
CHAPTER 5

Tree models

T
REE MODELS ARE among the most popular models in machine learning. For example,

the pose recognition algorithm in the Kinect motion sensing device for the Xbox game

console has decision tree classifiers at its heart (in fact, an ensemble of decision trees

called a random forest about which you will learn more in Chapter 11). Trees are ex-

pressive and easy to understand, and of particular appeal to computer scientists due

to their recursive ‘divide-and-conquer’ nature.

In fact, the paths through the logical hypothesis space discussed in the previous

chapter already constitute a very simple kind of tree. For instance, the feature tree in

Figure 5.1 (left) is equivalent to the path in Figure 4.6 (left) on p.117. This equivalence

is best seen by tracing the path and the tree from the bottom upward.

1. The left-most leaf of the feature tree represents the concept at the bottom of the

path, covering a single positive example.

2. The next concept up in the path generalises the literal Length= 3 into

Length= [3,5] by means of internal disjunction; the added coverage (one pos-

itive example) is represented by the second leaf from the left in the feature tree.

3. By dropping the condition Teeth= few we add another two covered positives.

4. Dropping the ‘Length’ condition altogether (or extending the internal disjunc-

tion with the one remaining value ‘4’) adds the last positive, and also a negative.

5. Dropping Beak= yes covers no additional examples (remember the discussion
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Figure 5.1. (left) The path from Figure 4.6 on p.117, redrawn in the form of a tree. The coverage

numbers in the leaves are obtained from the data in Example 4.4. (right) A decision tree learned

on the same data. This tree separates the positives and negatives perfectly.

about closed concepts in the previous chapter).

6. Finally, dropping Gills= no covers the four remaining negatives.

We see that a path through the hypothesis space can be turned into an equivalent fea-

ture tree. To obtain a tree that is equivalent to the i -th concept from the bottom in the

path, we can either truncate the tree by combining the left-most i leaves into a single

leaf representing the concept; or we can label the left-most i leaves positive and the

remaining leaves negative, turning the feature tree into a decision tree.

Decision trees do not employ internal disjunction for features with more than two

values, but instead allow branching on each separate value. They also allow leaf la-

bellings that do not follow the left-to-right order of the leaves. Such a tree is shown in

Figure 5.1 (right). This tree can be turned into a logical expression in many different

ways, including:

(Gills= no ∧ Length= 3) ∨ (Gills= no ∧ Length= 4 ∧ Teeth=many)

∨ (Gills= no ∧ Length= 5)

Gills= no ∧ [Length= 3 ∨ (Length= 4 ∧ Teeth=many) ∨ Length= 5]

¬[(Gills= no ∧ Length= 4 ∧ Teeth= few) ∨ Gills= yes]

(Gills= yes ∨ Length= [3,5] ∨ Teeth=many) ∧ Gills= no

The first expression is in disjunctive normal form (DNF, see Background 4.1 on p.105)
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and is obtained by forming a disjunction of all paths from the root of the tree to leaves

labelled positive, where each path gives a conjunction of literals. The second expres-

sion is a simplification of the first using the distributive equivalence (A ∧ B) ∨ (A ∧C )≡
A ∧ (B ∨C ). The third expression is obtained by first forming a DNF expression repre-

senting the negative class, and then negating it. The fourth expression turns this into

CNF by using the De Morgan laws ¬(A ∧ B)≡¬A ∨ ¬B and ¬(A ∨ B)≡¬A ∧ ¬B .

There are many other logical expressions that are equivalent to the concept defined

by the decision tree. Perhaps it would be possible to obtain an equivalent conjunctive

concept? Interestingly, the answer to this question is no: some decision trees repre-

sent a conjunctive concept, but many trees don’t and this is one of them.1 Decision

trees are strictly more expressive than conjunctive concepts. In fact, since decision trees

correspond to DNF expressions, and since every logical expression can be equivalently

written in DNF, it follows that decision trees are maximally expressive: the only data

that they cannot separate is data that is inconsistently labelled, i.e., the same instance

appears twice with different labels. This explains why data that isn’t conjunctively sep-

arable, as in our example, can be separated by a decision tree.

There is a potential problem with using such an expressive hypothesis language.

Let Δ be the disjunction of all positive examples, then Δ is in disjunctive normal form.

Δ clearly covers all positives – in fact, Δ’s extension is exactly the set of positive exam-

ples. In other words, in the hypothesis space of DNF expressions (or of decision trees),

Δ is the LGG of the positive examples, but it doesn’t cover any other instances. So Δ

does not generalise beyond the positive examples, but merely memorises them – talk

about overfitting! Turning this argument around, we see that one way to avoid overfit-

ting and encourage learning is to deliberately choose a restrictive hypothesis language,

such as conjunctive concepts: in such a language, even the LGG operation typically

generalises beyond the positive examples. And if our language is expressive enough

to represent any set of positive examples, we must make sure that the learning algo-

rithm employs other mechanisms to force generalisation beyond the examples and

avoid overfitting – this is called the inductive bias of the learning algorithm. As we will

see, most learning algorithms that operate in expressive hypothesis spaces have an in-

ductive bias towards less complex hypotheses, either implicitly through the way the

hypothesis space is searched, or explicitly by incorporating a complexity penalty in the

objective function.

Tree models are not limited to classification but can be employed to solve almost

any machine learning task, including ranking and probability estimation, regression

and clustering. The tree structure that is common to all those models can be defined

1If we allowed the creation of new conjunctive features, we could actually represent this tree as the con-

junctive concept Gills= no ∧ F= false, where F ≡ Length= 4 ∧Teeth= few is a new conjunctive feature.

The creation of new features during learning is called constructive induction, and as shown here can extend

the representational power of a logical language.
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as follows.

Definition 5.1 (Feature tree). A feature tree is a tree such that each internal node

(the nodes that are not leaves) is labelled with a feature, and each edge emanating

from an internal node is labelled with a literal. The set of literals at a node is called

a split. Each leaf of the tree represents a logical expression, which is the conjunction

of literals encountered on the path from the root of the tree to the leaf. The extension

of that conjunction (the set of instances covered by it) is called the instance space

segment associated with the leaf. �

Essentially, a feature tree is a compact way of representing a number of conjunctive

concepts in the hypothesis space. The learning problem is then to decide which of the

possible concepts will be best to solve the given task. While rule learners (discussed in

the next chapter) essentially learn these concepts one at a time, tree learners perform

a top–down search for all these concepts at once.

Algorithm 5.1 gives the generic learning procedure common to most tree learners.

It assumes that the following three functions are defined:

Homogeneous(D) returns true if the instances in D are homogeneous enough to be

labelled with a single label, and false otherwise;

Label(D) returns the most appropriate label for a set of instances D ;

BestSplit(D,F ) returns the best set of literals to be put at the root of the tree.

These functions depend on the task at hand: for instance, for classification tasks a

set of instances is homogeneous if they are (mostly) of a single class, and the most

appropriate label would be the majority class. For clustering tasks a set of instances is

homogenous if they are close together, and the most appropriate label would be some

exemplar such as the mean (more on exemplars in Chapter 8).

Algorithm 5.1: GrowTree(D,F ) – grow a feature tree from training data.

Input : data D ; set of features F .

Output : feature tree T with labelled leaves.

1 if Homogeneous(D) then return Label(D) ; // Homogeneous, Label: see text

2 S ←BestSplit(D,F ) ; // e.g., BestSplit-Class (Algorithm 5.2)

3 split D into subsets Di according to the literals in S;

4 for each i do

5 if Di 
= � then Ti ←GrowTree(Di ,F ) else Ti is a leaf labelled with Label(D);

6 end

7 return a tree whose root is labelled with S and whose children are Ti
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Algorithm 5.1 is a divide-and-conquer algorithm: it divides the data into subsets,

builds a tree for each of those and then combines those subtrees into a single tree.

Divide-and-conquer algorithms are a tried-and-tested technique in computer science.

They are usually implemented recursively, because each subproblem (to build a tree

for a subset of the data) is of the same form as the original problem. This works as

long as there is a way to stop the recursion, which is what the first line of the algorithm

does. However, it should be noted that such algorithms are greedy: whenever there is a

choice (such as choosing the best split), the best alternative is selected on the basis of

the information then available, and this choice is never reconsidered. This may lead to

sub-optimal choices. An alternative would be to use a backtracking search algorithm,

which can return an optimal solution, at the expense of increased computation time

and memory requirements, but we will not explore that further in this book.

In the remainder of this chapter we will instantiate the generic Algorithm 5.1 to

classification, ranking and probability estimation, clustering and regression tasks.

5.1 Decision trees

As already indicated, for a classification task we can simply define a set of instances D

to be homogenous if they are all from the same class, and the function Label(D) will

then obviously return that class. Notice that in line 5 of Algorithm 5.1 we may be calling

Label(D) with a non-homogeneous set of instances in case one of the Di is empty, so

the general definition of Label(D) is that it returns the majority class of the instances

in D .2 This leaves us to decide how to define the function BestSplit(D,F ).

Let’s assume for the moment that we are dealing with Boolean features, so D is

split into D1 and D2. Let’s also assume we have two classes, and denote by D⊕ and

D� the positives and negatives in D (and likewise for D⊕
1 etc.). The question is how

to assess the utility of a feature in terms of splitting the examples into positives and

negatives. Clearly, the best situation is where D⊕
1 =D⊕ and D�

1 = �, or where D⊕
1 = �

and D�
1 = D�. In that case, the two children of the split are said to be pure. So we

need to measure the impurity of a set of n⊕ positives and n� negatives. One important

principle that we will adhere to is that the impurity should only depend on the relative

magnitude of n⊕ and n�, and should not change if we multiply both with the same

amount. This in turn means that impurity can be defined in terms of the proportion

ṗ = n⊕/(n⊕+n�), which we remember from Section 2.2 as the �empirical probability

of the positive class. Furthermore, impurity should not change if we swap the positive

and negative class, which means that it should stay the same if we replace ṗ with 1− ṗ.

We also want a function that is 0 whenever ṗ = 0 or ṗ = 1 and that reaches its maximum

2If there is more than one largest class we will make an arbitrary choice between them, usually uniformly

random.
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Figure 5.2. (left) Impurity functions plotted against the empirical probability of the positive

class. From the bottom: the relative size of the minority class, min(ṗ,1− ṗ); the Gini index,

2ṗ(1− ṗ); entropy, −ṗ log2 ṗ− (1− ṗ) log2(1− ṗ) (divided by 2 so that it reaches its maximum in

the same point as the others); and the (rescaled) square root of the Gini index,
√

ṗ(1− ṗ) – notice

that this last function describes a semi-circle. (right) Geometric construction to determine the

impurity of a split (Teeth= [many, few] from Example 5.1): ṗ is the empirical probability of the

parent, and ṗ1 and ṗ2 are the empirical probabilities of the children.

for ṗ = 1/2. The following functions all fit the bill.

Minority class min(ṗ,1− ṗ) – this is sometimes referred to as the error rate, as it mea-

sures the proportion of misclassified examples if the leaf was labelled with the

majority class; the purer the set of examples, the fewer errors this will make. This

impurity measure can equivalently be written as 1/2−|ṗ−1/2|.

Gini index 2ṗ(1− ṗ) – this is the expected error if we label examples in the leaf ran-

domly: positive with probability ṗ and negative with probability 1− ṗ. The prob-

ability of a false positive is then ṗ(1− ṗ) and the probability of a false negative

(1− ṗ)ṗ. 3

entropy−ṗ log2 ṗ− (1− ṗ) log2(1− ṗ) – this is the expected information, in bits, con-

veyed by somebody telling you the class of a randomly drawn example; the purer

the set of examples, the more predictable this message becomes and the smaller

the expected information.

A plot of these three impurity measures can be seen in Figure 5.2 (left), some of

them rescaled so that they all reach their maximum at (0.5,0.5). I have added a fourth

one: the square root of the Gini index, which I will indicate as
�

Gini, and which has an

advantage over the others, as we will see later. Indicating the impurity of a single leaf

D j as Imp(D j ), the impurity of a set of mutually exclusive leaves {D1, . . . ,Dl } is then

3When I looked up ‘Gini index’ on Wikipedia I was referred to a page describing the Gini coefficient, which

– in a machine learning context – is a linear rescaling of the AUC to the interval [−1,1]. This is quite a different

concept, and the only thing that the Gini index and the Gini coefficient have in common is that they were

both proposed by the Italian statistician Corrado Gini, so it is good to be aware of potential confusion.
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defined as a weighted average

Imp({D1, . . . ,Dl })=
l∑

j=1

|D j |
|D| Imp(D j ) (5.1)

where D =D1∪ . . .∪Dl . For a binary split there is a nice geometric construction to find

Imp({D1,D2}) given the empirical probabilities of the parent and the children, which is

illustrated in Figure 5.2 (right):

1. We first find the impurity values Imp(D1) and Imp(D2) of the two children on the

impurity curve (here the Gini index).

2. We then connect these two values by a straight line, as any weighted average of

the two must be on that line.

3. Since the empirical probability of the parent is also a weighted average of the

empirical probabilities of the children, with the same weights (i.e., ṗ = |D1|
|D| ṗ1+

|D2|
|D| ṗ2 – the derivation is given in Equation 5.2 on p.139), ṗ gives us the correct

interpolation point.

This construction will work with any of the impurity measures plotted in Figure 5.2

(left). Note that, if the class distribution in the parent is very skewed, the empirical

probability of both children may end up to the left or to the right of the ṗ = 0.5 vertical.

This isn’t a problem – except for the minority class impurity measure, as the geometric

construction makes it clear that all such splits will be evaluated as having the same

weighted average impurity. For this reason its use as an impurity measure is often

discouraged.

