the DT can usled moiﬂlj 1 oo (uppl(cahom ’
) 8P vouting @
°7) ge“‘”‘j S‘JCHW che,mun
\/e'rcd (’.{;tLuemﬂtd ™M DU than Ave Tree Kk Bmcmjltﬁ'“h Tree .

Lj r')Dd(

5. e DST occepiet legc SPQCL o Avl K %,nawj Smychlreea

l tme cornpl et 'Hd

Bectcoge = ©Ct)
-A»emc}e_ cale =) @(L09N)

‘n ! e hexﬂhi‘ o} DST

WOret cate =) O (L)
Lk 92 mno of bits of an e lement

lool

\\
QO00) @B)
,,9> @

p{g §or med OM

:
‘.
VA

eyations
Sperian DT

Tree Reste QperOLHOﬂ‘
@ gncertion
Delet 00

(3) seash

+TO gneent an element
pvoceduve Steps
$ep@ 2~ Check wheher Hne Avee f¢ &mply or oot

o

Ernpty 4hen newy element ©

§ -4 tree Tt
itf)@ b e e Y4 vootNode

o~ per We wneed ta joltowd e

TNLey feo

S - et
%%)h tre vee 3¢ 0ot emfly dnen -he eP ele
e@ o e
“Ntevded ithef leht Lulstee Cov “qyﬁ Cub N
e[emeﬁj(' b e

mootoce By checting Avct it

L

+h2ﬁl Te new) elmeny

“¢ xe¥0
vt otk newy elerment B 5 A
: e . Steyys
3 @Ot e ft eubtree 1o *M:‘DO 2 Wiy
f do be TNQetded ot ntovied QL Hhe

1 be
(#1%F Rits) the mew elemnent (o ‘
'quh’r QLbtee o ‘ne, ’rDO‘l'()O(?lL) .
scted T i L]
e e already: gigeked € et Con)

Sep @3- G the ned

- the neut nNew el
QeT (Right Subee) to heny "y

the. sootHode .
)‘Q:g,,ht Quittree 'h)rih(

I 4o be Tnterkd ettheY Eeh{é%%fh;; ;”0;} i e preoeleen
° v compar! l
exfeted nede Y Py w0 The

will loe (:on"h‘nued at every node

®tRg procedure
Det '\’P.Cuh’ttvelgj.

a DT with cours Ot by e Pollow?ncﬂ

&x - conttruct |
Q\e,rr)cﬂﬁ OO) 6000), [{o){S]) 6 00|) 1000, .LT)QH) 1100, O]OO) 10”,
olo\, hol, olto, Wi, ol A o-tebt

5? (g 1?0.]"1"

tntest 100) . g o
MNeew

gngext 0000

intert 1000

(ooh
©005) (1019
(o00)

&

S
gocent (o113

gneext v -

/

@,
@m 07

[

@8
u
u

Angest g~

Bxext ot

(’Qlu

////—’—(T"’///\

DeleHon opexalion o 07 °

catedy -

Deleting lealy nod e
Cgiég:e)-%iﬂﬂ a node whith 7¢ having arx Fhi\d
ng—e()gfi)h‘ﬁq o node NavP9 . el IR
¢p - Delete e elornentt foro DT

cased gqe-y
Delete ©QO!

QQ;Q_QGT) ngf\‘/
Delete GO0OO

DR

& =

Qe it Eg3-y
Delete \oiO

Seavch opexation D 0BT
9n e DET we awve 4o |

To %eanch an element

rolow e following procedure Stepg i
|
i

vocedure Heps

y Check Wnedher the Aree ¢ Ermply o Not
- cgnnot be I

4he tree ¢ geopty hen Ahe teoncd elernen

) K
fourd
2) kf dpe -hee "¢ ot eropty o 4 Search proce ¢ ¢tarks with
~octhod e ewaras
) &k e Seaxch e e et 1C Mo tched ot AL Yooﬂynod,_
e\am{ﬂ\ “Her Sﬁorch olerrent e foutﬁd\ at ~oothod e E
5) z‘h “he search Q\Qman'r ¢ ool matehed wl ih the ~octnod ¢ %
ele ment then Tve \tT it Ob coarch olerme N wolll be :
checleed € W ig ®reYO S Aben MR Ceavch opaval—won Wt ot
Pe"bor"ﬂed 1ch~(c‘imehj on ihe lebrfu'o*mee ofy he YOO’deOde :
gy iF te ones the ceqytin Operation Lot Be P for 2
o e viqint tubtree of e vootnode

