UNIT -V PPL

UNIT-V

Functional Programming Language

Introduction:

>

>

The design of the imperative languages is based directly on the von Neumann
architecture.
The design of the functional languages is based on mathematical functions.

Mathematical Functions:

>

>

A\

A mathematical function is a mapping of members of one set, called the domain set, to
another set, called the range set.

A function definition specifies thedomain and range sets, either explicitly or implicitly,
along with the mapping.

The mapping is described by an expression or, in some cases, by a table.

Mapping expressions is controlled by recursion andconditional expressions.

Another important characteristic of mathematical functions is that becausethey have no
side effects and cannot depend on any external values.

Mathematical function maps its parameter(s) to a value (or values).

Lambda Calculus

The Lambda Calculus was developed by Alonzo Church in the 1930s and published in
1941 as ‘The Calculi Of Lambda Conversion’.
Functions in lambda calculus are very different from those in imperative programming
languages (such as Java and C).
In an imperative programming language the evaluation of a function can have side
effects, affecting future evaluations of that function or other functions.
In lambda calculus a function does not ‘return’ a result based on its parameters —
instead the function and its parameters are ‘reduced’ to give an answer, which
mathematically is equivalent to the question.
A function in lambda calculus is written in the form Ax.E, where x is the function’s
parameter and E is a lambda expression constituting the function body. A lambda
expression is either a variable (like the x in the above expression), a function in the form
above, or an application E1E2.
In the expression Ax.E, any occurance of x in E is ‘bound’, while any other variable is
‘free’ (unless bound by another lambda expression, like the y in Ax.Ay.xy). A ‘pure’
lambda expression has no free variables.
Three things can be done with lambda expressions:

e o conversion - Alpha conversion renames a bound variable — Ax.x can be alpha

converted to Ay.y.

DNRCET - CSE Page 1

UNIT -V PPL

e [reduction - Beta reduction allows applications to be reduced — (Ax.E1)E2 can
be beta reduced to E1 with all occurances of x replaced with E2. If there are name
clashes (for example in (Ax.Ay.Xy)y), alpha conversion may be required first.

e 1 conversion - Eta conversion allows us to say that f and Ax.fx are equivalent.

» Lambda expressions describe nameless functions.
» Lambda expressions are applied to parameter(s) by placing the parameter(s) after the
expression

e.g., (X) x*x*x)(2)
which evaluates to 8

» A higher-order function, or functional form, is one that either takes functions as
parameters or yields a function as its result, or both.

» A functional form that takes two functions as parameters and yields a function whose
value is the first actual parameter function applied to the application of the second

Form:hf°g
which means h (x) f (g (X))
For f(x) x +2and g (x) 3 * x,
hf°gyields (3 * x)+ 2

» A functional form that takes a single function as a parameter and yields a list of values
obtained by applying the given function to each element of a list of parameters

Form:
Forh (X) x * x

(h, (2,3, 4)) yields (4, 9, 16)

Fundamentals of Functional Programming Languages

» The objective of the design of a functional programming language is to mimic
mathematical functions to the greatest extent possible.

» The basic process of computation is fundamentally different in a FPL than in an
imperative language.

> In an imperative language, operations are done and the results are stored in variables for
later use.

» Management of variables is a constant concern and source of complexity for imperative
programming.

DNRCET - CSE Page 2

UNIT -V PPL

» A program in an assembly language often must also store the results of partial evaluations

of expressions. For example, to evaluate
(x+y)/(a-b)

> the value of (x + y) is computed first. That value must then be stored while (a - b) is
evaluated.

» A purely functional programming language does not use variables or assignment
statements.

» Without variables, the execution of a purely functional program has no state in the sense
of operational and denotational semantics.

» The execution of a function always produces the same result when given the same
parameters. This feature is called referential transparency.

> It also makes testing easier, because each function can be tested separately, without any
concern for its context.

The First Functional Programming Lanquage: L ISP

LISP Data Types and Structures

*Data object types:originally only atoms and lists

«List form: parenthesized collections of sublists and/or atoms
e.g.,(AB(CD)E)

*Originally, LISP was a typeless language

*LISP lists are stored internally as single-linked lists

LISP Interpretation

«Lambda notation is used to specify functions and function definitions. Function applications
and data have the same form.

e.g., If the list (A B C) is interpreted as data it isa simple list of three atoms, A, B, and C

If it is interpreted as a function application,it means that the function named A is
applied to the two parameters, B and C

*The first LISP interpreter appeared only as a demonstration of the universality of the
computational capabilities of the notation

DNRCET - CSE Page 3

UNIT -V PPL

Programming with Scheme

» The Scheme language, which is a dialect of LISP, was developed at MIT in the mid-
1970s (Sussman and Steele, 1975).