Example 5.1 (Calculating impurity). Consider again the data in Example 4.4 on

p.115. We want to find the best feature to put at the root of the decision tree. The

four features available result in the following splits:

Length= [3,4,5] [2+,0−][1+,3−][2+,2−]

Gills= [yes,no] [0+,4−][5+,1−]

Beak= [yes,no] [5+,3−][0+,2−]

Teeth= [many, few] [3+,4−][2+,1−]

Let’s calculate the impurity of the first split. We have three segments: the first

one is pure and so has entropy 0; the second one has entropy −(1/4) log2(1/4)−
(3/4) log2(3/4) = 0.5+0.31 = 0.81; the third one has entropy 1. The total entropy

is then the weighted average of these, which is 2/10·0+4/10·0.81+4/10·1= 0.72.

Similar calculations for the other three features give the following entropies:
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Gills 4/10 ·0+6/10 · (−(5/6) log2(5/6)− (1/6) log2(1/6)
)= 0.39;

Beak 8/10 · (−(5/8) log2(5/8)− (3/8) log2(3/8)
)+2/10 ·0= 0.76;

Teeth 7/10 · (−(3/7) log2(3/7)− (4/7) log2(4/7)
)

+3/10 · (−(2/3) log2(2/3)− (1/3) log2(1/3)
)= 0.97.

We thus clearly see that ‘Gills’ is an excellent feature to split on; ‘Teeth’ is poor;

and the other two are somewhere in between.

The calculations for the Gini index are as follows (notice that these are on a

scale from 0 to 0.5):

Length 2/10 ·2 · (2/2 ·0/2)+4/10 ·2 · (1/4 ·3/4)+4/10 ·2 · (2/4 ·2/4)= 0.35;

Gills 4/10 ·0+6/10 ·2 · (5/6 ·1/6)= 0.17;

Beak 8/10 ·2 · (5/8 ·3/8)+2/10 ·0= 0.38;

Teeth 7/10 ·2 · (3/7 ·4/7)+3/10 ·2 · (2/3 ·1/3)= 0.48.

As expected, the two impurity measures are in close agreement. See Figure 5.2

(right) for a geometric illustration of the last calculation concerning ‘Teeth’.

Adapting these impurity measures to k > 2 classes is done by summing the per-

class impurities in a one-versus-rest manner. In particular, k-class entropy is defined

as
∑k

i=1−ṗi log2 ṗi , and the k-class Gini index as
∑k

i=1 ṗi (1− ṗi ). In assessing the qual-

ity of a feature for splitting a parent node D into leaves D1, . . . ,Dl , it is customary to

look at the purity gain Imp(D)−Imp({D1, . . . ,Dl }). If purity is measured by entropy, this

is called the information gain splitting criterion, as it measures the increase in infor-

mation about the class gained by including the feature. However, note that Algorithm

5.1 only compares splits with the same parent, and so we can ignore the impurity of the

parent and search for the feature which results in the lowest weighted average impurity

of its children (Algorithm 5.2).

We now have a fully instantiated decision tree learning algorithm, so let’s see what

tree it learns on our dolphin data. We have already seen that the best feature to split on

at the root of the tree is ‘Gills’: the condition Gills= yes leads to a pure leaf [0+,4−] la-

belled negative, and a predominantly positive child [5+,1−]. For the next split we have

the choice between ‘Length’ and ‘Teeth’, as splitting on ‘Beak’ does not decrease the im-

purity. ‘Length’ results in a [2+,0−][1+,1−][2+,0−] split and ‘Teeth’ in a [3+,0−][2+,1−]

split; both entropy and Gini index consider the former purer than the latter. We then

use ‘Teeth’ to split the one remaining impure node. The resulting tree is the one shown

previously in Figure 5.1 on p.130, and reproduced in Figure 5.3 (left). We have learned
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Figure 5.3. (left) Decision tree learned from the data in Example 4.4 on p.115. (right) Each inter-

nal and leaf node of the tree corresponds to a line segment in coverage space: vertical segments

for pure positive nodes, horizontal segments for pure negative nodes, and diagonal segments for

impure nodes.

our first decision tree!

The tree represents a partition of the instance space, and therefore also assigns a

class to the 14 instances that were not part of the training set – which is why we can

say that the tree generalises the training data. Leaf C leaves three feature values un-

specified, with a total of 3 ·2 ·2= 12 possible combinations of values; four of these were

supplied as training examples, so leaf C covers eight unlabelled instances and classifies

them as negative. Similarly, two unlabelled instances are classified as positive by leaf

Algorithm 5.2: BestSplit-Class(D,F ) – find the best split for a decision tree.

Input : data D ; set of features F .

Output : feature f to split on.

1 Imin ←1;

2 for each f ∈ F do

3 split D into subsets D1, . . . ,Dl according to the values v j of f ;

4 if Imp({D1, . . . ,Dl })< Imin then

5 Imin ←Imp({D1, . . . ,Dl });

6 fbest← f ;

7 end

8 end

9 return fbest
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D, and a further two by leaf F; one is classified as negative by leaf G, and the remain-

ing one as positive by leaf H. The fact that more unlabelled instances are classified as

negative (9) than as positive (5) is thus mostly due to leaf C: because it is a leaf high up

in the tree, it covers many instances. One could argue that the fact that four out of five

negatives have gills is the strongest regularity found in the data.

It is also worth tracing the construction of this tree in coverage space (Figure 5.3

(right)). Every node of the tree, internal or leaf, covers a certain number of positives and

negatives and hence can be plotted as a line segment in coverage space. For instance,

the root of the tree covers all positives and all negatives, and hence is represented by

the ascending diagonal A. Once we add our first split, segment A is replaced by segment

B (an impure node and hence diagonal) and segment C, which is pure and not split any

further. Segment B is further split into D (pure and positive), E (impure) and F (pure

and positive). Finally, E is split into two pure nodes.

This idea of a decision tree coverage curve ‘pulling itself up’ from the ascending di-

agonal in a divide-and-conquer fashion is appealing – but unfortunately it is not true

in general. The ordering of coverage curve segments is purely based on the class distri-

butions in the leaves and does not bear any direct relationship to the tree structure. To

understand this better, we will now look at how tree models can be turned into rankers

and probability estimators.

5.2 Ranking and probability estimation trees

Grouping classifiers such as decision trees divide the instance space into segments,

and so can be turned into rankers by learning an ordering on those segments. Unlike

some other grouping models, decision trees have access to the local class distributions

in the segments or leaves, which can directly be used to construct a leaf ordering that

is optimal for the training data. So, for instance, in Figure 5.3 this ordering is [D – F] – H

– G – C, resulting in a perfect ranking (AUC= 1). The ordering can simply be obtained

from the empirical probabilities ṗ, breaking ties as much as possible by giving prece-

dence to leaves covering a larger number of positives.4 Why is this ordering optimal?

Well, the slope of a coverage curve segment with empirical probability ṗ is ṗ/(1− ṗ);

since ṗ �→ ṗ
1−ṗ is a monotonic transformation (if ṗ > ṗ ′ then ṗ

1−ṗ >
ṗ ′

1−ṗ ′ ) sorting the

segments on non-increasing empirical probabilities ensures that they are also sorted

on non-increasing slope, and so the curve is convex. This is an important point, so

I’ll say it again: the ranking obtained from the empirical probabilities in the leaves of

a decision tree yields a convex ROC curve on the training data. As we shall see later in

4Tie breaking – although it does not alter the shape of the coverage curve and isn’t essential in that sense –

can also be achieved by subtracting ε� 1 from the number of positives covered. The Laplace correction also

breaks ties in favour of larger leaves but isn’t a monotonic transformation and so might change the shape of

the coverage curve.
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the book, some other grouping models including �rule lists (Section 6.1) share this

property, but no grading model does.

As already noted, the segment ordering cannot be deduced from the tree structure.

The reason is essentially that, even if we know the empirical probability associated with

the parent of a split, this doesn’t constrain the empirical probabilities of its children.

For instance, let [n⊕,n�] be the class distribution in the parent with n = n⊕ +n�, and

let [n⊕1 ,n�1 ] and [n⊕2 ,n�2 ] be the class distributions in the children, with n1 = n⊕1 +n�1
and n2 = n⊕2 +n�2 . We then have

ṗ = n⊕

n
= n1

n

n⊕1
n1

+ n2

n

n⊕2
n2

= n1

n
ṗ1+ n2

n
ṗ2 (5.2)

In other words, the empirical probability of the parent is a weighted average of the

empirical probabilities of its children; but this only tells us that ṗ1 ≤ ṗ ≤ ṗ2 or ṗ2 ≤ ṗ ≤
ṗ1. Even if the place of the parent segment in the coverage curve is known, its children

may come much earlier or later in the ordering.

Example 5.2 (Growing a tree). Consider the tree in Figure 5.4 (top). Each node is

labelled with the numbers of positive and negative examples covered by it: so, for

instance, the root of the tree is labelled with the overall class distribution (50 pos-

itives and 100 negatives), resulting in the trivial ranking [50+,100−]. The corre-

sponding one-segment coverage curve is the ascending diagonal (Figure 5.4 (bot-

tom)). Adding split (1) refines this ranking into [30+,35−][20+,65−], resulting in

a two-segment curve. Adding splits (2) and (3) again breaks up the segment cor-

responding to the parent into two segments corresponding to the children. How-

ever, the ranking produced by the full tree – [15+,3−][29+,10−][5+,62−][1+,25−]

– is different from the left-to-right ordering of its leaves, hence we need to reorder

the segments of the coverage curve, leading to the top-most, solid curve.

So, adding a split to a decision tree can be interpreted in terms of coverage curves

as the following two-step process:

� split the corresponding curve segment into two or more segments;

� reorder the segments on decreasing slope.

The whole process of growing a decision tree can be understood as an iteration of these

two steps; or alternatively as a sequence of splitting steps followed by one overall re-

ordering step. It is this last step that guarantees that the coverage curve is convex (on

the training data).
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Figure 5.4. (top) Abstract representation of a tree with numbers of positive and negative exam-

ples covered in each node. Binary splits are added to the tree in the order indicated. (bottom)

Adding a split to the tree will add new segments to the coverage curve as indicated by the arrows.

After a split is added the segments may need reordering, and so only the solid lines represent

actual coverage curves.

It is instructive to take this analysis a step further by considering all possible rank-

ings that can be constructed with the given tree. One way to do that is to consider the

tree as a feature tree, without any class labels, and ask ourselves in how many ways

we can label the tree, and what performance that would yield, given that we know the

numbers of positives and negatives covered in each leaf. In general, if a feature tree

has l leaves and we have c classes, then the number of possible labellings of leaves

with classes is cl ; in the example of Figure 5.4 this is 24 = 16. Figure 5.5 depicts these

16 labellings in coverage space. As you might expect, there is a lot of symmetry in this
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Figure 5.5. Graphical depiction of all possible labellings and all possible rankings that can be

obtained with the four-leaf decision tree in Figure 5.4. There are 24 = 16 possible leaf labellings;

e.g., ‘+−+−’ denotes labelling the first and third leaf from the left as+ and the second and fourth

leaf as −. Also indicated are some pairwise symmetries (dotted lines): e.g., +−+− and −+−+
are each other’s inverse and end up at opposite ends of the plot. There are 4!= 24 possible blue-

violet-red-orange paths through these points which start in −−−− and switch each leaf to + in

some order; these represent all possible four-segment coverage curves or rankings.

plot. For instance, labellings occur in pairs (say +−+− and −+−+) that occur in op-

posite locations in the plot (see if you can figure out what is meant by ‘opposite’ here).

We obtain a ranking by starting in −−−− in the lower left-hand corner, and switching

each leaf to+ in some order. For instance, the optimal coverage curve follows the order

−−−−,−−+−,+−+−,+−++,++++. For a tree with l leaves there are l ! permutations

of its leaves and thus l ! possible coverage curves (24 in our example).

If I were to choose a single image that would convey the essence of tree models, it

would be Figure 5.5. What it visualises is that the class distributions in the leaves of an

unlabelled feature tree can be used to turn one and the same tree into a decision tree,

a ranking tree, or a probability estimation tree:

� to turn a feature tree into a ranker, we order its leaves on non-increasing empiri-

cal probabilities, which is provably optimal on the training set;

� to turn the tree into a probability estimator, we predict the empirical probabili-

ties in each leaf, applying Laplace or m-estimate smoothing to make these esti-

mates more robust for small leaves;

� to turn the tree into a classifier, we choose the operating conditions and find the
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operating point that is optimal under those operating conditions.

The last procedure was explained in Section 2.2. We will illustrate it here, assuming

the training set class ratio clr = 50/100 is representative. We have a choice of five la-

bellings, depending on the expected cost ratio c = cFN/cFP of misclassifying a positive

in proportion to the cost of misclassifying a negative:

+−+− would be the labelling of choice if c = 1, or more generally if 10/29< c < 62/5;

+−++ would be chosen if 62/5< c < 25/1;

++++ would be chosen if 25/1< c; i.e., we would always predict positive if false neg-

atives are more than 25 times as costly as false positives, because then even

predicting positive in the second leaf would reduce cost;

−−+− would be chosen if 3/15< c < 10/29;

−−−− would be chosen if c < 3/15; i.e., we would always predict negative if false

positives are more than 5 times as costly as false negatives, because then even

predicting negative in the third leaf would reduce cost.

The first of these options corresponds to the majority class labelling, which is what

most textbook treatments of decision trees recommend, and also what I suggested

when I discussed the function Label(D) in the context of Algorithm 5.1. In many cir-

cumstances this will indeed be the most practical thing to do. However, it is important

to be aware of the underlying assumptions of such a labelling: these assumptions are

that the training set class distribution is representative and the costs are uniform; or,

more generally, that the product of the expected cost and class ratios is equal to the

class ratio as observed in the training set. (This actually suggests a useful device for

manipulating the training set to reflect an expected class ratio: to mimic an expected

class ratio of c, we can oversample the positive training examples with a factor c if c > 1,

or oversample the negatives with a factor 1/c if c < 1. We will return to this suggestion

below.)

