
UNIT-3 

BINARY HEAP 

DEFINITION: A heap is a binary tree structure with the following properties 

1. The tree is a complete binary tree (Structuring Property). 

2. The key value of each node is greater than or equal to the key value in each of its 

descendents for a min heap (or) the key value of each node is less than or equal to the 

key value in each of its descendents for min heap (Ordering Property). 

COMPLETE BINARY TREE 

It is a Binary tree that is completely filled, with the possible exception of the bottom level, 

which is filled from left to right. 

Example of Min heaps:  Here the key value of each node is less than or equal to the key 

value in each of its descendants. 

 

Examples of Min Heap 

 

HEAP IMPLEMENTATION 

Generally a complete binary tree is so regular, so it can be represented in an array and no 

pointers are necessary. The relation between a node and its children is fixed and can be 

calculated as shown below: 

(1)   For a node located at index „i‟ its children are found at  

        a) Left child: 2i+1   b) Right child: 2i+2 

(2)   The parent of a node located at index „i‟ is located at (i-1)/2. 



(3)  Given the index for a left child „j‟, its right sibling is found at j+1. Given the index 

for a right child „j‟ its left sibling is found at j-1. 

(4)   Given the size n, of a complete heap, the location of first leaf is at (n/2). Given the 

location of the first leaf element, the location of the last non leaf element is one less. 

Example: Max Heap 

 
Array representation of the above tree 

     0        1           2          3           4          5            6         

78 56 32 45 8 23 19 

i.e., the index of 32 is 2, so the index of its left child 23 is at 2*2+1 the right child 19 is at 

2*2+2(6). 

         0       1        2        3       4        5         

7 15 17 25 30 40  

 

 

 

 

 

TWO COMPLETE BINARY TREES 

 

BASIC HEAP OPERATIONS 

Two basic operations are performed on a heap. They are: 

1) Inserting a node into Binary heap. 2) Deleting a node from Binary heap. 

INSERT OPERATION 



 Assume that we have a complete binary tree with „N‟ elements whose elements 

satisfy the ordering property of heap. 

 All these elements are stored from 0 to N-1 locations of array. 

 Insert a new element „X‟ at the last location. If the binary heap property is 

maintained then there is no need to change the position of any element.  

 But if the heap property is violated then swap „X‟ and its parent. Swap „X‟ until the 

correct location of „X‟ is found. Once the correct location is found then place „X‟ such 

that the heap order property is maintained. 

 This general strategy is known as a percolate up, i.e., the new element is percolated 

up the heap until the correct location is found. 

 

Example: Insertion into max heap 

 

INSERT 

68 

 

 

 

 

 

  

 

Insert 68 at the last location. But by inserting „68‟ the heap ordered property is violated .so 

swap „68‟,‟45'. 

 

68>56. In max heap  

the parent should 

 be greater. So swap  

68 & 56.  
 
 
 

         Now this is Heap. 

Example: Insertion into min Heap 

In min Heap every element at parent is less than its children. 

 

Insert 14 

 

 

 

 

 

 

 

 

 

 

Now this is not heap, because 31 > 14. So exchange 31 & 14. 

 



 
        This is a min heap 

Note: It we store heap into array from location 1 to n instead of 0 to n-1 then for a node „i‟ 

its left child is in position 2i, the right child is in position 2i+1 and parent of „i‟ is available 

at [i/2]. 

Algorithm for inserting an element into min heap 

void insert(x, a) 

{ 

   if (n=max) 

   {  print:”Heap is full” 

 return; 

   } 

   for (i=n;a[i/2]>x;i=i/2) 

      a[i]=a[i/2]; 

   a[i]=x; 

} 

Consider the above example of inserting 14 

14 was inserted at position „11‟. 

for(i=11;a[11/2]>x; ) 

 a[5]=31, so 

 a[11]=a[5] 

 i.e., a[11]=31 

now i=i/2=11/2=5 

for( ; a[5/2]>x; ) 

 a[2]>x 

 21>14 true, so 

 a[5]=a[5/2] 

 a[5]=21 

 i=5/2=2 

a[1]>14 is false so control come out of for loop & a[2]=14 is assigned. 

 

 



DELETE OPERATION 

 In Binary Heap, if it is max heap the maximum element is removed from heap. If it 

is min heap the minimum element is removed from heap. 