» Scheme is a general-purpose computer programming language. It is a high-level
language, supporting operations on structured data such as strings, lists, and vectors, as
well as operations on more traditional data such as numbers and characters.

» Scheme has been employed to write text editors, optimizing compilers, operating
systems, graphics packages, expert systems, numerical applications, financial analysis
packages, virtual reality systems, and practically every other type of application
imaginable.

» Scheme is a fairly simple language to learn, since it is based on a handful of syntactic
forms and semantic concepts.It repeatedly reads an expression typed by theuser (in the
form of a list), interprets the expression, and displays the resultingvalue. This form of
interpreter is also used by Ruby and Python.

Primitive Numeric Functions:

» Scheme includes primitive functions for the basic arithmetic operations. Theseare +, —, *,
and /. * and + can have zeroor more parameters. If * is given no parameters, it returns 1;
if + is given noparameters, it returns 0. + adds all of its parameters together. * multiplies
allits parameters together. / and — can have two or more parameters.

Expression Value
42 42
(*37) 21
(+578) 20
(=56) -1
(—1572) 6
(—24(*43)) 12

» There are a large number of other numeric functions in Scheme, among them MODULO,
ROUND, MAX, MIN, LOG, SIN, and SQRT. SQRT returns the square root of its

numeric parameter, if the parameter’s value is not negative. If the parameter is negative,
SQRT yields a complex number.

Type Predicates:
» Type predicates type predicate functions:

(boolean? x) ; is x a Boolean?
(char? x) ; is x a character?

(string? Xx) ; is x a string?

DNRCET - CSE Page 4

UNIT -V PPL

(symbol? x) ; is x a symbol?
(number? x) ; is X a number?
(pair? x) ; is x a (not necessarily proper) pair?
(list? x) ; is x a (proper) list?
» A symbol in Scheme is comparable to what other languages call an identifier.
(symbol? ’x§ %:&=*!) = #t

The symbol #t represents the Boolean value true. False is represented by #f. Note the use
here of quote (’); the symbol begins with x.

Defining Functions:

» A Scheme program is a collection of function definitions. A nameless function actually
includes the word LAMBDA, and is calleda lambda expression.

(lambda (x) (* x x)) _=function
is a nameless function that returns the square of its given numeric parameter.
For example, the following expression yields 49:
((LAMBDA (x) (* xx)) 7)
In this expression, x is called a bound variable within the lambda expression.

» The Scheme special form function DEFINE serves two fundamental needsof Scheme
programming: to bind a name to a value and to bind a name to lambda expression.During
the evaluation of this expression, X is bound to 7.

form : (DEFINE symbol expression)
For example,
(DEFINE pi 3.14159)
(DEFINE two_pi (* 2 pi))

If these two expressions have been typed to the Scheme interpreter and the
pi is typed, the number 3.14159 will be displayed; when two_pi is typed,6.28318
will be displayed.

Numeric Predicate Functions:

» A predicate function is one that returns a Boolean value (some representationof either
true or false). Scheme includes a collection of predicate functions fornumeric data.

Function Meaning

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal to

DNRCET - CSE Page 5

UNIT -V PPL

<= Less than or equal to
EVEN? Is it an even number?
ODD? Is it an odd number?
ZERO? Is it zero?

» In Scheme, the two Boolean values are #T and #F (or #t and #f).
Control Flow:

» Scheme uses three different constructs for control flow: one similar to the selection
construct of the imperative languages and two based on the evaluation control used in
mathematical functions.

» The Scheme two-way selector function, named IF, has three parameters:a predicate
expression, a then expression, and an else expression. A call to IFhas the form

(IF predicate then_expression else_expression)

For example,
(DEFINE (factorial n)
(IF(<=n1)
1
(* n (factorial (— n 1)))
)
List Functions:

» One of the more common uses of the LISP-based programming languages is list
processing.

» Scheme programs are interpreted by the function application function, EVAL. When
applied to a primitive function, EVAL first evaluates the parameters of the given
function.