So let’s assume that the class distribution is representative and that false negatives

(e.g., not diagnosing a disease in a patient) are about 20 times more costly than false

positives. As we have just seen, the optimal labelling under these operating condi-

tions is +−++, which means that we only use the second leaf to filter out negatives.

In other words, the right two leaves can be merged into one – their parent. Rather

aptly, the operation of merging all leaves in a subtree is called pruning the subtree.

The process is illustrated in Figure 5.6. The advantage of pruning is that we can sim-

plify the tree without affecting the chosen operating point, which is sometimes useful

if we want to communicate the tree model to somebody else. The disadvantage is that

we lose ranking performance, as illustrated in Figure 5.6 (bottom). Pruning is therefore

not recommended unless (i) you only intend to use the tree for classification, not for
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Figure 5.6. (top) To achieve the labelling +−++ we don’t need the right-most split, which can

therefore be pruned away. (bottom) Pruning doesn’t affect the chosen operating point, but it

does decrease the ranking performance of the tree.

ranking or probability estimation; and (ii) you can define the expected operating con-

ditions with sufficient precision. One popular algorithm for pruning decision trees is

called reduced-error pruning, and is given in Algorithm 5.3. The algorithm employs a

separate pruning set of labelled data not seen during training, as pruning will never im-

prove accuracy over the training data. However, if tree simplicity is not really an issue,

I recommend keeping the entire tree intact and choosing the operating point through

the leaf labelling only; this can similarly be done using a hold-out data set.

Sensitivity to skewed class distributions

I just mentioned in passing that one way to make sure the training set reflects the right

operating conditions is to duplicate positives or negatives so that the training set class

ratio is equal to the product of expected cost and class ratios in deployment of the

model. Effectively, this changes the aspect ratio of the rectangle representing the cov-
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erage space. The advantage of this method is that it is directly applicable to any model,

without need to interfere with search heuristics or evaluation measures. The disad-

vantage is that it will increase training time – and besides, it may not actually make a

difference for the model being learned. I will illustrate this with an example.

Example 5.3 (Cost-sensitivity of splitting criteria). Suppose you have 10 pos-

itives and 10 negatives, and you need to choose between the two splits

[8+,2−][2+,8−] and [10+,6−][0+,4−]. You duly calculate the weighted average

entropy of both splits and conclude that the first split is the better one. Just to be

sure, you also calculate the average Gini index, and again the first split wins. You

then remember somebody telling you that the square root of the Gini index was

a better impurity measure, so you decide to check that one out as well. Lo and

behold, it favours the second split...! What to do?

You then remember that mistakes on the positives are about ten times as

costly as mistakes on the negatives. You’re not quite sure how to work out the

maths, and so you decide to simply have ten copies of every positive: the splits

are now [80+,2−][20+,8−] and [100+,6−][0+,4−]. You recalculate the three split-

ting criteria and now all three favour the second split. Even though you’re slightly

bemused by all this, you settle for the second split since all three splitting criteria

are now unanimous in their recommendation.

So what is going on here? Let’s first look at the situation with the inflated numbers

of positives. Intuitively it is clear that here the second split is preferable, since one of

the children is pure and the other one is fairly good as well, though perhaps not as

Algorithm 5.3: PruneTree(T,D) – reduced-error pruning of a decision tree.

Input : decision tree T ; labelled data D .

Output : pruned tree T ′.
1 for every internal node N of T , starting from the bottom do

2 TN ←subtree of T rooted at N ;

3 DN ← {x ∈D|x is covered by N };

4 if accuracy of TN over DN is worse than majority class in DN then

5 replace TN in T by a leaf labelled with the majority class in DN ;

6 end

7 end

8 return pruned version of T
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good as [80+,2−]. But this situation changes if we have only one-tenth of the number

of positives, at least according to entropy and Gini index. Using notation introduced

earlier, this can be understood as follows. The Gini index of the parent is 2 n⊕
n

n�
n , and

the weighted Gini index of one of the children is n1
n 2

n⊕1
n1

n�1
n1

. So the weighted impurity

of the child in proportion to the parent’s impurity is
n⊕1 n�1 /n1

n⊕n�/n ; let’s call this relative im-

purity. The same calculations for
�

Gini give

� impurity of the parent:

√
n⊕

n

n�

n
;

� weighted impurity of the child:
n1

n

√
n⊕1
n1

n�1
n1

;

� relative impurity:

√
n⊕1 n�1
n⊕n�

.

The important thing to note is that this last ratio doesn’t change if we multiply all num-

bers involving positives with a factor c. That is,
�

Gini is designed to minimise relative

impurity, and thus is insensitive to changes in class distribution. In contrast, relative

impurity for the Gini index includes the ratio n1/n, which changes if we inflate the

number of positives. Something similar happens with entropy. As a result, these two

splitting criteria emphasise children covering more examples.

A picture will help to explain this further. Just as accuracy and average recall have

isometrics in coverage and ROC space, so do splitting criteria. Owing to their non-

linear nature, these isometrics are curved rather than straight. They also occur on ei-

ther side of the diagonal, as we can swap the left and right child without changing the

quality of the split. One might imagine the impurity landscape as a mountain looked

down on from above – the summit is a ridge along the ascending diagonal, represent-

ing the splits where the children have the same impurity as the parent. This mountain

slopes down on either side and reaches ground level in ROC heaven as well as its op-

posite number (‘ROC hell’), as this is where impurity is zero. The isometrics are the

contour lines of this mountain – walks around it at constant elevation.

Consider Figure 5.7 (top). The two splits among which you needed to choose in

Example 5.3 (before inflating the positives) are indicated as points in this plot. I have

drawn six isometrics in the top-left of the plot: two splits times three splitting criteria.

A particular splitting criterion prefers the split whose isometric is the highest (closest

to ROC heaven) of the two: you can see that only one of the three (
�

Gini) prefers the

split on the top-right. Figure 5.7 (bottom) demonstrates how this changes when in-

flating the positives with a factor 10 (a coverage plot would run off the page here, so I

have plotted this in ROC space with the grid indicating how the class distribution has

changed). Now all three splitting criteria prefer the top-right split, because the entropy
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Figure 5.7. (top) ROC isometrics for entropy in blue, Gini index in violet and
�

Gini in red

through the splits [8+,2−][2+,8−] (solid lines) and [10+,6−][0+,4−] (dotted lines). Only
�

Gini

prefers the second split. (bottom) The same isometrics after inflating the positives with a factor

10. All splitting criteria now favour the second split; the
�

Gini isometrics are the only ones that

haven’t moved.
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and Gini index ‘mountains’ have rotated clockwise (Gini index more so than entropy),

while the
�

Gini mountain hasn’t moved at all.

The upshot of all this is that if you learn a decision tree or probability estimation

tree using entropy or Gini index as impurity measure – which is what virtually all avail-

able tree learning packages do – then your model will change if you change the class

distribution by oversampling, while if you use
�

Gini you will learn the same tree each

time. More generally, entropy and Gini index are sensitive to fluctuations in the class dis-

tribution,
�

Gini isn’t. So which one should you choose? My recommendation echoes

the ones I gave for majority class labelling and pruning: use a distribution-insensitive

impurity measure such as
�

Gini unless the training set operating conditions are rep-

resentative.5

Let’s wrap up the discussion on tree models so far. How would you train a decision

tree on a given data set, you might ask me? Here’s a list of the steps I would take:

1. First and foremost, I would concentrate on getting good ranking behaviour, be-

cause from a good ranker I can get good classification and probability estima-

tion, but not necessarily the other way round.

2. I would therefore try to use an impurity measure that is distribution-insensitive,

such as
�

Gini; if that isn’t available and I can’t hack the code, I would resort to

oversampling the minority class to achieve a balanced class distribution.

3. I would disable pruning and smooth the probability estimates by means of the

Laplace correction (or the m-estimate).

4. Once I know the deployment operation conditions, I would use these to select

the best operating point on the ROC curve (i.e., a threshold on the predicted

probabilities, or a labelling of the tree).

5. (optional) Finally, I would prune away any subtree whose leaves all have the

same label.

Even though in our discussion we have mostly concentrated on binary classification

tasks, it should be noted that decision trees can effortlessly deal with more than two

classes – as, indeed, can any grouping model. As already mentioned, multi-class im-

purity measures simply sum up impurities for each class in a one-versus-rest manner.

The only step in this list that isn’t entirely obvious when there are more than two classes

is step 4: in this case I would learn a weight for each class as briefly explained in Section

3.1, or possibly combine it with step 5 and resort to reduced-error pruning (Algorithm

5.3) which might be already implemented in the package you’re using.

5It should be noted that it is fairly easy to make measures such as entropy and Gini index distribution-

insensitive as well: essentially, this would involve compensating for an observed class ratio clr 
= 1 by dividing

all counts of positives, or positive empirical probabilities, by clr.
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5.3 Tree learning as variance reduction

We will now consider how to adapt decision trees to regression and clustering tasks.

This will turn out to be surprisingly straightforward, and is based on the following idea.

Earlier, we defined the two-class Gini index 2ṗ(1− ṗ) of a leaf as the expected error

resulting from labelling instances in the leaf randomly: positive with probability ṗ and

negative with probability 1− ṗ. You can picture this as tossing a coin, prepared such

that it comes up heads with probability ṗ, to classify examples. Representing this as

a random variable with value 1 for heads and 0 for tails, the expected value of this

random variable is ṗ and its variance ṗ(1− ṗ) (look up ‘Bernoulli trial’ online if you

want to read up on this). This leads to an alternative interpretation of the Gini index as

a variance term: the purer the leaf, the more biased the coin will be, and the smaller the

variance. For k classes we simply add up the variances of all one-versus-rest random

variables.6

More specifically, consider a binary split into n1 and n2 = n −n1 examples with

empirical probabilities ṗ1 and ṗ2, then the weighted average impurity of these children

in terms of the Gini index is

n1

n
2ṗ1(1− ṗ1)+ n2

n
2ṗ2(1− ṗ2)= 2

(n1

n
σ2

1+
n2

n
σ2

2

)

where σ2
j is the variance of a Bernoulli distribution with success probability ṗ j . So,

finding a split with minimum weighted average Gini index is equivalent to minimising

weighted average variance (the factor 2 is common to all splits and so can be omitted),

and learning a decision tree boils down to partitioning the instance space such that

each segment has small variance.

Regression trees

In regression problems the target variable is continuous rather than binary, and in that

case we can define the variance of a set Y of target values as the average squared dis-

tance from the mean:

Var(Y )= 1

|Y |
∑

y∈Y
(y − y)2

where y = 1
|Y |
∑

y∈Y y is the mean of the target values in Y ; see Background 5.1 for some

useful properties of variance. If a split partitions the set of target values Y into mutually

exclusive sets {Y1, . . . ,Yl }, the weighted average variance is then

Var({Y1, . . . ,Yl })=
l∑

j=1

|Y j |
|Y | Var(Y j )=

l∑
j=1

|Y j |
|Y |

(
1

|Y j |
∑

y∈Y j

y2− y2
j

)
= 1

|Y |
∑

y∈Y
y2−

l∑
j=1

|Y j |
|Y | y2

j

(5.4)

6This implicitly assumes that the one-versus-rest variables are uncorrelated, which is not strictly true.
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The variance of a set of numbers X ⊆ R is defined as the average squared difference from

the mean:

Var(X )= 1

|X |
∑

x∈X
(x−x)2

where x = 1
|X |
∑

x∈X x is the mean of X . Expanding (x − x)2 = x2 − 2xx + x2 this can be

written as

Var(X )= 1

|X |

( ∑
x∈X

x2−2x
∑

x∈X
x+ ∑

x∈X
x2

)
= 1

|X |

( ∑
x∈X

x2−2x|X |x+|X |x2

)
= 1

|X |
∑

x∈X
x2−x2

(5.3)

So the variance is the difference between the mean of the squares and the square of the

mean.

It is sometimes useful to consider the average squared difference from another value x′ ∈
R, which can similarly be expanded:

1

|X |
∑

x∈X
(x−x′)2 = 1

|X |

( ∑
x∈X

x2−2x′|X |x+|X |x′2
)
=Var(X )+ (x′ −x)2

The last step follows because from Equation 5.3 we have 1
|X |
∑

x∈X x2 =Var(X )+x2.

Another useful property is that the average squared difference between any two elements

of X is twice the variance:

1

|X |2
∑

x′∈X

∑
x∈X

(x−x′)2 = 1

|X |
∑

x ′∈X
(Var(X )+ (x′ −x)2)=Var(X )+ 1

|X |
∑

x ′∈X
(x′ −x)2 = 2Var(X )

If X ⊆ Rd is a set of d-vectors of numbers, we can define the variance Vari (X ) for each of

the d coordinates. We can then interpret the sum of variances
∑d

i=1 Vari (X ) as the average

squared Euclidean distance of the vectors in X to their vector mean x= 1
|X |
∑

x∈X x.

(You will sometimes see sample variance defined as 1
|X |−1

∑
x∈X (x−x)2, which is a some-

what larger value. This version arises if we are estimating the variance of a population

from which X is a random sample: normalising by |X | would underestimate the popula-

tion variance because of differences between the sample mean and the population mean.

Here, we are only concerned with assessing the spread of the given values X and not with

some unknown population, and so we can ignore this issue.)

Background 5.1. Variations on variance.

So, in order to obtain a regression tree learning algorithm, we replace the impurity

measure Imp in Algorithm 5.2 with the function Var. Notice that 1
|Y |
∑

y∈Y y2 is con-

stant for a given set Y , and so minimising variance over all possible splits of a given

parent is the same as maximising the weighted average of squared means in the chil-
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Figure 5.8. A regression tree learned from the data in Example 5.4.

dren. The function Label(Y ) is similarly adapted to return the mean value in Y , and

the function Homogeneous(Y ) returns true if the variance of the target values in Y is

zero (or smaller than a low threshold).