[Qa@mode of
YOO‘\'ﬂOd@

YQC,UYGV elvj
6 This procedt Wil bt conhnued il e
prepetree 00 ~tgnt subtee oy the

etthey 2

+ g 1ol . - §
ght cubtree o yoolnode | §

Chapter 12
Digital Search Structures

= Digital Search Trees
= Binary Tries and Patricia
= Multiway Tries

g,’& C-C Tsai

P.1

i Digital Search Tree

= A digital search tree is a binary tree in which
each node contains one element.

s Assume fixed number of bits.

= Not empty
= Root contains one dictionary pair (any pair).

= All remaining pairs whose key begins with a O
are in the left subtree.

= All remaining pairs whose key begins with a 1
are in the right subtree.

= Left and right subtrees are digital subtrees on
remaining bits.

g,’t C-C Tsai

P.2

Example of Digital Search Tree

B Start with an empty digital search tree and insert a

pair whose key is 0110.

B Now, insert a pair whose key is 0010.

&

B Now, insert a pair whose key is 1001.

3{ C-C Tsai

i Example

B Now, insert a pair whose key is 1011.

B Now, insert a pair whose key is 0000.

g{ C-C Tsai 0000 1011 P.4

Search/Insert/Delete
B Complexity of each operation is O(#bits in a key).
W #key comparisons = O(height).
B Expensive when keys are very long.

g,’& C-C Tsai

P.5

Applications of Digital Search Trees

= Analog of radix sort to searching.

= Keys are binary bit strings.
= Fixed length - 0110, 0010, 1010, 1011.
= Variable length — 01, 00, 101, 1011.

= Application — IP routing, packet
classification, firewalls.
= IPv4 — 32 bit IP address.
= IPv6 — 128 bit IP address.

g,’& C-C Tsai

Binary Trie

= Information Retrieval.

= At most one key comparison per operation,
search/insert/delete.

= A Binary trie (pronounced fry) is a binary tree
that has two kinds of nodes: branch nodes
and element nodes. For fixed length keys,
= Branch nodes: Left and right child pointers. No
data field(s).
= Element nodes: No child pointers. Data field to
hold dictionary pair.

g,’& C-C Tsai

P.7

i Example of Binary Trie

P
o 01
01 (yQ L
D 01
2000> 100>

At most one key comparison for a search.

g,’t c-C Tsal

P.8

i Variable Key Length

= Left and right child fields.

= Left and right pair fields.
= Left pair is pair whose key terminates at root of
left subtree or the single pair that might otherwise
be in the left subtree.
= Right pair is pair whose key terminates at root of
right subtree or the single pair that might
otherwise be in the right subtree.

= Field is null otherwise.

g,’& C-C Tsai P.9

i Example of Variable Key Length

null
00 01100 11111
v V
0000 001 1000 101

N

00100 001100

At most one key comparison for a search.

g,’t C-C Tsal P.10

& Fixed Length Insert

Insert 0111. /‘ 1

0 1 0 1

o/ \1 011D (V‘ L

0D oI o/ \1
L

Zero compares.

& C-C Tsai

i Fixed Length Insert

Now, Insert 1101

R X

& C-C Tsai

P.12

i Fixed Length Insert

Insert 1101

& C-C Tsai P.13

i Fixed Length Insert

Inserted 1101. /‘

0 1 0 1

AL

One compare.

& C-C Tsai

i Fixed Length Delete

Now, Delete 0111./‘

0 1
0 1 011D (y‘ (y
000> 001D> o\ MW
L L
g{ C-C Tsai P.15

i Fixed Length Delete

Delete 0111. One compare.

& C-C Tsal P.16

i Fixed Length Delete

Now, Delete 1100./‘

0 1
0 1 (y‘ 0
@ 0 1 0 1
L L
& C-C Tsai P17

i Fixed Length Delete

Delete 1100.

& C-C Tsal P.18

i Fixed Length Delete

Delete 1100.

&c-o P.19

P
0 0 1
O
0 1 cy
0 1
L
Delete 1100.
&C-CTsal P.20

10

i Fixed Length Delete
O

/ 1
0
@
0 1 (V
0 1
C1000>(7100D>
Delete 1100. One compare.