(QUOTE A) returns A
(QUOTE (A B C)) returns (A B C)

» CAR, which returns the head of a list, cdr (“coulder’), which returns the rest of the list

(everything after the head), and CONS, which joins a head to the rest of a list:

(CAR'(ABC)) returns A

(CAR '((A B) C D)) returns (A B)
(CAR’(234)) =2
(CDR’(234)) =(34)
(CONS2°(34)) =>(234)
(CDR’(2)) = ()

DNRCET - CSE Page 6

UNIT -V PPL

(CONS 23) _=(2.3);an improper list.

LCONE 'R ")) I_T_E

(A} A

(coNs 'R "{B C)) |I|-—|—~|I|-—|——|I|//|

LA B O) B B c

w0 oo GGl

¥

{coms '(a B) *(C D)) |"|'—|—’-|'|'—|_"|I|//|

L

"

|I|-4—~|$l/|

The result of several CONS operations

Predicate Functions for Symbolic Atoms and Lists:
Scheme has three fundamental predicate functions, EQ?, NULL?, and LIST?, for

symbolic atoms and lists.

» The EQ? function takes two expressions as parameters, although it is usually used with
two symbolic atom parameters. It returns #T if both parameters have the same pointer
value that is, they point to the same atom or list; otherwise, it returns #F. If the two
parameters are symbolic atoms, EQ? returns #T if they are the same symbols (because
Scheme does not make duplicates of symbols); otherwise #F. Consider the following
examples:

(EQ?'A'A) returns #T

(EQ?'A 'B) returns #F

(EQ?'A'(A B)) returns #F

(EQ?'(A B) '(A B)) returns #F or #T
(EQ? 3.4 (+ 30.4)) returns #F or #T

DNRCET - CSE Page 7

UNIT -V PPL

>

LET:

The LIST? predicate function returns #T if its single argument is a list and #F otherwise,
as in the following examples:

(LIST?'(X Y)) returns #T

(LIST? 'X) returns #F

(LIST?()) returns #T
The NULL? function tests its parameter to determine whether it is the empty list and
returns #T if it is. Consider the following examples:

(NULL? '(A B)) returns #F

(NULL?'()) returns #T

(NULL?'A) returns #F

(NULL?'(())) returns #F

LET is a function (initially described in Chapter 5) that creates a local scope in which
names are temporarily bound to the values of expressions.

It is often used to factor out the common subexpressions from more complicated
expressions. These names can then be used in the evaluation of another expression, but
they cannot be rebound to new values in LET.

The following example illustrates the use of LET. It computes the roots of a given
quadratic equation, assuming the roots are real.8 The mathematical definitions of the real

(as opposed to complex) roots of the quadratic equation ax2 + bx + c are as follows:

rootl = (-b + sqrt(b2 - 4ac))/2a and root2 = (-b - sgrt(b2 - 4ac))/2a.

Functional Composition:

>

>

Functional composition is the only primitive functional form provided by the original
LISP. All subsequent LISP dialects, including Scheme, also provide it.
The function h is the composition function of f and g if h(x) = f(g(x)). For example,
consider the following example:
(DEFINE (g x) (* 3x))
(DEFINE (f x) (+ 2 x))
Now the functional composition of f and g can be written as follows:
(DEFINE (h x) (+ 2 (* 3X)))
In Scheme, the functional composition function compose can be written as follows:
(DEFINE (compose f g) (LAMBDA (x)(f (g X))))
For example, we could have the following:
((compose CAR CDR) '((a b) c d))
This call would yield c. This is an alternative, though less efficient, form of
CADR. Now consider another call to compose:
((compose CDR CAR) '((a b) c d))
This call would yield (b). This is an alternative to CDAR.
As yet another example of the use of compose, consider the following:

DNRCET - CSE Page 8

UNIT -V PPL

(DEFINE (third a_list)
((compose CAR (compose CDR CDR)) a_list))
This is an alternative to CADDR.

Programming with ML

» ML (Milner et al., 1990) is a static-scoped functional programming language, like
Scheme. One important difference is that ML is a strongly typed language, whereas
Scheme is essentially typeless.

» ML has type declarations for function parameters and the return types of functions,
although because of its type inferencing they are often not used. The type of every
variable and expression can be statically determined.

» ML identifiers do not have fixed types—any identifier can be the name of a value of any
type.

» A table called the evaluation environment stores the names of all implicitly. and
explicitly declared identifiers in a program, along with their types. This is like a run-time
symbol table. When an identifier is declared, either implicitly or explicitly, it is placed in
the evaluation environment.

» Another important difference between Scheme and ML is that ML uses a syntax that is
more closely related to that of an imperative language than that of LISP. For example,
arithmetic expressions are written in ML using infix notation.