Example 5.4 (Learning a regression tree). Imagine you are a collector of vintage

Hammond tonewheel organs. You have been monitoring an online auction site,

from which you collected some data about interesting transactions:

# Model Condition Leslie Price

1. B3 excellent no 4513

2. T202 fair yes 625

3. A100 good no 1051

4. T202 good no 270

5. M102 good yes 870

6. A100 excellent no 1770

7. T202 fair no 99

8. A100 good yes 1900

9. E112 fair no 77

From this data, you want to construct a regression tree that will help you deter-

mine a reasonable price for your next purchase.

There are three features, hence three possible splits:
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Model= [A100,B3,E112,M102,T202] [1051,1770,1900][4513][77][870][99,270,625]

Condition= [excellent,good, fair] [1770,4513][270,870,1051,1900][77,99,625]

Leslie= [yes,no] [625,870,1900][77,99,270,1051,1770,4513]

The means of the first split are 1574, 4513, 77, 870 and 331, and the weighted

average of squared means is 3.21 ·106. The means of the second split are 3142,

1023 and 267, with weighted average of squared means 2.68·106; for the third split

the means are 1132 and 1297, with weighted average of squared means 1.55 ·106.

We therefore branch on Model at the top level. This gives us three single-instance

leaves, as well as three A100s and three T202s.

For the A100s we obtain the following splits:

Condition= [excellent,good, fair] [1770][1051,1900][]

Leslie= [yes,no] [1900][1051,1770]

Without going through the calculations we can see that the second split results in

less variance (to handle the empty child, it is customary to set its variance equal

to that of the parent). For the T202s the splits are as follows:

Condition= [excellent,good, fair] [][270][99,625]

Leslie= [yes,no] [625][99,270]

Again we see that splitting on Leslie gives tighter clusters of values. The learned

regression tree is depicted in Figure 5.8.

Regression trees are susceptible to overfitting. For instance, if we have exactly one

example for each Hammond model then branching on Model will reduce the average

variance in the children to zero. The data in Example 5.4 is really too sparse to learn

a good regression tree. Furthermore, it is a good idea to set aside a pruning set and

to apply reduced-error pruning, pruning away a subtree if the average variance on the

pruning set is lower without the subtree than with it (see Algorithm 5.3 on p.144). It

should also be noted that predicting a constant value in a leaf is a very simple strategy,

and methods exist to learn so-called model trees, which are trees with linear regression

models in their leaves (�linear regression is explained in Chapter 7). In that case, the

splitting criterion would be based on correlation of the target variable with the regres-

sor variables, rather than simply on variance.
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Clustering trees

The simple kind of regression tree considered here also suggests a way to learn cluster-

ing trees. This is perhaps surprising, since regression is a supervised learning problem

while clustering is unsupervised. The key insight is that regression trees find instance

space segments whose target values are tightly clustered around the mean value in the

segment – indeed, the variance of a set of target values is simply the (univariate) av-

erage squared Euclidean distance to the mean. An immediate generalisation is to use

a vector of target values, as this doesn’t change the mathematics in an essential way.

More generally yet, we can introduce an abstract function Dis : X ×X → R that mea-

sures the distance or dissimilarity of any two instances x, x ′ ∈X , such that the higher

Dis(x, x ′) is, the less similar x and x ′ are. The cluster dissimilarity of a set of instances

D is then calculated as

Dis(D)= 1

|D|2
∑

x∈D

∑
x′∈D

Dis(x, x ′) (5.5)

The weighted average cluster dissimilarity over all children of a split then gives the split

dissimilarity, which can be used to inform BestSplit(D,F ) in the �GrowTree algorithm

(Algorithm 5.1 on p.132).

Example 5.5 (Learning a clustering tree using a dissimilarity matrix).

Assessing the nine transactions on the online auction site from Example

5.4, using some additional features such as reserve price and number of bids

(these features do not matter at the moment but are shown in Example 5.6), you

come up with the following dissimilarity matrix:

0 11 6 13 10 3 13 3 12

11 0 1 1 1 3 0 4 0

6 1 0 2 1 1 2 2 1

13 1 2 0 0 4 0 4 0

10 1 1 0 0 3 0 2 0

3 3 1 4 3 0 4 1 3

13 0 2 0 0 4 0 4 0

3 4 2 4 2 1 4 0 4

12 0 1 0 0 3 0 4 0

This shows, for instance, that the first transaction is very different from the other

eight. The average pairwise dissimilarity over all nine transactions is 2.94.

Using the same features from Example 5.4, the three possible splits are (now

with transaction number rather than price):
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Model= [A100,B3,E112,M102,T202] [3,6,8][1][9][5][2,4,7]

Condition= [excellent,good, fair] [1,6][3,4,5,8][2,7,9]

Leslie= [yes,no] [2,5,8][1,3,4,6,7,9]

The cluster dissimilarity among transactions 3, 6 and 8 is 1
32 (0+1+2+1+0+1+2+

1+0)= 0.89; and among transactions 2, 4 and 7 it is 1
32 (0+1+0+1+0+0+0+0+0)=

0.22. The other three children of the first split contain only a single element and

so have zero cluster dissimilarity. The weighted average cluster dissimilarity of

the split is then 3/9 ·0.89+1/9 ·0+1/9 ·0+1/9 ·0+3/9 ·0.22= 0.37. For the second

split, similar calculations result in a split dissimilarity of 2/9 ·1.5+4/9 ·1.19+3/9 ·
0= 0.86, and the third split yields 3/9 ·1.56+6/9 ·3.56= 2.89. The Model feature

thus captures most of the given dissimilarities, while the Leslie feature is virtually

unrelated.

Most of the caveats of regression trees also apply to clustering trees: smaller clusters

tend to have lower dissimilarity, and so it is easy to overfit. Setting aside a pruning set

to remove the lower splits if they don’t improve the cluster coherence on the pruning

set is recommended. Single examples can dominate: in the above example, removing

the first transaction reduces the overall pairwise dissimilarity from 2.94 to 1.5, and so

it will be hard to beat a split that puts that transaction in a cluster of its own.

An interesting question is: how should the leaves of a clustering tree be labelled?

Intuitively, it makes sense to label a cluster with its most representative instance. We

can define an instance as most representative if its total dissimilarity to all other in-

stances is lowest – this is defined as the medoid in Chapter 8. For instance, in the A100

cluster transaction 6 is most representative because its dissimilarity to 3 and 8 is 1,

whereas the dissimilarity between 3 and 8 is 2. Likewise, in the T202 cluster transac-

tion 7 is most representative. However, there is no reason why this should always be

uniquely defined.

A commonly encountered scenario, which both simplifies the calculations involved

in determining the best split and provides a unique cluster label, is when the dissim-

ilarities are Euclidean distances derived from numerical features. As shown in Back-

ground 5.1, if Dis(x, x ′) is squared Euclidean distance, then Dis(D) is twice the average

squared Euclidean distance to the mean. This simplifies calculations because both the

mean and average squared distance to the mean can be calculated in O(|D|) steps (a

single sweep through the data), rather than the O(|D|2) required if all we have is a dis-

similarity matrix. In fact, the average squared Euclidean distance is simply the sum of

the variances of the individual features.
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Model

(16, 14, 9.7)

=A100

(45, 30, 22)

=B3

(1, 0, 5)

 =E122

(9, 5, 2)

 =M102

(3.3, 0, 4.3)

 =T202

Figure 5.9. A clustering tree learned from the data in Example 5.6 using Euclidean distance on

the numerical features.

Example 5.6 (Learning a clustering tree with Euclidean distance). We extend

our Hammond organ data with two new numerical features, one indicating the

reserve price and the other the number of bids made in the auction. Sales price

and reserve price are expressed in hundreds of pounds in order to give the three

numerical features roughly equal weight in the distance calculations.

Model Condition Leslie Price Reserve Bids

B3 excellent no 45 30 22

T202 fair yes 6 0 9

A100 good no 11 8 13

T202 good no 3 0 1

M102 good yes 9 5 2

A100 excellent no 18 15 15

T202 fair no 1 0 3

A100 good yes 19 19 1

E112 fair no 1 0 5

The means of the three numerical features are (13.3,8.6,7.9) and their variances

are (158,101.8,48.8). The average squared Euclidean distance to the mean is

then the sum of these variances, which is 308.6 (if preferred we can double

this number to obtain the cluster dissimilarity as defined in Equation 5.5). For

the A100 cluster these vectors are (16,14,9.7) and (12.7,20.7,38.2), with average

squared distance to the mean 71.6; for the T202 cluster they are (3.3,0,4.3) and

(4.2,0,11.6), with average squared distance 15.8. Using this split we can construct

a clustering tree whose leaves are labelled with the mean vectors (Figure 5.9).
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In this example we used categorical features for splitting and numerical features

for distance calculations. Indeed, in all tree examples considered so far we have only

used categorical features for splitting.7 In practice, numerical features are frequently

used for splitting: all we need to do is find a suitable threshold t so that feature F can

be turned into a binary split with conditions F ≥ t and F < t . Finding the optimal split

point is closely related to �discretisation of numerical features, a topic we will look at

in detail in Chapter 10. For the moment, the following observations give some idea

how we can learn a threshold on a numerical feature:

� Although in theory there are infinitely many possible thresholds, in practice we

only need to consider values separating two examples that end up next to each

other if we sort the training examples on increasing (or decreasing) value of the

feature.

� We only consider consecutive examples of different class if our task is classifi-

cation, whose target values are sufficiently different if our task is regression, or

whose dissimilarity is sufficiently large if our task is clustering.

� Each potential threshold can be evaluated as if it were a distinct binary feature.

5.4 Tree models: Summary and further reading

Tree-based data structures are ubiquitous in computer science, and the situation is no

different in machine learning. Tree models are concise, easy to interpret and learn,

and can be applied to a wide range of tasks, including classification, ranking, proba-

bility estimation, regression and clustering. The tree-based classifier for human pose

recognition in the Microsoft Kinect motion sensing device is described in Shotton et al.

(2011).

� I introduced the feature tree as the common core for all these tree-based models,

and the recursive GrowTree algorithm as a generic divide-and-conquer algorithm

that can be adapted to each of these tasks by suitable choices for the functions

that test whether a data set is sufficiently homogeneous, find a suitable label if it

is, and find the best feature to split on if it isn’t.

� Using a feature tree to predict class labels turns them into decision trees, the

subject of Section 5.1. There are two classical accounts of decision trees in ma-

chine learning, which are very similar algorithmically but differ in details such as

heuristics and pruning strategies. Quinlan’s approach was to use entropy as im-

purity measure, and progressed from the ID3 algorithm (Quinlan, 1986), which

7Categorical features are features with a relatively small set of discrete values. Technically, they distinguish

themselves from numerical features by not having a scale or an ordering. This is further explored in Chapter

10.
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itself was inspired by Hunt, Marin and Stone (1966), to the sophisticated C4.5

system (Quinlan, 1993). The CART approach stands for ‘classification and regres-

sion trees’ and was developed by Breiman, Friedman, Olshen and Stone (1984);

it uses the Gini index as impurity measure. The
�

Gini impurity measure was

introduced by Dietterich, Kearns and Mansour (1996), and is hence sometimes

referred to as DKM . The geometric construction to find Imp({D1,D2}) in Figure

5.2 (right) was also inspired by that paper.

� Employing the empirical distributions in the leaves of a feature tree in order to

build rankers and probability estimators as described in Section 5.2 is a much

more recent development (Ferri et al., 2002; Provost and Domingos, 2003). Ex-

perimental results demonstrating that better probability estimates are obtained

by disabling tree pruning and smoothing the empirical probabilities by means

of the Laplace correction are presented in the latter paper and corroborated by

Ferri et al. (2003). The extent to which decision tree splitting criteria are insensi-

tive to unbalanced classes or misclassification costs was studied and explained

by Drummond and Holte (2000) and Flach (2003). Of the three splitting criteria

mentioned above, only
�

Gini is insensitive to such class and cost imbalance.

� Tree models are grouping models that aim to minimise diversity in their leaves,

where the appropriate notion of diversity depends on the task. Very often diver-

sity can be interpreted as some kind of variance, an idea that already appeared

in (Breiman et al., 1984) and was revisited by Langley (1994), Kramer (1996) and

Blockeel, De Raedt and Ramon (1998), among others. In Section 5.3 we saw how

this idea can be used to learn regression and clustering trees (glossing over many

important details, such as when we should stop splitting nodes).

It should be kept in mind that the increased expressivity of tree models compared

with, say, conjunctive concepts means that we should safeguard ourselves against over-

fitting. Furthermore, the greedy divide-and-conquer algorithm has the disadvantage

that small changes in the training data may lead to a different choice of the feature at

the root of the tree, which will influence the choice of feature at subsequent splits. We

will see in Chapter 11 how methods such as bagging can be applied to help reduce this

kind of model variance.

�



CHAPTER 6

Rule models

R
ULE MODELS ARE the second major type of logical machine learning models. Generally

speaking, they offer more flexibility than tree models: for instance, while decision tree

branches are mutually exclusive, the potential overlap of rules may give additional in-

formation. This flexibility comes at a price, however: while it is very tempting to view a

rule as a single, independent piece of information, this is often not adequate because

of the way the rules are learned. Particularly in supervised learning, a rule model is

more than just a set of rules: the specification of how the rules are to be combined to

form predictions is a crucial part of the model.

There are essentially two approaches to supervised rule learning. One is inspired

by decision tree learning: find a combination of literals – the body of the rule, which is

what we previously called a concept – that covers a sufficiently homogeneous set of ex-

amples, and find a label to put in the head of the rule. The second approach goes in the

opposite direction: first select a class you want to learn, and then find rule bodies that

cover (large subsets of) the examples of that class. The first approach naturally leads to

a model consisting of an ordered sequence of rules – a rule list – as will be discussed in

Section 6.1. The second approach treats collections of rules as unordered rule sets and

is the topic of Section 6.2. We shall see how these models differ in the way they han-

dle rule overlap. The third section of the chapter covers discovery of subgroups and

association rules.