Fixed Length Join(S,m,B)

= Insert m into B to get B’.

= S empty == B’ is answer; done.

= S is element node == insert S element
into B’; done;

= B’ is element node == insert B’ element
into S; done;

= If you get to this step, the roots of S and
B’ are branch nodes.

g{ C-C Tsai P.22

11

Fixed Length Join(S,m,B)
= S has empty right subtree.
? /‘\B’ /C\J(S,B’)
a b ¢ J@ab) €
JOXY) =join X and Y, all keysin X <allin Y.

= S has nonempty right subtree.

= Left subtree of B” must be empty, because all keys
in B> > all keys in S.

yan ® B SRUSE)
b c a J(bc)
L C-C Teai Complexity = O(height).

P.23

Compressed Binary Tries

= No branch node whose degree is 1.
= Add a bit# field to each branch node.

= bit# tells you which bit of the key to use
to decide whether to move to the left or
right subtrie.

g{ C-C Tsai P.24

12

i Example: Binary Trie

1

mbit# field shown in black outside branch node.

3': C-C Tsai P.25

i Example: Compressed Binary Trie
0 1

mbit# field shown in black outside branch node.

Wm#branch nodes = n - 1.

3': C-C Tsai P.26

13

0
Now, Insert 0010. -E @ @
& C-C Tsai b7

Example: After Inserting 0010

Now, Insert 0100. @
g{ C-C Tsai P28

i Example: Insert 0100

1

0001
OO 4

C001D>
& C-C Tsai P.29

@@ Now, Delete 0010.
g{ C-C Tsai P.30

15

Example: After Deleting 0010

16

Patricia

= Practical Algorithm To Retrieve Information
Coded In Alphanumeric.

= All nodes in Patricia structure are of the same
data type (binary tries use branch and element
nodes).
= Pointers to only one kind of node.
= Simpler storage management.

= Uses a header node that has zero bitNumber.
Remaining nodes define a trie structure that is the
left subtree of the header node. (right subtree is

not used)

= Trie structure is the same as that for the
compressed binary trie.

g,’& C-C Tsai

i Node Structure
bit# | LC [}Pail RC|

bit# = bit used for branching
LC = left child pointer

Pair = dictionary pair

RC = right child pointer

g,’t C-C Tsai P.34

17

Compressed Binary Trie To Patricia

B Move each element into an ancestor or header node.

& C-C Tsai P.35

Example:
Compressed Binary Trie To Patricia

18

* Insert

HInsert 0000101

o
0]
Minsert 0000000
5

& C-C Tsai

P.37

i Insert

ENow, Insert 0000010 0
5

0]
HIinserted 0000010
5

k C-C Tsai

P.38

19

* Insert

H|nsert 0001000

5

& C-C Tsai

0

P.39

* Insert

HInsert 0000100

k C-C Tsai

4

P.40

20

* Insert

H|nsert 0001010

k C-C Tsai

P.41

* Insert

HInserted 0001010

k C-C Tsai

P.42

21

Delete

= Let p be the node that contains the
dictionary pair that is to be deleted.

= Case 1: p has one self pointer.
= Case 2: p has no self pointer.

3': C-C Tsai

P.43

i p Has One Self Pointer

= p = header == trie is now empty.
= Set trie pointer to null.

= p != header => remove node p and update
pointer to p.

3': C-C Tsai

P.44

22

p Has No Self Pointer

= Let g be the node that has a back pointer to p.

= Node g was determined during the search for
the pair with the delete key k.

Blue pointer could
be red or black.

& C-C Tsai P.45

p Has No Self Pointer

= Use the key y in node g to find the unique node
r that has a back pointer to node g.

p

& C-C Tsai P.46

23

p Has No Self Pointer

= Copy the pair whose key is y to node p.

& C-C Tsai

P.47

p Has No Self Pointer

= Change back pointer to g in node r to point to
node p.

P

k C-C Tsai

P.48

24

p Has No Self Pointer

= Change forward pointer to g from parent(q) to
child of g.

Node g now has been
removed from trie.

& C-C Tsai

P.49

& Multiway Tries

= Key = Social Security Number.
= 441-12-1135
= 9 decimal digits.