 In max heap, maximum element is available at root. 

 In min heap, minimum element is available at root. 

 Delete root element (i.e., max or min) from heap and place the last element „x‟ in 

root position. 

 Now compare „x‟ with its children. If „x‟ is greater than any one of its children then 

move „x‟ one level down and bring its child one level up. 

 We repeat this process until „x‟ is placed in correct position such that the heap 

property is maintained. 

Example: Deletion from max heap 

Replace root with the last element 

of heap. 

Now this is not max heap so adjust 

it. 

19<56 so exchange or swap them. 

 

 

19<45 so exchange or swap them. 

 

 

 

 

 

 

Example: Deletion from min heap 

Remove 
13 and 

place 
last 

element 

from 
heap at 

root 

 

 

 

 



Now it is not heap, so select the least element from children of ‘31’ and exchange 31 with 
that. ‘14’ is least among 14, 16 so replace 31 with 14. 

Now consider the least element among children of 31, 

i.e., among 19, 21. 19 is least so exchange 31 and 19. 

Next consider the least element among children of 31, 
i.e., 65, 26. 26 is least element, so exchange 31 and 

26. 

 

 

 

 

Algorithm for Deleting minimum element from min heap 

 int DeleteMin(a) 

 { 

    if(n==0)  

   { 

      printf:”heap is empty”; 

      return 0; 

    } 

    min=a[1]; 

    last=a[n]; 

    for(i=1;i*2<=n;i=c) 

    { c=i*2; 

  if(c+1!=n && a[c+1]<a[c]) 

             c++; 

  if(last>a[c]) 

    a[i]=a[c]; 

  else 

    break; 

    } 

            a[i]=last; 

            return min; 

         } 

 



BUILD A HEAP (OR) CREATE HEAP 

 Given a filled array of elements in random order, to build the heap we need to 

rearrange the data so that each node in the heap is greater than its children in max 

heap or each node in the heap is less than its children in min heap. 

 The general algorithm is to place the N keys into the tree in any order,  maintaining 

the structuring property. 

 The percolatedown(i) algorithm percolates down from node „i‟. Perform the 

algorithm build heap to create a heap–ordered tree. 

Algorithm  BuildHeap 

{  

   for(i=N/2;i>0;i--) 

      percolateDown(i); 

} 

Algorithm percolateDown(i) 

{  

   for(tmp=a[i];2* i+1<n;i=c) 

   {       

      c=2*i+1; 

      if(c+1!=n && a[c+1]>a[c]) 

        c++; 

      if(tmp<a[c]) 

        a[i]=a[c]; 

      else 

        break; 

    } 

    a[i]=temp; 

} 

 

EXAMPLE:      

8 

 

19 23 32 45 56 78 

Create max Heap from these elements. 

 

Among a[5], a[6]   a[6] is large i.e., among 56,78  78 

is large. Now compare a[6] with a[2]. i.e., 78 with 23. 

78 is large, so swap 78 and 23. 

 

 

  



Among a[3], a[4]  a[4] is large. Now compare a[4] with 

a[1].  a[4] is greater so exchange with a[1]. 

 

Among a[1] and a[2], a[2] is greater. Now compare 

a[2] with a[0]. a[2] is greater than a[0] so exchange 

these two. 

 

Now the root node (i.e., a[0] is in correct 

position). 

Apply the same for every node. 

 

 

  



BINOMIAL QUEUES 

 Binomial Queue is a collection of heap-ordered Binomial trees which is also known as 

a forest 

 Binomial trees:- 

a. A Binomial tree of height 0 is a one–node tree. 

b. A Binomial tree Bk of height „k‟ is formed by attaching a binomial tree Bk-1  to 

the root of another binomial tree Bk-1. 

 

 
B0 is a Binomial tree of height of 0. 

B1 is formed by attaching a binomial tree B0 to the root of another Binomial tree B0. 

A Binomial tree B2 is formed by attaching a binomial tree B1 to the root of another Binomial 

tree B1.  

A Binomial tree B3 is formed by attaching a Binomial tree B2 to the root of another Binomial 

tree B2. 

A Binomial tree B4 is formed by attaching a binomial tree B3 to the root of another Binomial 

tree B3. 

 A Binomial Queue contains at most one binomial tree of every height. 

 A Binomial tree of height „k‟ has exactly 2k  nodes. 

Example: A binomial tree of height 3 have exactly 23=8 nodes. 

 The no. of nodes at depth „d‟ is the binomial coefficient        k  

            d  
 The no. of nodes at depth „0‟ of binomial tree of height „4‟ is 

    4 =4!/0!(4-0)!= 1 node
 

    0  
At depth 1 there are     4    nodes i.e.,  4     =4!/1!(4-1)!=4!/3!=1x2x3x4 =4 nodes. 

     1    1        1x2x3 
At depth 2 there are     4    nodes i.e.   4     =4!/2!(4-2)!=4!/(2!2!)= 6 nodes. 

2    2  

 A Binomial tree Bk , consists of a root with children as B0, B1 ,B2……….. Bk-1. 

Ex: A Binomial tree B4 consists of a root with children as B0, B1, B2, B3. 



 

Note: The degree and depth of a binomial tree with at most n nodes is at most log(n).  Each 

tree “doubles” the previous. 

BINOMIAL QUEUE OPERATIONS 

Various operations that can be performed on Binomial Queue are: 

1. Merging of two Binomial Queues. (Union or Meld) 

2. Insertion of an element into a Binomial Queue. 

3. Deletion of an element from a Binomial Queue. 

4. Find Minimum element from Binomial Queue. 

 
Merging of Two Binomial Queues 

The merge is performed by essentially adding the two queues together. 

Procedure 

Input: Two Binomial Queue H1 and H2. 

Output: A Binomial Queue H3 in which the merged result is stored. 

1. H3 can contain only one Bk for each k. 

2. If a Binomial tree Bk of height k does not exist either in H1 or H2 then don‟t add Bk to H3. 

3. If only one of H1 and H2 contain a Bk add it to H3. 

4. If H1 and H2 both contain a Bk merge them and add Bk+1 to H3. 

5. Now if H1, H2 or both contain a Bk+1 merge until there are Zero or one of them is 

remained. 

 Merging operation is similar to Binary Addition  

 Adding bits corresponds to merging trees. 

To compute value of bit „k‟ for H3 

 Add bit „k‟ from H1 and H2 and carry obtained from position k-1. 

 May generate carry bit to position k+1. 

Ex.: 0+0=0 i.e., if there is no Bk in H1 or H2  so it is not added to H3. 

       1+0=1 (or) 0+1=1 i.e., if there is only one Bk either in H1 or H2 then add it to H3. 

       1+1=10  i.e., if there are two Bk‟s one in H1 and other in H2  then Bk+1 is created by 

merging Bk  and it will be considered as carry. 



 

 

STEP 1: Bo does not exist in H1. But it is present in H2. So add it to H3. 

STEP 2: B1 exists in both H1 and H2. So merge them, so that we will get B2. 

 

STEP 3:  B2 exists both in H1 and H2 and we obtained one more B2 from step 2. Now there 

are total 3 B2 „s. From these 3 trees we add 1 to result and other 2 are merged. Tree with 

root 23 is added to the result and trees with root 12 and 14 are merged. 

 

 

Example 2: Merge the following Binomial queues H1 and H2 

 



 

1)  Two queues H1 and H2  both have B0 ‟s so merge them, so that we will get B1. 

 
 

2) In H2 one B1 is present and in above step we obtained a B1.  So merge them. 

 
3)  Total we have 3 B2 ‟s one in H1 and other in H2, and one more is obtained in previous 

step as carry. From these three trees add carry to merged result H3 and remaining 

two (which is in H1 and H2) merge. 

 
4)  In H1, B3 is present and in above step one more B3 is obtained, so merge the two B3 ‟s 

to get a B4 

 



 Merging two binomial trees takes constant time. 

 There are O(log n) Binomial trees, so the merge takes O(log n) time in worst case. 

 

  



INSERTION: 

 Insertion is a special case of merging, since we merely create a one–node tree and 

perform a merge.  

 The worst case time complexity of this operation is O(log n). 

 

 Create a binomial heap by inserting all the elements from 1 to 11. 
 

 

 

 



 

IMPLEMENTATION OF BINOMIAL QUEUES 

A binomial queue can be implemented as array of linked lists. Each node in a tree is 

represented as a linked list with 3 fields (i.e., data field, child field, sibling field). 

 struct Binnode 

 { 

  int ele; 

  struct Binnode *child; 

  struct Binnode *sibling; 

 }; 

 struct collection 

 { 

  int currentsize; 

  Bintree Tree[MAXTREE]; 

 }; 

 typedef struct Binnode *positon; 

 typedef struct collection *BinQueue; 

 typedef struct Binnode *BinTree; 



 

 Binomial Queue is an array Tree [MAXTREE], which stores the addresses of roots of 

every Binomial tree in the Binomial Queue. 

Example: 

 
Every Binomial tree in queue is represented as follows: 

 

 
From the 3rd cell children of „12‟ it considers only the 14 (which has more height) as its child 

and „24‟ is considered as 14‟s sibling. ‟21‟ is considered as 24‟s sibling. 

Merging Two Binomial trees of same height: 

 



Among T1 and T2 select the minimum as root and other as child for root. If the root has 

already a child make this as the sibling to the new child i.e., among 12, 14 12 is minimum 

so make it as root, ‟14‟ as child of „12‟. The previous child of 12 (i.e., 24) make as sibling to 

„14‟.  

Routine to Merge 2 Binomial Trees of equal size 

BinTree combineTrees(BinTree T1,BinTree T2) 

{ if(T1->ele > T2->ele) 

   return combineTrees (T2,T1); 

 T2->sibling=T1->child; 

 T1->child=T2; 

   return T1; 

      } 

Algorithm to Merge two Binomial Queues or Priority Queues 

 The following algorithm combines two Binomial Queues H1 and H2. 

 It places the result in H1 and making H2 Empty. 

 T1 and T2 are the trees in H1 and H2 respectively and carry is the tree carried from 

previous step. 

 !! T1, is 1 if T1 exists and is 0 otherwise. 

!! T2, is 1 if T2 exists and is 0 otherwise. 

!! carry, is 1 if carry exists and is 0 otherwise. 

 Depending on each of eight possible cases, the tree that results for rank „i‟ and the 

„carry‟ tree of rank i+1 is formed. 

 This process proceeds from rank 0 to the last rank in the resulting Binomial Queue. 

case 0:- Executed when T1, T2 is NULL, carry also NULL 

case 1:- Executed when we have only T1 ( i.e., only H1) 

case 2:- Executed when we have only T2 (i.e., only H2) 

case 3:- Executed when we have both trees T1, T2 so both will be merged. We will 

get a carry (BK is disappeared and Bk+1 is formed) 

case 4:- When we have only carry. 

case 5:- We have Both H1  and carry. 

case 6:- We have Both H2  and carry. 

case 7:- All three i.e., H1, H2 and carry. 

 

ROUTINE TO MERGE TWO BINOMIAL QUEUES OR PRIORITY QUEUES 

BinQueue Merge(BinQueue H1 , BinQueue H2) 

{ 

 BinTree T1,T2,carry=NULL; 

 int i,j; 

 if (H1->currentsize+H2->currentsize > capacity) 

   print “Merge would exceed capacity”; 

 H1->currentsize = H1->currentsize+H2->currentsize; 

for(i=0,j=1;j<=H1->currentsize;i++,j=j*2) 

{ T1=H1->Tree[i]; 

 T2=H2->Tree[i]; 

 switch(!!T1+2*!!T2+4*!!carry) 

 { case 0: 

  case 1:break; 

  case 2:H1->Tree[i]=T2; 

         H2->Tree[i]=NULL; 

         break; 

  case 4:H1->Tree[i]=carry; 

         carry=NULL; 

         break; 



  case 3:carry=combineTrees(T1,T2); 

    H1->Tree[i]=NULL; 

    H2->Tree[i]=NULL; 

    break; 

  case 5:carry=combineTrees(T1,carry); 

    H1->Tree[i]=NULL; 

  break; 

  case 6:carry=combineTrees(T2,carry); 

    H2->Tree[i]=NULL; 

  break; 

  case 7:H1->Tree[i]=carry; 

    carry=combineTrees(T1,T2); 

    H2->Tree[i]=NULL; 

    break; 

  } 

 } 

   return H1; 

} 

    

DELETION OF AN ELEMENT FROM BINOMIAL QUEUE 

 In deletion operation the smallest element is deleted from Binomial queue. 

 Deletion is performed by first finding the Binomial tree with the smallest root. 

 Let the tree with smallest root be Bk, and let the original priority queue be H. 

 Form a new Binomial queue H1, by removing the binomial tree Bk from the forest of 

trees in H. 

 Form a new Binomial queue HI I, by removing the root of Bk creating binomial trees 

B0,B1,B2, B3,...Bk-1 . 

 Now merge H1 and HI I. This is the final result of deleting minimum element from min 

heap binomial queues. 

 

Example: 
 

 
 

Apply Delete operation to H. 

Step 1) Find the tree with smallest root i.e., 12. 

Step 2) Create HI  By removing the Binomial tree with root 12 from H. 

HI
 

 
Step 3) Create HI I   by removing the root of B3  from H. So add B0, B1, B2 to HI I  



 
 
MERGE H1 and HI I. 

 
 

 
The resultant Binomial Queue after deleting the minimum element: 



 

IMPLEMENTATION OF DELETION ALGORITHM 

int DeleteMin(BinQueue H) 

{ int i,j,MinTree,MinItem; 

 BinQueue DeletedQueue; 

 position DeletedTree,oldroot; 

 if(Isempty(H)) 

 { print:”Empty Binomial Queue”. 

  return -1; 

 } 

           MinItem=Infinity; 

 for(i=0;i<MaxTrees;i++) 

 { if(H->Tree[i]&& H->Tree[i]->ele<MinItem) 

  { MinItem= H->Tree[i]->ele; 

   MinTree=i; 

  } 

 } 

 DeletedTree= H->Tree[MinTree]; 

 oldroot=DeletedTree; 

 DeletedTree=DeletedTree->child; 

 free(oldroot); 

 DeletedQueue=Initialize(); 

 DeletedQueue->currentsize=(1<<MinTree)-1; 

 for(j=MinTree-1;j>=0;j--) 

 {  

  DeletedQueue->Tree[j]=DeletedTree; 

DeletedTree= DeletedTree->sibling; 

DeletedQueue->Tree[j] ->sibling=NULL; 

  } 

 H->Tree[MinTree]=NULL; 

 H->currentsize= H->currentsize-( DeletedQueue->currentsize+1); 

 Merge(H,DeletedQueue); 

 return MinItem; 

  } 



 In the above algorithm, if(Isempty(H)) statement checks whether the Binomial Queue is 

empty or not. If it is empty then delet ion is not possible. 

 for(i=0,…) loop finds the tree with minimum root. 

 Next HI I   is created by removing the root and create B0,B1…..Bk-1 by the for(j=1,….) loop. 

These are stored in DeletedQueue. (DeletedQueue->Tree[0], DeletedQueue->Tree[1],…) 

 HI is created by H->Tree[MinTree]=NULL; statement. 

 Both HI  and HI I are merged by calling the function Merge(H,…). 

 
LAZY Binomial Queues 

 Binomial queue in which merge is done lazily. 

 Here to merge two Binomial Queues, we simply concatenate the two lists of Binomial 

trees. 

 In the resulting forest, there may be several trees of same size. 

 Because of the lazy merge, merge and insert are both worst case O(1) time. 

Ex:-  

 

DeleteMin 

 It converts lazy Binomial Queue into a standard Binomial Queue.  

 Do DeleteMin as in standard queue.  

Priority Queues Applications 

1) Implementing scheduler in OS, and distributed systems. 

2) Representing event lists in discrete event simulation.  

3) Implementing numerous graph algorithms efficiently. 

4) Selecting Kth largest and Kth smallest elements in lists. 

5) Sorting applications. 

6) A* Search. 

7) Huffman encoding. 

8) Network bandwidth management. 

  



Time Complexity of Binomial Heap Operations 

Operation Binomial Heap 
Amortized 

Binomial Heap 

Make-Heap O(1) O(1) 

Insert O(log n) O(1) 

Deletemin (or max) O(log n) - 

Merge (Union Or Meld) O(log n) O(log n) 

Extract-Min O(log n) O(log n) 

 

 

 

 

 