157
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Figure 6.1. ROC isometrics for entropy (rescaled to have a maximum value of 1/2), Gini index

and minority class. The grey dotted symmetry line is defined by ṗ = 1/2: each isometric has

two parts, one above the symmetry line (where impurity decreases with increasing empirical

probability ṗ) and its mirror image below the symmetry line (where impurity is proportional to

ṗ). If these impurity measures are used as search heuristic, as they are in rule learning, only

the shape of the isometrics matters but not the associated impurity values, and hence all three

impurity measures are equivalent.

6.1 Learning ordered rule lists

The key idea of this kind of rule learning algorithm is to keep growing a conjunctive rule

body by adding the literal that most improves its homogeneity. That is, we construct

a downward path through the hypothesis space, of the kind discussed in Section 4.2,

and we stop as soon as some homogeneity criterion is satisfied. It is natural to mea-

sure homogeneity in terms of purity, as we did with decision trees. You might think

that adding a literal to a rule body is much the same as adding a binary split to a deci-

sion tree, as the added literal splits the instances covered by the original rule body in

two groups: those instances for which the new literal is true, and those for which the

new literal is false. However, one key difference is that in decision tree learning we are

interested in the purity of both children, which is why we use the weighted average im-

purity as our search heuristic when constructing the tree. In rule learning, on the other

hand, we are only interested in the purity of one of the children: the one in which the

added literal is true. It follows that we can directly use any of the impurity measures

we considered in the previous chapter (see Figure 5.2 on p.134 if you want to remind

yourself which they are), without the need for averaging.
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In fact, it doesn’t even matter which of those impurity measures we use to guide the

search, since they will all give the same result. To see this, notice that the impurity of a

concept decreases with the empirical probability ṗ (the relative frequency of covered

positives) if ṗ > 1/2 and increases with ṗ if ṗ < 1/2; see Figure 6.1. Whether this in-

crease or decrease is linear or not matters if we are averaging the impurities of several

concepts, as in decision tree learning, but not if we are evaluating single concepts. In

other words, the difference between these impurity measures vanishes in rule learn-

ing, and we might as well take the proportion of the minority class min(ṗ,1− ṗ) (or, if

you prefer, 1/2−|ṗ−1/2|), which is arguably the simplest, as our impurity measure of

choice in this section. Just keep in mind that if other authors use entropy or Gini index

to compare the impurity of literals or rule bodies this will give the same results (not in

terms of impurity values but in terms of which one is best).

We introduce the main algorithm for learning rule lists by means of an example.

Example 6.1 (Learning a rule list). Consider again our small dolphins data set

with positive examples

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and negatives

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

The nine possible literals are shown with their coverage counts in Figure 6.2 (top).

Three of these are pure; in the impurity isometrics plot in Figure 6.2 (bottom)

they end up on the x-axis and y-axis. One of the literals covers two positives and

two negatives, and therefore has the same impurity as the overall data set; this

literal ends up on the ascending diagonal in the coverage plot.

Although impurity in itself does not distinguish between pure literals (we will re-

turn to this point later), one could argue that Gills= yes is the best of the three as it

covers more examples, so let’s formulate our first rule as:

·if Gills= yes then Class=�·
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Figure 6.2. (top) All literals with their coverage counts on the data in Example 6.1. The ones

in green (red) are pure for the positive (negative) class. (bottom) The nine literals plotted as

points in coverage space, with their impurity values indicated by impurity isometrics (away from

the ascending diagonal is better). Impurity values are colour-coded: towards green if ṗ > 1/2,

towards red if ṗ < 1/2, and orange if ṗ = 1/2 (on a 45 degree isometric). The violet arrow indicates

the selected literal, which excludes all five positives and one negative.

The corresponding coverage point is indicated by the arrow in Figure 6.2 (bottom). You

can think of this arrow as the right-most bit of the coverage curve that results if we keep

on following a downward path through the hypothesis space by adding literals. In this

case we are not interested in following the path further because the concept we found

is already pure (we shall see examples later where we have to add several literals before

we hit one of the axes). One new thing that we haven’t seen before is that this coverage

curve lies below the diagonal – this is a consequence of the fact that we haven’t fixed the

class in advance, and therefore we are just as happy diving deep beneath the ascending
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Figure 6.3. (left) Revised coverage counts after removing the four negative examples covered by

the first rule found (literals not covering any examples are omitted). (right) We are now operating

in the right-most ‘slice’ of Figure 6.2 on p.160.

diagonal as we would be flying high above it. Another way of thinking about this is that

if we swap the labels this affects the heads but not the bodies of the learned rules.

Most rule learning algorithms now proceed as follows: they remove the examples

covered by the rule just learned from consideration, and proceed with the remaining

examples. This strategy is called separate-and-conquer, in analogy with the divide-

and-conquer strategy of decision trees (the difference is that in separate-and-conquer

we end up with one remaining subproblem rather than several as in divide-and-conquer).

So we are left with five positive examples and one negative, and we again search for lit-

erals with minimum impurity. As is shown in Figure 6.3, we can understand this as

working in a smaller coverage space. After going through the numbers, we find the

next rule learned is

·if Teeth=many then Class=⊕·

As I mentioned earlier, we should be cautious when interpreting this rule on its own, as

against the original data set it actually covers more negatives than positives! In other

words, the rule implicitly assumes that the previous rule doesn’t ‘fire’; in the final rule

model we will precede it with ‘else’.

We are now left with two positives and one negative (Figure 6.4). This time it makes

sense to choose the rule that covers the single remaining negative, which is

·if Length= 4 then Class=�·

Since the remaining examples are all positive, we can invoke a default rule to cover

those examples for which all other rules fail. Put together, the learned rule model is



162 6. Rule models

true
[2+, 1-]

Length=3
[1+, 0-]

Length=4
[0+, 1-]

Length=5
[1+, 0-]

Gills=no
[2+, 1-]

Beak=yes
[2+, 1-]

Teeth=few
[2+, 1-]

Negatives

P
o

s
it
iv

e
s

Figure 6.4. (left) The third rule covers the one remaining negative example, so that the remaining

positives can be swept up by a default rule. (right) This will collapse the coverage space.

then as follows:
·if Gills= yes then Class=�·
·else if Teeth=many then Class=⊕·
·else if Length= 4 then Class=�·
·else Class=⊕·

Organising rules in a list is one way of dealing with overlaps among rules. For ex-

ample, we know from the data that there are several examples with both Gills= yes and

Teeth=many, but the rule list above tells us that the first rule takes precedence in such

cases. Alternatively, we could rewrite the rule list such that the rules are mutually ex-

clusive. This is useful because it means that we can use each rule without reference to

the other rules, and also ignore their ordering. The only slight complication is that we

need negated literals (or internal disjunction) for those features that have more than

two values, such as ‘Length’:

·if Gills= yes then Class=�·
·if Gills= no ∧ Teeth=many then Class=⊕·
·if Gills= no ∧ Teeth= few ∧ Length= 4 then Class=�·
·if Gills= no ∧ Teeth= few ∧ Length 
= 4 then Class=⊕·

In this example we rely on the fact that this particular set of rules has a single literal

in each rule – in the general case we would need non-conjunctive rule bodies. For

example, consider the following rule list:

·if P ∧Q then Class=⊕·
·else if R then Class=�·

If we wanted to make these mutually exclusive the second rule would become

·if ¬(P ∧Q) ∧ R then Class=�·

or equivalently,

·if (¬P ∨ ¬Q) ∧ R then Class=�·
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Clearly, making rules mutually exclusive leads to less compact rules, which explains

why rule lists are a powerful and popular format.

Algorithm 6.1 specifies the separate-and-conquer rule learning strategy in more

detail. While there are still training examples left, the algorithm learns another rule

and removes all examples covered by the rule from the data set. This algorithm, which

is the basis for the majority of rule learning systems, is also called the covering algo-

rithm. The algorithm for learning a single rule is given in Algorithm 6.2. Similar to

decision trees, it uses the functions Homogeneous(D) and Label(D) to decide whether

further specialisation is needed and what class to put in the head of the rule, respec-

tively. It also employs a function BestLiteral(D,L) that selects the best literal to add to

the rule from the candidates in L given data D ; in our example above, this literal would

be selected on purity.

Many variations on these algorithms exist in the literature. The conditions in the

while-loops are often relaxed to other stopping criteria in order to deal with noisy data.

For example, in Algorithm 6.1 we may want to stop when no class has more than a

certain number of examples left, and include a default rule for the remaining examples.

Likewise, in Algorithm 6.2 we may want to stop if D drops below a certain size.

Rule lists have much in common with decision trees. We can therefore analyse the

construction of a rule list in the same way as we did in Figure 5.3 on p.137. This is shown

for the running example in Figure 6.5. For example, adding the first rule is depicted in

coverage space by splitting the ascending diagonal A into a horizontal segment B rep-

resenting the new rule and another diagonal segment C representing the new coverage

space. Adding the second rule causes segment C to split into vertical segment D (the

second rule) and diagonal segment E (the third coverage space). Finally, E is split into

a horizontal and a vertical segment (the third rule and the default rule, respectively).

The remaining segments B, D, F and G are now all horizontal or vertical, signalling that

the rules we learned are pure.

Algorithm 6.1: LearnRuleList(D) – learn an ordered list of rules.

Input : labelled training data D .

Output : rule list R.

1 R ←�;

2 while D 
= � do

3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2

4 append r to the end of R;

5 D ←D \ {x ∈D|x is covered by r };

6 end

7 return R
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Figure 6.5. (left) A right-branching feature tree corresponding to a list of single-literal rules.

(right) The construction of this feature tree depicted in coverage space. The leaves of the tree

are either purely positive (in green) or purely negative (in red). Reordering these leaves on their

empirical probability results in the blue coverage curve. As the rule list separates the classes this

is a perfect coverage curve.

Rule lists for ranking and probability estimation

Turning a rule list into a ranker or probability estimator is as easy as it was for deci-

sion trees. Due to the covering algorithm we have access to the local class distributions

Algorithm 6.2: LearnRule(D) – learn a single rule.

Input : labelled training data D .

Output : rule r .

1 b ←true;

2 L ←set of available literals;

3 while not Homogeneous(D) do

4 l ←BestLiteral(D,L) ; // e.g., highest purity; see text

5 b ←b ∧ l ;

6 D ← {x ∈D|x is covered by b};

7 L← L \ {l ′ ∈ L|l ′ uses same feature as l };

8 end

9 C ←Label(D) ; // e.g., majority class

10 r ←·if b then Class=C ·;
11 return r
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associated with each rule. We can therefore base our scores on the empirical proba-

bilities. In the case of two classes we can rank the instances on decreasing empirical

probability of the positive class, giving rise to a coverage curve with one segment for

each rule. It is important to note that the ranking order of the rules is different from

their order in the rule list, just as the ranking order of the leaves of a tree is different

from their left-to-right order.

Example 6.2 (Rule lists as rankers). Consider the following two concepts:

(A) Length= 4 p2 n2,n4–5

(B) Beak= yes p1–5 n1–2,n5

Indicated on the right is each concept’s coverage over the whole training set. Us-

ing these concepts as rule bodies, we can construct the rule list AB:

·if Length= 4 then Class=�· [1+,3−]

·else if Beak= yes then Class=⊕· [4+,1−]

·else Class=�· [0+,1−]

The coverage curve of this rule list is given in Figure 6.6. The first segment of the

curve corresponds to all instances which are covered by B but not by A, which

is why we use the set-theoretical notation B \A. Notice that while this segment

corresponds to the second rule in the rule list, it comes first in the coverage curve

because it has the highest proportion of positives. The second coverage segment

corresponds to rule A, and the third coverage segment denoted ‘-’ corresponds

to the default rule. This segment comes last, not because it represents the last

rule, but because it happens to cover no positives.

We can also construct a rule list in the opposite order, BA:

·if Beak= yes then Class=⊕· [5+,3−]

·else if Length= 4 then Class=�· [0+,1−]

·else Class=�· [0+,1−]

The coverage curve of this rule list is also depicted in Figure 6.6. This time, the

first segment corresponds to the first segment in the rule list (B), and the second

and third segment are tied between rule A (after the instances covered by B are

taken away: A\B) and the default rule.

Which of these rule lists is a better ranker? We can see that AB makes fewer ranking

errors than BA (4.5 vs. 7.5), and thus has better AUC (0.82 vs. 0.70). We also see that,
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Figure 6.6. Coverage curves of two rule lists consisting of the rules from Example 6.2, in differ-

ent order (AB in blue and BA in violet). B \A corresponds to the coverage of rule B once the

coverage of rule A is taken away, and ‘-’ denotes the default rule. Neither curve dominates the

other, and thus each has operating conditions under which it is superior. The dotted segment

in red connecting the two curves corresponds to the overlap of the two rules A∧B, which is not

accessible by either rule list.

if accuracy is our performance criterion, AB would be optimal, achieving 0.80 accu-

racy (tpr = 0.80 and tnr = 0.80) where BA only manages 0.70 (tpr = 1 and tnr = 0.40).

However, if performance on the positives is 3 times as important as performance on

the negatives, then BA’s optimal operating point outperforms AB’s. Hence, each rule

list contains information not present in the other, and so neither is uniformly better.

The main reason for this is that the segment A∧B – the overlap of the two rules –

is not accessible by either rule list. In Figure 6.6 this is indicated by the dotted segment

connecting the segment B from rule list BA and the segment B\A from rule list AB. It

follows that this segment contains exactly those examples that are in B but not in B\A,

hence in A∧B. In order to access the rule overlap, we need to either combine the two

rule lists or go beyond the power of rule lists. This will be investigated further at the

end of the next section.

There are thus several connections between rule lists and decision trees. Further-

more, rule lists are similar to decision trees in that the empirical probabilities associated

with each rule yield convex ROC and coverage curves on the training data. We have ac-

cess to those empirical probabilities because of the coverage algorithm, which removes

all training instances covered by one rule before learning the next (Algorithm 6.1). As a
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result, rule lists produce probabilities that are well-calibrated on the training set. Some

rule learning algorithms in the literature reorder the rule list after all rules have been

constructed. In this case, convexity cannot be guaranteed unless we re-evaluate the

coverage of each rule in the reordered rule list.