= 10-way trie (order 10 trie).
0123456789

/TR

Height <= 10.

& C-C Tsai

25

i Social Security Trie

= 10-way trie
= Height <= 10.

= Search: <= 9 branches on digits plus 1 compare.

= 100-way trie
» 441-12-1135
» Height <= 6.

= Search: <= 5 branches on digits plus 1 compare.

g,’& C-C Tsai P.51

Social Security AVL & Red-Black

= Red-black tree

= Height <= 2log,10° ~ 60.

= Search: <= 60 compares of 9 digit numbers.
= AVL tree

= Height <= 1.44log,10° ~ 40.

= Search: <= 40 compares of 9 digit numbers.
= Best binary tree.

= Height = log,10° ~ 30.

g,’& C-C Tsai P.52

26

Compressed Social Security Trie

= char# = character/digit used for branching.
= Equivalent to bit# field of compressed binary trie.

= #ptr = # of nonnull pointers in the node.

Branch Node Structure

0123456789

/TN

3': C-C Tsai P.53

i Insert

M Insert 012345678. 012345678

325

M Insert 015234567. A

012345678

3: The 3" digit is used for branching
Null pointer fields not shown.

3': C-C Tsai P.54

27

i Insert

M Insert 015231671. 3 2 5

Yok

012345678

3': C-C Tsai b 55

i Insert

M Insert 079864231. 3 2 5

6\l 4

012345678

3': C-C Tsai b 56

28

i Insert

M Insert 012345618. o 17

& Insert

M |nsert 011917352, > 17

012345678
012345618

3': C-C Tsai

(015231671 (015234567

P.58

29

3125

8 6
012345678
012345618 @ @
L c-CTsa P50
i Delete
M Delete 011917352. o 17
3125
079864231
w 8 17 14 6

012345678
012345618 @ @

L c-C Tsai P 60

30

i Delete

M Delete 012345678.

012345618

3': C-C Tsai

i Delete

M Delete 015231671.
325

3': C-C Tsai

> 17

079864231

31

012345618

3': C-C Tsai P.63

iVariabIe Length Keys

B Problem arises only when one key is a (proper) prefix of
another.

M Insert 0123 3

2 5

012345678

3': C-C Tsai P.64

32

&Variable Length Keys

B Add a special end of key character (#) to each key to
eliminate this problem.

Winsert 0123 3 .2°

012345678

3{ C-C Tsai P.65

iVariabIe Length Keys

M Insert 0123 3209

012345678

End of key character (#) not shown.

g{ C-C Tsai P.66

33

Tries With Edge Information
= Add a new field (element) to each branch
node.

= New field points to any one of the element
nodes in the subtree.

= Use this pointer on way down to figure out
skipped-over characters.

g,’& C-C Tsai P.67

012345678

M clement field shown in blue.
&C—CTsai P.68

34

i Trie Characteristics

= Expected height of an order m trie is ~log,,n.

= Limit height to h (say 6). Level h branch nodes point
to buckets that employ some other search structure
for all keys in subtrie.

= Switch from trie scheme to simple array when
number of pairs in subtrie becomes <= s (say s=6).
= Expected # of branch nodes for an order m trie when n is

large and m and s are small is n/(s In m).

= Sample digits from right to left (instead of from left
to right) or using a pseudorandom number
generator so as to reduce trie height.

g& C-C Tsai P.69

i Multibit Tries

= Variant of binary trie in which the number of bits
(stride) used for branching may vary from node to
node.

= Proposed for Internet router applications.
= Variable length prefixes.
= Longest prefix match.

= Limit height by choosing node strides.
= Root stride = 32 => height = 1.

» Strides of 16, 8, and 8 for levels 1, 2, and 3 => only 3
levels.

g& C-C Tsai P.70

35

i Multibit Trie Example

S =2
000 001
00 01
g,’& C-C Tsai P.71

;t C-C Tsai

i Multibit Tries

= Node whose stride is s uses s bits for branching.

Node has 2° children and 2 element/prefix fields.
Prefixes that end at a node are stored in that node.

Short prefixes are expanded to length represented by
node.

When root stride is 3, prefixes whose length is < 3 are
expanded to length 3.

P = 00* expands to PO = 000* and P1 = 001*.

If Q = 000* already exists PO is eliminated because Q
represents a longer match for any destination.

P.72

36