» Function declarations in ML appear in the general form

fun function_name(formal parameters) = expression;

When called, the value of the expression is returned by the function. Actually, the
expression can be a list of expressions, separated by semicolons and surrounded by
parentheses. The return value in this case is that of the last expression.

fun circumf(r) =3.14159 *r *r;

This specifies a function named circumf that takes a floating-point (real in ML)
argument and produces a floating-point result. The types are inferred from the type of the
literal in the expression. Likewise, in the function

fun times10(x) = 10 * x;
the argument and functional value are inferred to be of type int.
» Consider the following ML function:
fun square(x) = X * Xx;

In ML, the default numeric type is int. So, it is inferred that the type of the
parameter and the return value of square is int.

If square were called with a floating-point value, as in

square(2.75);

It would cause an error, because ML does not coerce real values to int type. If we

wanted square to accept real parameters, it could be rewritten as
fun square(x) : real = x * x;

DNRCET - CSE Page 9

UNIT -V PPL

>

ML does not allow overloaded functions, this version could not coexist with the earlier
int version. The fact that the functional value is typed real is sufficient to infer that the
parameter is also real type. Each of the following definitions is also legal:

fun square(x : real) = x * x;

fun square(x) = (x : real) * x;

fun square(x) = x * (x : real);
Type inference is also used in the functional languages Miranda, Haskell, and F#.
The ML selection control flow construct is similar to that of the imperative languages. It
has the following general form:

if expression then then_expression else else_expression
The first expression must evaluate to a Boolean value.
In ML, the particular expression that defines the return value of a function is chosen by
pattern matching against the given parameter. For example, without using this pattern
matching, a function to compute factorial could be written as follows:

fun fact(n : int): int=ifn<=1then1

else n * fact(n — 1);
Multiple definitions of a function can be written using parameter pattern matching. The
different function definitions that depend on the form of the parameter are separated by
an OR symbol (]). For example, using pattern matching, the factorial function could be
written as follows:

fun fact(0) =1

| fact(1) =1

| fact(n : int): int=n * fact(n — 1),
If fact is called with the actual parameter 0, the first definition is used; if the actual
parameter is 1, the second definition is used; if an int value that is neither 0 nor 1 is sent,
the third definition is used.
ML has a binary operator for composing two functions, o (a lowercase “oh”). For
example, to build a function h that first applies function f and then applies function g to
the returned value from f, we could use the following:

valh=gof;
ML functions take a single parameter. When a function is defined with more than one
parameter, ML considers the parameters to be a tuple, even though the parentheses that
normally delimit a tuple value are optional. The commas that separate the parameters
(tuple elements) are required.
ML functions that take more than one parameter can be defined in curried form by
leaving out the commas between the parameters (and the delimiting parentheses).11 For
example, we could have the following: fun add a b = a + b; Although this appears to
define a function with two parameters, it actually defines one with just one parameter.
The add function takes an integer parameter (a) and returns a function that also takes an
integer parameter (b).

DNRCET - CSE Page 10

UNIT -V PPL

> A call to this function also excludes the commas between the parameters, as in the
following:
add 3 5;
This call to add returns 8, as expected.
» Curried functions also can be written in Scheme, Haskell, and F#. Consider the following
Scheme function:
(DEFINE (add x y) (+ xy))
A curried version of this would be as follows:
(DEFINE (add y) (LAMBDA (X) (+y X)))
This can be called as follows:
((add 3) 4)
» ML has enumerated types, arrays, and tuples. ML also has exception handling and a
module facility for implementing abstract data types.

Important Questions

1.) Discuss the fundamental concepts of Lambda Calculus? (2017 SET-1 8M)

2.) Explain about LISP functional programming language? (2017 SET-1 8M)

3.) How ML is different from other functional programming language? (2017 SET-2
8M)

4.) Why were imperative features added to most dialects of LISP? (2017 SET-1 8M)

5.) Write a short note on ML functions? (2017 SET-1,2 3M)

6.) Explain about Scheme functional programming language? (2017 SET-3 8M)

7.) Give comparison of Functional and Imperative Languages? (2017 SET-4 8M)

8.) Explain in detail about Functional Programming Language?

9.) Explain how functions are defined in Scheme and ML? (2016 SET-4 8M)

10.)Explain about list and primitive functions in Scheme? (2016 SET-3 16M)

11.) Explain about Predicate functions in Scheme? (2016 SET-2 8M)

12.) Explain about data objects in LISP? (2016 SET-1 12M)

DNRCET - CSE Page 11