6.2 Learning unordered rule sets

We next consider the alternative approach to rule learning, where rules are learned for

one class at a time. This means we can further simplify our search heuristic: rather than

minimising min(ṗ,1− ṗ), we can maximise ṗ, the empirical probability of the class

we are learning. This search heuristic is conventionally referred to by its ‘evaluation

measure name’ precision (see Table 2.3 on p.57).

Example 6.3 (Learning a rule set for one class). We continue the dolphin ex-

ample. Figure 6.7 shows that the first rule learned for the positive class is

·if Length= 3 then Class=⊕·

The two examples covered by this rule are removed, and a new rule is learned. We

now encounter a new situation, as none of the candidates is pure (Figure 6.8). We

thus start a second-level search, from which the following pure rule emerges:

·if Gills= no ∧ Length= 5 then Class=⊕·

To cover the remaining positive, we again need a rule with two conditions (Figure

6.9):

·if Gills= no ∧ Teeth=many then Class=⊕·
Notice that, even though these rules are overlapping, their overlap only covers

positive examples (since each of them is pure) and so there is no need to organise

them in an if-then-else list.

We now have a rule set for the positive class. With two classes this might be con-

sidered sufficient, as we can classify everything that isn’t covered by the positive rules

as negative. However, this might introduce a bias towards the negative class as all dif-

ficult cases we’re unsure about get automatically classified as negative. So let’s learn

some rules for the negative class. By the same procedure as in Example 6.3 we find

the following rules (you may want to check this): ·if Gills= yes then Class=�· first, fol-

lowed by ·if Length= 4 ∧ Teeth= few then Class=�·. The final rule set with rules for
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Figure 6.7. (top) The first rule is learned for the positive class. (bottom) Precision isometrics look

identical to impurity isometrics (Figure 6.2); however, the difference is that precision is lowest

on the x-axis and highest on the y-axis, while purity is lowest on the ascending diagonal and

highest on both the x-axis and the y-axis.

both classes is therefore

(R1) ·if Length= 3 then Class=⊕·
(R2) ·if Gills= no ∧ Length= 5 then Class=⊕·
(R3) ·if Gills= no ∧ Teeth=many then Class=⊕·
(R4) ·if Gills= yes then Class=�·
(R5) ·if Length= 4 ∧ Teeth= few then Class=�·

The algorithm for learning a rule set is given in Algorithm 6.3. The main differences
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[2+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[3+, 1-]

Beak=yes
[3+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[2+, 4-]

Teeth=few
[1+, 1-]

Gills=no & Length=4
[1+, 1-]

Gills=no & Length=5
[2+, 0-]

Gills=no & Beak=yes
[3+, 1-]

Gills=no & Teeth=many
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Gills=no & Teeth=few
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Figure 6.8. (top) The second rule needs two literals: we use maximum precision to select both.

(bottom) The coverage space is smaller because the two positives covered by the first rule are

removed. The blue box on the left indicates an even smaller coverage space in which the search

for the second literal is carried out, after the condition Gills= no filters out four negatives. Inside

the blue box precision isometrics overlap with those in the outer box (this is not necessarily the

case with search heuristics other than precision).

with �LearnRuleList (Algorithm 6.1 on p.163) is that we now iterate over each class in

turn, and furthermore that only covered examples for the class that we are currently

learning are removed after a rule is found. The reason for this second change is that

rule sets are not executed in any particular order, and so covered negatives are not fil-

tered out by other rules. Algorithm 6.4 gives the algorithm for learning a single rule for

a particular class, which is very similar to �LearnRule (Algorithm 6.2 on p.164) except

(i) the best literal is now chosen with regard to the class to be learned, Ci ; and(ii) the

head of the rule is always labelled with Ci . An interesting variation that is sometimes
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Length=4 & Gills=no
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Figure 6.9. (top) The third and final rule again needs two literals. (bottom) The first literal ex-

cludes four negatives, the second excludes the one remaining negative.

encountered in the literature is to initialise the set of available literals L to those occur-

ring in a given seed example belonging to the class to be learned: the advantage is that

this cuts back the search space, but a possible disadvantage is that the choice of seed

example may be sub-optimal.

One issue with using precision as search heuristic is that it tends to focus a bit too

much on finding pure rules, thereby occasionally missing near-pure rules that can be

specialised into a more general pure rule. Consider Figure 6.10 (top): precision favours

the rule ·if Length= 3 then Class=⊕·, even though the near-pure literal Gills= no leads

to the pure rule ·if Gills= no ∧ Teeth=many then Class=⊕·. A convenient way to deal

with this ‘myopia’ of precision is the Laplace correction, which ensures that [5+,1−]

is ‘corrected’ to [6+,2−] and thus considered to be of the same quality as [2+,0−] aka

[3+,1−] (Figure 6.10 (bottom)). Another way to reduce myopia further and break such

ties is to employ a beam search: rather than greedily going for the best candidate, we

maintain a fixed number of alternate candidates. In the example, a small beam size

would already allow us to find the more general rule:
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� the first beam would include the candidate bodies Length= 3 and Gills= no;

� we then add all possible specialisations of non-pure elements of the beam;

� of the remaining set – i.e., elements of the original beam plus all added speciali-

sations – we keep only the best few, preferring the ones that were already on the

beam in case of ties, as they are shorter;

� we stop when all beam elements are pure, and we select the best one.

Now that we have seen how to learn a rule set, we turn to the question of how to

employ a rule set model as a classifier. Suppose we encounter a new instance, say

Length= 3 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many. With the rule list on p.162 the

Algorithm 6.3: LearnRuleSet(D) – learn an unordered set of rules.

Input : labelled training data D .

Output : rule set R.

1 R ←�;

2 for every class Ci do

3 Di ←D ;

4 while Di contains examples of class Ci do

5 r ←LearnRuleForClass(Di ,Ci ) ; // LearnRuleForClass: see Algorithm 6.4

6 R ←R∪ {r };

7 Di ←Di \ {x ∈Ci |x is covered by r } ; // remove only positives

8 end

9 end

10 return R

Algorithm 6.4: LearnRuleForClass(D,Ci ) – learn a single rule for a given class.

Input : labelled training data D ; class Ci .

Output : rule r .

1 b ←true;

2 L ←set of available literals ; // can be initialised by seed example

3 while not Homogeneous(D) do

4 l ←BestLiteral(D,L,Ci ) ; // e.g. maximising precision on class Ci

5 b ←b ∧ l ;

6 D ← {x ∈D|x is covered by b};

7 L← L \ {l ′ ∈ L|l ′ uses same feature as l };

8 end

9 r ←·if b then Class=Ci ·;
10 return r
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Gills=no & Length=4
[1+, 1-]
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Figure 6.10. (top) Using Laplace-corrected precision allows learning a better rule in the first

iteration. (bottom) Laplace correction adds one positive and one negative pseudo-count, which

means that the isometrics now rotate around (−1,−1) in coverage space, resulting in a preference

for more general rules.

first rule would fire and hence the instance is classified as negative. With the rule set

on p.168 we have that both R1 and R4 fire and make contradictory predictions. How

can we resolve this? In order to answer that question, it is easier to consider a more

general question first: how do we use a rule set for ranking and probability estimation?
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Rule sets for ranking and probability estimation

In the general case, for a rule set consisting of r rules there are up to 2r different ways in

which rules can overlap, and hence 2r instance space segments. Even though many of

these segments will be empty because rules are mutually exclusive, in general we will

have more instance space segments than rules. As a consequence, we have to estimate

the coverage of some of these segments.

Example 6.4 (Rule sets as rankers). Consider the following rule set (the first two

rules were also used in Example 6.2):

(A) ·if Length= 4 then Class=�· [1+,3−]

(B) ·if Beak= yes then Class=⊕· [5+,3−]

(C) ·if Length= 5 then Class=�· [2+,2−]

The figures on the right indicate coverage of each rule over the whole training

set. For instances covered by single rules we can use these coverage counts to

calculate probability estimates: e.g., an instance covered only by rule A would

receive probability p̂(A)= 1/4= 0.25, and similarly p̂(B)= 5/8= 0.63 and p̂(C)=
2/4= 0.50.

Clearly A and C are mutually exclusive, so the only overlaps we need to take

into account are AB and BC. A simple trick that is often applied is to average the

coverage of the rules involved: for example, the coverage of AB is estimated as

[3+,3−] yielding p̂(AB) = 3/6 = 0.50. Similarly, p̂(BC) = 3.5/6 = 0.58. The corre-

sponding ranking is thus B – BC – [AB, C] – A, resulting in the orange training set

coverage curve in Figure 6.11.

Let us now compare this rule set with the following rule list ABC:

·if Length= 4 then Class=�· [1+,3−]

·else if Beak= yes then Class=⊕· [4+,1−]

·else if Length= 5 then Class=�· [0+,1−]

The coverage curve of this rule list is indicated in Figure 6.11 as the blue line. We

see that the rule set outperforms the rule list, by virtue of being able to distinguish

between examples covered by B only and those covered by both B and C.

While in this example the rule set outperformed the rule list, this cannot be guar-

anteed in general. Due to the fact that the coverage counts of some segments have

to be estimated, a rule set coverage curve is not guaranteed to be convex even on the
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Figure 6.11. Coverage curves of the rule set in Example 6.4 (in orange) and the rule list ABC (in

blue). The rule set partitions the instance space in smaller segments, which in this case lead to

better ranking performance.

training set. For example, suppose that rule C also covers p1, then this won’t affect the

performance of the rule list (since p1 is already covered by B), but it would break the

tie between AB and C in favour of the latter and thus introduce a concavity.

If we want to turn such a ranker into a classifier, we have to find the best operating

point on the coverage curve. Assuming accuracy as our performance criterion, the

point (fpr = 0.2, tpr = 0.8) is optimal, which can be achieved by classifying instances

with p̂ > 0.5 as positive and the rest as negative. If such calibration of the decision

threshold is problematic (for example, in the case of more than two classes), we can

simply assign the class with the highest average coverage, making a random choice in

case of a tie.

A closer look at rule overlap

We have seen that rule lists always give convex training set coverage curves, but that

there is no globally optimal ordering of a given set of rules. The main reason is that

rule lists don’t give us access to the overlap of two rules A∧B: we either have access

to A = (A∧B)∨ (A∧¬B) if the rule order is AB, or B = (A∧B)∨ (¬A ∧B) if it is BA.

More generally, a rule list of r rules results in only r instance space segments (or r +1
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[0+, 0-] [1+, 2-]

[1+, 2-]

 ABC  AB-

[0+, 0-] [0+, 1-]

[0+, 1-]

 A-C  A--

[1+, 3-]

 AB  A-

[2+, 1-] [2+, 0-]

[4+, 1-]

 -BC  -B-

[0+, 1-] [0+, 0-]

[0+, 1-]

 --C  ---

[4+, 2-]

 -B  --

[5+, 5-]

 A  -

Figure 6.12. A rule tree constructed from the rules in Example 6.5. Nodes are labelled with their

coverage (dotted leaves have empty coverage), and branch labels indicate particular areas in the

instance space (e.g., A-C denotes A∧¬B ∧C). The blue nodes are the instance space segments

corresponding to the rule list ABC: the rule tree has better performance because it is able to split

them further.

in case we add a default rule). This means that we cannot take advantage of most of the

2r ways in which rules can overlap. Rule sets, on the other hand, can potentially give

access to such overlaps, but the need for the coverage counts of overlapping segments

to be estimated means that we have to sacrifice convexity. In order to understand this

further, we introduce in this section the concept of a rule tree: a complete feature tree

using the rules as features.

Example 6.5 (Rule tree). From the rules in Example 6.4 we can construct the

rule tree in Figure 6.12. The use of a tree rather than a list allows further split-

ting of the segments of the rule list. For example, the node labelled A is further

split into AB (A∧B) and A- (A∧¬B). As the latter is pure, we obtain a better

coverage curve (the red line in Figure 6.13).

As we see in this example, the rule tree coverage curve dominates the rule list cover-

age curve. This is true in general: there is no other information regarding rule overlap

than that contained in a rule tree, and any given rule list will usually convey only part

of that information. Conversely, we may wonder whether any operating point on the

rule tree curve is reachable by a particular rule list. The answer to this is negative, as a
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Figure 6.13. The blue line is the coverage curve of the rule list ABC in Example 6.4. This curve is

dominated by the red coverage curve, corresponding to the rule tree in Figure 6.12. The rule tree

also improves upon the rule set (orange curve in Figure 6.11), as it has access to exact coverage

counts in all segments and thus recognises that AB- goes before - -C.

simple counter-example shows (Figure 6.14).

In summary, of the three rule models considered, only rule trees can unlock the full

potential of rule overlap as they have the capacity to represent all 2r overlap areas of

r rules and give access to exact coverage counts for each area. Rule lists also convey

exact coverage counts but for fewer segments; rule sets distinguish the same segments

as rule trees but have to estimate coverage counts for the overlap areas. On the other

hand, rule trees are expensive as their size is exponential in the number of rules. An-

other disadvantage is that the coverage counts have to be obtained in a separate step,

after the rules have been learned. I have included rule trees here mainly for concep-

tual reasons: to gain a better understanding of the more common rule list and rule set

models.

6.3 Descriptive rule learning

As we have seen, the rule format lends itself naturally to predictive models, built from

rules with the target variable in the head. It is not hard to come up with ways to extend
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Figure 6.14. (top) A rule tree built on two rules X and Y. (bottom) The rule tree coverage

curve strictly dominates the convex hull of the two rule list curves. This means that there is an

operating point [2+,0−] that cannot be achieved by either rule list.

rule models to regression and clustering tasks, in a similar way to what we did for tree

models at the end of Chapter 5, but I will not elaborate on that here. Instead I will

show how the rule format can equally easily be used to build descriptive models. As

explained in Section 1.1, descriptive models can be learned in either a supervised or an

unsupervised way. As an example of the supervised setting we will discuss how to adapt

the given rule learning algorithms to subgroup discovery. For unsupervised learning of

descriptive rule models we will take a look at frequent item sets and association rule

discovery.
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Rule learning for subgroup discovery

When learning classification models it is natural to look for rules that identify pure

subsets of the training examples: i.e., sets of examples that are all of the same class

and that all satisfy the same conjunctive concept. However, as we have seen in Sec-

tion 3.3, sometimes we are less interested in predicting a class and more interested in

finding interesting patterns. We defined subgroups as mappings ĝ : X → {true, false} –

or alternatively, subsets of the instance space – that are learned from a set of labelled

examples (xi , l (xi )), where l : X →C is the true labelling function. A good subgroup is

one whose class distribution is significantly different from the overall population. This

is by definition true for pure subgroups, but these are not the only interesting ones. For

instance, one could argue that the complement of a subgroup is as interesting as the

subgroup itself: in our dolphin example, the conceptGills= yes, which covers four neg-

atives and no positives, could be considered as interesting as its complementGills= no,

which covers one negative and all positives. This means that we need to move away

from impurity-based evaluation measures.

Like concepts, subgroups can be plotted as points in coverage space, with the pos-

itives in the subgroup on the y-axis and the negatives on the x-axis. Any subgroup

plotted on the ascending diagonal has the same proportion of positives as the overall

population; these are the least interesting subgroups as they have the same statistics

as random samples. Subgroups above (below) the diagonal have a larger (smaller) pro-

portion of positives than the population. So one way to measure the quality of sub-

groups is to take one of the heuristics used for rule learning and measure the abso-

lute deviation from the default value on the diagonal. For example, the precision of

any subgroup on the diagonal is equal to the proportion of positives, so this leads to

|prec− pos| as one possible quality measure. For reasons already discussed it is of-

ten better to use Laplace-corrected precision precL, leading to the alternative measure

|precL −pos|. As can be seen in Figure 6.15 (left), the introduction of pseudo-counts

means that [5+,1−] is evaluated as [6+,2−] and is thus as interesting as the pure con-

cept [2+,0−] which is evaluated as [3+,1−].

However, this doesn’t quite put complementary subgroups on an equal footing, as

[5+,1−] is still considered to be of lower quality than [0+,4−]. In order to achieve this

complementarity we need an evaluation measure whose isometrics all run parallel to

the ascending diagonal. As it turns out, we have already seen such an evaluation mea-

sure in Section 2.1, where we called it average recall (see, e.g., Figure 2.4 on p.61). Notice

that subgroups on the diagonal always have average recall 0.5, regardless of the class

distribution. So, a good subgroup evaluation measure is |avg-rec−0.5|. Average recall

can be written as (1+ tpr− fpr)/2, and thus |avg-rec− 0.5| = |tpr− fpr|/2. It is some-

times desirable not to take the absolute value, so that the sign of the difference tells us

whether we are above or below the diagonal. A related subgroup evaluation measure is
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Figure 6.15. (left) Subgroups and their isometrics according to Laplace-corrected precision. The

solid, outermost isometrics indicate the best subgroups. (right) The ranking changes if we order

the subgroups on average recall. For example, [5+,1−] is now better than [3+,0−] and as good

as [0+,4−].

Subgroup Coverage precL Rank avg-rec Rank

Gills= yes [0+,4−] 0.17 1 0.10 1–2

Gills= no ∧ Teeth=many [3+,0−] 0.80 2 0.80 3

Gills= no [5+,1−] 0.75 3–9 0.90 1–2

Beak= no [0+,2−] 0.25 3–9 0.30 4–11

Gills= yes ∧ Beak= yes [0+,2−] 0.25 3–9 0.30 4–11

Length= 3 [2+,0−] 0.75 3–9 0.70 4–11

Length= 4 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11

Length= 5 ∧ Gills= no [2+,0−] 0.75 3–9 0.70 4–11

Length= 5 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11

Length= 4 [1+,3−] 0.33 10 0.30 4–11

Beak= yes [5+,3−] 0.60 11 0.70 4–11

Table 6.1. Detailed evaluation of the top subgroups. Using Laplace-corrected precision we can

evaluate the quality of a subgroup as |precL −pos|. Alternatively, we can use average recall to

define the quality of a subgroup as |avg-rec−0.5|. These two quality measures result in slightly

different rankings.

weighted relative accuracy, which can be written as pos ·neg(tpr− fpr).

As can be seen by comparing the two isometrics plots in Figure 6.15, using average

recall rather than Laplace-corrected precision has an effect on the ranking of some of

the subgroups. Detailed calculations are given in Table 6.1.
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Subgroup Coverage avg-rec Wgtd coverage W-avg-rec Rank

Gills= yes [0+,4−] 0.10 [0+,3−] 0.07 1–2

Gills= no [5+,1−] 0.90 [4.5+,0.5−] 0.93 1–2

Gills= no ∧Teeth=many [3+,0−] 0.80 [2.5+,0−] 0.78 3

Length= 5 ∧ Gills= yes [0+,2−] 0.30 [0+,2−] 0.21 4

Length= 3 [2+,0−] 0.70 [2+,0−] 0.72 5–6

Length= 5 ∧ Gills= no [2+,0−] 0.70 [2+,0−] 0.72 5–6

Beak= no [0+,2−] 0.30 [0+,1.5−] 0.29 7–9

Gills= yes ∧ Beak= yes [0+,2−] 0.30 [0+,1.5−] 0.29 7–9

Beak= yes [5+,3−] 0.70 [4.5+,2−] 0.71 7–9

Length= 4 [1+,3−] 0.30 [0.5+,1.5−] 0.34 10

Length= 4 ∧ Gills= yes [0+,2−] 0.30 [0+,1−] 0.36 11

Table 6.2. The ‘Wgtd coverage’ column shows how the weighted coverage of the subgroups is af-

fected if the weights of the examples covered byLength= 4 are reduced to 1/2. ‘W-avg-rec’ shows

how how the avg-rec numbers as calculated in Table 6.1 are affected by the weighting, leading to

further differentiation between subgroups that were previously considered equivalent.

Example 6.6 (Comparing Laplace-corrected precision and average recall).

Table 6.1 ranks ten subgroups in the dolphin example in terms of Laplace-

corrected precision and average recall. One difference is that Gills= no

∧ Teeth=many with coverage [3+,0−] is better than Gills= no with cover-

age [5+,1−] in terms of Laplace-corrected precision, but worse in terms of

average recall, as the latter ranks it equally with its complement Gills= yes.

The second difference between classification rule learning and subgroup discovery

is that in the latter case we are naturally interested in overlapping rules, whereas the

standard covering algorithm doesn’t encourage this as examples already covered are

removed from the training set. One way of dealing with this is by assigning weights to

examples that are decreased every time an example is covered by a newly learned rule.

A scheme that works well in practice is to initialise the example weights to 1 and halve

them every time a new rule covers the example. Search heuristics are then evaluated

in terms of the cumulative weight of covered examples, rather than just their number.

Example 6.7 (The effect of weighted covering). Suppose the first subgroup
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Figure 6.16. Visualisation of the effect of weighted covering. If the first subgroup found is

Length= 4, then this halves the weight of one positive and three negatives, shrinking the cov-

erage space to the blue box. The arrows indicate how this affects the weighted coverage of other

subgroups, depending on which of the reduced-weight examples they cover.

found is Length= 4, reducing the weight of the one positive and three negatives

covered by it to 1/2. Detailed calculations of how this affects the weighted

coverage of subgroups are given in Table 6.2. We can see how the coverage

space shrinks to the blue box in Figure 6.16. It also affects the weighted coverage

of the subgroups overlapping with Length= 4, as indicated by the arrows.

Some subgroups end up closer to the diagonal and hence lose importance:

for instance, Length= 4 itself, which moves from [3+,1−] to [1.5+,0.5−]. Oth-

ers move away from the diagonal and hence gain importance: for example

Length= 5 ∧ Gills= yes at [0+,2−].

The weighted covering algorithm is given in Algorithm 6.5. Notice that this algo-

rithm can be applied to discover subgroups over k > 2 classes, as long as the evaluation

measure used to learn single rules can handle more than two classes. This is clearly the

case for average recall used in our examples. Other possibilities include measures de-

rived from the Chi-squared test and mutual information-based measures.
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Association rule mining

I will now introduce a new kind of rule that can be learned in a wholly unsupervised

manner and is prominent in data mining applications. Suppose we observed eight

customers who each bought one or more of apples, beer, crisps and nappies:

Transaction Items

1 nappies

2 beer, crisps

3 apples, nappies

4 beer, crisps, nappies

5 apples

6 apples, beer, crisps, nappies

7 apples, crisps

8 crisps

Each transaction in this table involves a set of items; conversely, for each item we can

list the transactions in which it was involved: transactions 1, 3, 4 and 6 for nappies,

transactions 3, 5, 6 and 7 for apples, and so on. We can also do this for sets of items:

e.g., beer and crisps were bought together in transactions 2, 4 and 6; we say that item

set {beer,crisps} covers transaction set {2,4,6}. There are 16 of such item sets (includ-

ing the empty set, which covers all transactions); using the subset relation between

transaction sets as partial order, they form a lattice (Figure 6.17).

Let us call the number of transactions covered by an item set I its support, denoted

Supp(I ) (sometimes called frequency). We are interested in frequent item sets, which

exceed a given support threshold f0. Support is monotonic: when moving down a path

in the item set lattice it can never increase. This means that the set of frequent item

Algorithm 6.5: WeightedCovering(D) – learn overlapping rules by weighting exam-

ples.

Input : labelled training data D with instance weights initialised to 1.

Output : rule list R.

1 R ←�;

2 while some examples in D have weight 1 do

3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2

4 append r to the end of R;

5 decrease the weights of examples covered by r ;

6 end

7 return R



6.3 Descriptive rule learning 183

{Nappies, Beer, Crisps, Apples}

{Beer, Crisps}

{Nappies, Beer, Crisps} {Beer, Crisps, Apples}

{Nappies, Apples}

{Nappies, Crisps, Apples} {Nappies, Beer, Apples}

{Crisps, Apples}

{Nappies}

{Nappies, Crisps} {Nappies, Beer}

{Apples}

{Beer, Apples}

{}

{Beer}{Crisps}

Figure 6.17. An item set lattice. Item sets in dotted ovals cover a single transaction; in dashed

ovals, two transactions; in triangles, three transactions; and in polygons with n sides, n transac-

tions. The maximal item sets with support 3 or more are indicated in green.

sets is convex and is fully determined by its lower boundary of largest item sets: in

the example these maximal1 frequent item sets are, for f0 = 3: {apples}, {beer,crisps}

and {nappies}. So, at least three transactions involved apples; at least three involved

nappies; at least three involved both beer and crisps; and any other combination of

items was bought less often.

Because of the monotonicity property of item set support, frequent item sets can be

found by a simple enumerative breadth-first or level-wise search algorithm (Algorithm

6.6). The algorithm maintains a priority queue, initially holding only the empty item

set which covers all transactions. Taking the next candidate item set I off the priority

queue, it generates all its possible extensions (supersets containing one more item,

the downward neighbours in the item set lattice), and adds them to the priority queue

if they exceed the support threshold (at the back, to achieve the desired breadth-first

behaviour). If at least one of I ’s extensions is frequent, I is not maximal and can be

discarded; otherwise I is added to the set of maximal frequent item sets found.

We can speed up calculations by restricting attention to closed item sets. These are

completely analogous to the �closed concepts discussed at the end of Section 4.2: a

closed item set contains all items that are involved in every transaction it covers. For

example, {beer,crisps} covers transactions 2, 4 and 6; the only items involved in each of

those transactions are beer and crisps, and so the item set is closed. However, {beer} is

not closed, as it covers the same transactions, hence its closure is {beer,crisps}. If two

item sets that are connected in the lattice have the same coverage, the smaller item set

1‘Maximal’ here means that no superset is frequent.
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cannot be closed. The lattice of closed item sets is shown in Figure 6.18. Notice that

maximal frequent item sets are necessarily closed (as extending them will decrease

their coverage below the support threshold, otherwise they aren’t maximal), and are

thus unaffected by this restriction; but it does allow a more efficient search.

So what is the point of these frequent item sets? The answer is that we will use them

to build association rules, which are rules of the form ·if B then H · where both body B

and head H are item sets that frequently appear in transactions together. Pick any

edge in Figure 6.17, say the edge between {beer} and {nappies,beer}. We know that the

support of the former is 3 and of the latter, 2: that is, three transactions involve beer and

two of those involve nappies as well. We say that the confidence of the association rule

·if beer then nappies· is 2/3. Likewise, the edge between {nappies} and {nappies,beer}

demonstrates that the confidence of the rule ·if nappies then beer· is 2/4. There are

also rules with confidence 1, such as ·if beer then crisps·; and rules with empty bodies,

such as ·if true then crisps·, which has confidence 5/8 (i.e., five out of eight transactions

involve crisps).

But we only want to construct association rules that involve frequent items. The

rule ·if beer ∧ apples then crisps· has confidence 1, but there is only one transaction

involving all three and so this rule is not strongly supported by the data. So we first use

Algorithm 6.6 to mine for frequent item sets; we then select bodies B and heads H from

Algorithm 6.6: FrequentItems(D, f0) – find all maximal item sets exceeding a given

support threshold.

Input : data D ⊆X ; support threshold f0.

Output : set of maximal frequent item sets M .

1 M ←�;

2 initialise priority queue Q to contain the empty item set;

3 while Q is not empty do

4 I ← next item set deleted from front of Q;

5 max← true ; // flag to indicate whether I is maximal

6 for each possible extension I ′ of I do

7 if Supp(I ′)≥ f0 then

8 max← false ; // frequent extension found, so I is not maximal

9 add I ′ to back of Q;

10 end

11 end

12 if max= true then M ←M ∪ {I };

13 end

14 return M
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{}

{Apples} {Nappies} {Crisps}

{Nappies, Apples} {Crisps, Apples}

{Nappies, Beer, Crisps}

{Beer, Crisps}

{Nappies, Beer, Crisps, Apples}

Figure 6.18. Closed item set lattice corresponding to the item sets in Figure 6.17. This lattice has

the property that no two adjacent item sets have the same coverage.

the frequent sets m, discarding rules whose confidence is below a given confidence

threshold. Algorithm 6.7 gives the basic algorithm. Notice that we are free to discard

some of the items in the maximal frequent sets (i.e., H ∪B may be smaller than m),

because any subset of a frequent item set is frequent as well.

A run of the algorithm with support threshold 3 and confidence threshold 0.6 gives

the following association rules:

·if beer then crisps· support 3, confidence 3/3

·if crisps then beer· support 3, confidence 3/5

Algorithm 6.7: AssociationRules(D, f0,c0) – find all association rules exceeding

given support and confidence thresholds.

Input : data D ⊆X ; support threshold f0; confidence threshold c0.

Output : set of association rules R.

1 R ←�;

2 M ← FrequentItems(D, f0) ; // FrequentItems: see Algorithm 6.6

3 for each m ∈M do

4 for each H ⊆m and B ⊆m such that H ∩B =� do

5 if Supp(B ∪H)/Supp(B)≥ c0 then R ←R∪ {·if B then H ·}
6 end

7 end

8 return R
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·if true then crisps· support 5, confidence 5/8

Association rule mining often includes a post-processing stage in which superfluous

rules are filtered out, e.g., special cases which don’t have higher confidence than the

general case. One quantity that is often used in post-processing is lift, defined as

Lift(·if B then H ·)= n ·Supp(B ∪H)

Supp(B) ·Supp(H)

where n is the number of transactions. For example, for the the first two association

rules above we would have lifts of 8·3
3·5 = 1.6, as Lift(·if B then H ·) = Lift(·if H then B ·).

For the third rule we have Lift(·if true then crisps·) = 8·5
8·5 = 1. This holds for any rule

with B =�, as

Lift(·if � then H ·)= n ·Supp(�∪H)

Supp(�) ·Supp(H)
= n ·Supp(H)

n ·Supp(H)
= 1

More generally, a lift of 1 means that Supp(B∪H) is entirely determined by the marginal

frequencies Supp(B) and Supp(H) and is not the result of any meaningful interaction

between B and H . Only association rules with lift larger than 1 are of interest.

Quantities like confidence and lift can also be understood from a probabilistic con-

text. Let Supp(I )/n be an estimate of the probability p(I ) that a transaction involves all

items in I , then confidence estimates the conditional probability p(H |B). In a classifi-

cation context, where H denotes the actual class and B the predicted class, this would

be called precision (see Table 2.3 on p.57), and in this chapter we have already used it

as a search heuristic in rule learning. Lift then measures whether the events ‘a random

transaction involves all items in B ’ and ‘a random transaction involves all items in H ’

are statistically independent.

It is worth noting that the heads of association rules can contain multiple items.

For instance, suppose we are interested in the rule ·if nappies then beer·, which has

support 2 and confidence 2/4. However, {nappies,beer} is not a closed item set: its

closure is {nappies,beer,crisps}. So ·if nappies then beer· is actually a special case of

·if nappies then beer ∧ crisps·, which has the same support and confidence but involves

only closed item sets.

We can also apply frequent item set analysis to our dolphin data set, if we treat each

literal Feature=Value as an item, keeping in mind that different values of the same

feature are mutually exclusive. Item sets then correspond to concepts, transactions

to instances, and the extension of a concept is exactly the set of transactions covered

by an item set. The item set lattice is therefore the same as what we previously called

the hypothesis space, with the proviso that we are not considering negative examples

in this scenario (Figure 6.19). The reduction to closed concepts/item sets is shown in

Figure 6.20. We can see that, for instance, the rule

·if Gills= no ∧ Beak= yes then Teeth=many·
has support 3 and confidence 3/5 (but you may want to check whether it has any lift!).
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6.4 First-order rule learning

In Section 4.3 we briefly touched upon using first-order logic as a concept language.

The main difference is that literals are no longer simple feature-value pairs but can

have a much richer structure. All rule learning approaches covered in this chapter have

been upgraded in the literature to learn rules expressed in first-order logic. In this

section we will take a brief look at how this might work.

Many approaches to learning in first-order logic are based on the logic program-

ming language Prolog, and learning first-order rules is often called inductive logic pro-

gramming (ILP). Logically speaking, Prolog rules are Horn clauses with a single literal

in the head – we encountered Horn clauses before in Section 4.3. Prolog notation is

slightly different from first-order logic notation. So, instead of

∀x : BodyPart(x,PairOf(Gill))→ Fish(x)

we write

fish(X):-bodyPart(X,pairOf(gills)).

The main differences are:

� rules are written back-to-front in ‘head-if-body’ fashion;

� variables start with a capital letter; constants, predicates and function symbols

(called functors in Prolog) start with lower-case;

� variables are implicitly universally quantified.

With regard to the third point, it is worth pointing out the difference between variables

occurring in both head and body, and variables occurring in the body only. Consider

the following Prolog clause:

someAnimal(X):-bodyPart(X,pairOf(Y)).

There are two equivalent ways of writing this rule in first-order logic:

∀x : ∀y : BodyPart(x,PairOf(y))→ SomeAnimal(x)

∀x :
(∃y : BodyPart(x,PairOf(y))

)→ SomeAnimal(x)

The first logical statement reads ‘for all x and y , if x has a pair of ys as body parts then x

is some kind of animal’ whereas the second states ‘for all x, if there exists a y such that

x has a pair of ys as body parts then x is some kind of animal’. Crucially, in the second

form the scope of the existential quantifier is the if-part of the rule, whereas universal

quantifiers always range over the whole clause. Variables occurring in the body but

not in the head of Prolog clauses are called local variables; they are the source of much

additional complexity in learning first-order rules over propositional rules.
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If we want to learn an ordered list of Prolog clauses, we can reuse �LearnRuleList

(Algorithm 6.1 on p.163) in its entirety and most of�LearnRule (Algorithm 6.2 on p.164).

What needs adjusting is the choice of literal to be added to the clause. Possible literals

can be enumerated by listing the predicates, functors and constants that can be used

to build a new literal. For example, if we have a binary predicate bodyPart, a unary

functor pairOf and constants gill and tail, then we can build a variety of literals

such as

bodyPart(X,Y)

bodyPart(X,gill)

bodyPart(X,tail)

bodyPart(X,pairOf(Y))

bodyPart(X,pairOf(gill))

bodyPart(X,pairOf(tail))

bodyPart(X,pairOf(pairOf(Y)))

bodyPart(X,pairOf(pairOf(gill)))

bodyPart(X,pairOf(pairOf(tail)))

and so on. Notice that the presence of functors means that our hypothesis language

becomes infinite! Also, I have only listed literals that somehow ‘made sense’: there

are many less sensible possibilities, such as bodyPart(pairOf(gill),tail) or

bodyPart(X,X), to name but a few. Although Prolog is an untyped language, many

of these unwanted literals can be excluded by adding type information (in logic pro-

gramming and ILP often done through ‘mode declarations’ which also specify particu-

lar input–output patterns of a predicate’s arguments).

It is clear from these examples that there can be relationships between literals, and

therefore between the clauses that contain them. For example, consider the following

three clauses:

fish(X):-bodyPart(X,Y).

fish(X):-bodyPart(X,pairOf(Z)).

fish(X):-bodyPart(X,pairOf(gill)).

The first clause defines everything with some body part to be a fish. The second clause

specialises this to everything with a pair of unspecified body parts. The third spe-

cialises this to everything with a pair of gills. A reasonable search strategy would be

to try hypotheses in this order, and only move on to a specialised version if the more

general clause is ruled out by negative examples. This is what in fact happens in top–

down ILP systems. A simple trick is to represent substitution of terms for variables

explicitly by adding equality literals, so the above sequence of clauses becomes
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fish(X):-bodyPart(X,Y).

fish(X):-bodyPart(X,Y),Y=pairOf(Z).

fish(X):-bodyPart(X,Y),Y=pairOf(Z),Z=gill.

As an alternative for enumerating the literals to be considered for inclusion in a

clause body we can derive them from the data in a bottom–up fashion. Suppose we

have the following information about a dolphin:

bodyPart(dolphin42,tail).

bodyPart(dolphin42,pairOf(gills)).

bodyPart(dolphin42,pairOf(eyes)).

and this about a tunafish:

bodyPart(tuna123,pairOf(gills)).

By forming the LGG of each of the literals in the first example with the literal from the

second example we obtain each of the generalised literals considered earlier.

This short discussion of rule learning in first-order logic has left out many impor-

tant details and may therefore give an overly simplified view of the problem. While the

problem of learning Prolog clauses can be stated quite succinctly, naive approaches

are computationally intractable and ‘the devil is in the detail’. The basic approaches

sketched here can be extended to include background knowledge, which then affects

the generality ordering of the hypothesis space. For example, if our background knowl-

edge includes the clause

bodyPart(X,scales):-bodyPart(X,pairOf(gill)).

then the first of the following two hypotheses is more general than the second:

fish(X):-bodyPart(X,scales).

fish(X):-bodyPart(X,pairOf(gill)).

However, this cannot be determined purely by syntactic means and requires logical

inference.

Another intriguing possibility offered by first-order logic is the possibility of learn-

ing recursive clauses. For instance, part of our hypothesis could be the following clause:

fish(X):-relatedSpecies(X,Y),fish(Y).

This blurs the distinction between background predicates that can be used in the body
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of hypotheses and target predicates that are to be learned, and introduces computa-

tional challenges such as non-termination. However, this doesn’t mean that it cannot

be done. Related techniques can be used to learn multiple, interrelated predicates at

once, and to invent new background predicates that are completely unobserved.

6.5 Rule models: Summary and further reading

In a decision tree, a branch from root to a leaf can be interpreted as a conjunctive clas-

sification rule. Rule models generalise this by being more flexible about the way in

which several rules are combined into a model. The typical rule learning algorithm

is the covering algorithm, which iteratively learns one rule and then removes the ex-

amples covered by that rule. This approach was pioneered by Michalski (1975) with his

AQ system, which became highly developed over three decades (Wojtusiak et al., 2006).

General overviews are provided by Fürnkranz (1999, 2010) and Fürnkranz, Gamberger

and Lavrač (2012). Coverage plots were first used by Fürnkranz and Flach (2005) to

achieve a better understanding of rule learning algorithms and demonstrate the close

relationship (and in many cases, equivalence) of commonly used search heuristics.

� Rules can overlap and thus we need a strategy to resolve potential conflicts be-

tween rules. One such strategy is to combine the rules in an ordered rule list,

which was the subject of Section 6.1. Rivest (1987) compares this approach with

decision trees, calling the rule-based model a decision list (I prefer the term ‘rule

list’ as it doesn’t carry a suggestion that the elements of the list are single lit-

erals). Well-known rule list learners include CN2 (Clark and Niblett, 1989) and

Ripper (Cohen, 1995), the latter being particularly effective at avoiding overfit-

ting through incremental reduced-error pruning (Fürnkranz and Widmer, 1994).

Also notable is the Opus system (Webb, 1995), which distinguishes itself by per-

forming a complete search through the space of all possible rules.

� In Section 6.2 we looked at unordered rule sets as an alternative to ordered rule

lists. The covering algorithm is adapted to learn rules for a single class at a time,

and to remove only covered examples of the class currently under consideration.

CN2 can be run in unordered mode to learn rule sets (Clark and Boswell, 1991).

Conceptually, both rule lists and rule sets are special cases of rule trees, which

distinguish all possible Boolean combinations of a given set of rules. This allows

us to see that rule lists lead to fewer instance space segments than rule sets (over

the set of rules); on the other hand, rule list coverage curves can be made convex

on the training set, whereas rule sets need to estimate the class distribution in

the regions where rules overlap.

� Rule models can be used for descriptive tasks, and in Section 6.3 we considered
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rule learning for subgroup discovery. The weighted covering algorithm was in-

troduced as an adaption of CN2 by Lavrač, Kavšek, Flach and Todorovski (2004);

Abudawood and Flach (2009) generalise this to more than two classes. Algorithm

6.7 learns association rules and is adapted from the well-known Apriori algorithm

due to Agrawal, Mannila, Srikant, Toivonen and Verkamo (1996). There is a very

wide choice of alternative algorithms, surveyed by Han et al. (2007). Association

rules can also be used to build effective classifiers (Liu et al., 1998; Li et al., 2001).

� The topic of first-order rule learning briefly considered in Section 6.4 has been

studied for the last 40 years and has a very rich history. De Raedt (2008) pro-

vides an excellent recent introduction, and an overview of recent advances and

open problems is provided by Muggleton et al. (2012). Flach (1994) gives an in-

troduction to Prolog and also provides high-level implementations of some of

the key techniques in inductive logic programming. The FOIL system by Quinlan

(1990) implements a top–down learning algorithm similar to the one discussed

here. The bottom–up technique was pioneered in the Golem system (Muggle-

ton and Feng, 1990) and further refined in Progol (Muggleton, 1995) and in Aleph

(Srinivasan, 2007), two of the most widely used ILP systems. First-order rules

can also be learned in an unsupervised fashion, for example by Tertius which

learns first-order clauses (not necessarily Horn) (Flach and Lachiche, 2001) and

Warmr which learns first-order association rules (King et al., 2001). Higher-order

logic provides more powerful data types that can be highly beneficial in learning

(Lloyd, 2003). A more recent development is the combination of probabilistic

modelling with first-order logic, leading to the area of statistical relational learn-

ing (De Raedt and Kersting, 2010).

�


