
CHAPTER 7

Linear models

A
FTER DEALING WITH logical models in the preceding chapters we now move on to a

quite different kind of model. The models in this chapter and the next are defined in

terms of the geometry of instance space. Geometric models most often assume that

instances are described by d real-valued features, and thus X = Rd . For example, we

could describe objects by their position on a map in terms of longitude and latitude

(d = 2), or in the real world by longitude, latitude and altitude (d = 3). While most real-

valued features are not intrinsically geometric – think of a person’s age or an object’s

temperature – we can still imagine them being plotted in a d-dimensional Cartesian

coordinate system. We can then use geometric concepts such as lines and planes to

impose structure on this space, for instance in order to build a classification model. Al-

ternatively, we can use the geometric notion of distance to represent similarity, on the

basis that if two points are close together they have similar feature values and thus can

be expected to behave similarly with respect to the property of interest. Such distance-

based models are the subject of the next chapter. In this chapter we will look at models

that can be understood in terms of lines and planes, commonly called linear models.

Linearity plays a fundamental role in mathematics and related disciplines, and the

mathematics of linear models is well-understood (see Background 7.1 for the most im-

portant concepts). In machine learning, linear models are of particular interest be-

cause of their simplicity (remember our rule of thumb ‘everything should be made as

194

7. Linear models 195

If x1 and x2 are two scalars or vectors of the same dimension and α and β are arbitrary

scalars, then αx1+βx2 is called a linear combination of x1 and x2. If f is a linear function

of x, then

f (αx1+βx2)=α f (x1)+β f (x2)

In words, the function value of a linear combination of some inputs is a linear combina-

tion of their function values. As a special case, if β= 1−α we are taking a weighted average

of x1 and x2, and the linearity of f then means that the function value of the weighted av-

erage is the weighted average of the function values.

Linear functions take particular forms, depending on the domain and codomain of f . If x

and f (x) are scalars, it follows that f is of the form f (x)= a+bx for some constants a and

b; a is called the intercept and b the slope. If x= (x1, . . ., xd) is a vector and f (x) is a scalar,

then f is of the form

f (x)= a+b1x1+ . . .+bd xd = a+b ·x (7.1)

with b = (b1, . . .,bd). The equation f (x) = 0 defines a plane in Rd perpendicular to the

normal vector b.

The most general case is where f (x) is a d ′-dimensional vector, in which case f is of the

form f (x)=Mx+t, where M is a d ′-by-d matrix representing a linear transformation such

as a rotation or a scaling, and t is a d ′-vector representing a translation. In this case f is

called an affine transformation (the difference between linear and affine transformations

is that the former maps the origin to itself; notice that a linear function of the form of

Equation 7.1 is a linear transformation only if the intercept is 0).

In all these forms we can avoid representing the intercept a or the translation t separately

by using homogeneous coordinates. For instance, by writing b◦ = (a,b1, . . .,bd) and x◦ =
(1, x1, . . ., xd) in Equation 7.1 we have f (x)= b◦ ·x◦ (see also Background 1.2 on p.24).

Examples of non-linear functions are the polynomials in x of degree p > 1: g (x) =
a0+a1x+a2x2+. . .+ap xp =∑p

i=0 ai xi . Other non-linear functions can be approximated

by a polynomial through their Taylor expansion. The linear approximation of a function

g at x0 is g (x0)+ g ′(x0)(x − x0), where g ′(x) is the derivative of x. A piecewise linear ap-

proximation is obtained by combining several linear approximations at different points

x0.

Background 7.1. Linear models.

simple as possible, but not simpler’ that we introduced on p.30). Here are a couple of

manifestations of this simplicity.

� Linear models are parametric, meaning that they have a fixed form with a small

number of numeric parameters that need to be learned from data. This is

196 7. Linear models

different from tree or rule models, where the structure of the model (e.g., which

features to use in the tree, and where) is not fixed in advance.

� Linear models are stable, which is to say that small variations in the training data

have only limited impact on the learned model. Tree models tend to vary more

with the training data, as the choice of a different split at the root of the tree

typically means that the rest of the tree is different as well.

� Linear models are less likely to overfit the training data than some other models,

largely because they have relatively few parameters. The flipside of this is that

they sometimes lead to underfitting: e.g., imagine you are learning where the

border runs between two countries from labelled samples, then a linear model

is unlikely to give a good approximation.

The last two points can be summarised by saying that linear models have low variance

but high bias. Such models are often preferable when you have limited data and want

to avoid overfitting. High variance–low bias models such as decision trees are prefer-

able if data is abundant but underfitting is a concern. It is usually a good idea to start

with simple, high-bias models such as linear models and only move on to more elabo-

rate models if the simpler ones appear to be underfitting.

Linear models exist for all predictive tasks, including classification, probability es-

timation and regression. Linear regression, in particular, is a well-studied problem that

can be solved by the least-squares method, which is the topic of the next section. We

will look at a number of other linear models in this chapter, including least-squares

classification (also in Section 7.1), the perceptron in Section 7.2, and the support vec-

tor machine in Section 7.3. We will also find out how these models can be turned into

probability estimators in Section 7.4. Finally, Section 7.5 briefly discusses how each of

these methods could learn non-linear models by means of so-called kernel functions.

7.1 The least-squares method

We start by introducing a method that can be used to learn linear models for classifica-

tion and regression. Recall that the regression problem is to learn a function estimator

f̂ : X →R from examples (xi , f (xi)), where in this chapter we assume X =Rd . The dif-

ferences between the actual and estimated function values on the training examples

are called residuals εi = f (xi)− f̂ (xi). The least-squares method, introduced by Carl

Friedrich Gauss in the late eighteenth century, consists in finding f̂ such that
∑n

i=1 ε
2
i is

minimised. The following example illustrates the method in the simple case of a single

feature, which is called univariate regression.

7.1 The least-squares method 197

140 150 160 170 180 190 200
40

45

50

55

60

65

70

75

80

85

90

Figure 7.1. The red solid line indicates the result of applying linear regression to 10 measure-

ments of body weight (on the y-axis, in kilograms) against body height (on the x-axis, in cen-

timetres). The orange dotted lines indicate the average height h = 181 and the average weight

w = 74.5; the regression coefficient b̂ = 0.78. The measurements were simulated by adding nor-

mally distributed noise with mean 0 and variance 5 to the true model indicated by the blue

dashed line (b = 0.83).

Example 7.1 (Univariate linear regression). Suppose we want to investigate the

relationship between people’s height and weight. We collect n height and weight

measurements (hi , wi),1 ≤ i ≤ n. Univariate linear regression assumes a lin-

ear equation w = a + bh, with parameters a and b chosen such that the sum

of squared residuals
∑n

i=1(wi − (a+bhi))2 is minimised. In order to find the pa-

rameters we take partial derivatives of this expression, set the partial derivatives

to 0 and solve for a and b:

∂

∂a

n∑
i=1

(wi − (a+bhi))2 =−2
n∑

i=1
(wi − (a+bhi))= 0 ⇒ â =w − b̂h

∂

∂b

n∑
i=1

(wi − (a+bhi))2 =−2
n∑

i=1
(wi − (a+bhi))hi = 0

⇒ b̂ =
∑n

i=1(hi −h)(wi −w)∑n
i=1(hi −h)2

So the solution found by linear regression is w = â+ b̂h =w+ b̂(h−h); see Figure

7.1 for an example.

198 7. Linear models

It is worthwhile to note that the expression for the regression coefficient or slope b̂

derived in this example has n times the covariance between h and w in the enumerator

and n times the variance of h in the denominator. This is true in general: for a feature

x and a target variable y , the regression coefficient is

b̂ = n
σx y

nσxx
= σx y

σxx

(Here I use σxx as an alternative notation for σ2
x , the variance of variable x.) This can

be understood by noting that the covariance is measured in units of x times units of

y (e.g., metres times kilograms in Example 7.1) and the variance in units of x squared

(e.g., metres squared), so their quotient is measured in units of y per unit of x (e.g.,

kilograms per metre).

We can notice a few more useful things. The intercept â is such that the regression

line goes through (x, y). Adding a constant to all x-values (a translation) will affect only

the intercept but not the regression coefficient (since it is defined in terms of deviations

from the mean, which are unaffected by a translation). So we could zero-centre the

x-values by subtracting x, in which case the intercept is equal to y . We could even

subtract y from all y-values to achieve a zero intercept, without changing the problem

in an essential way.

Furthermore, suppose we replace xi with x ′i = xi /σxx and likewise x with x ′ =
x/σxx , then we have that b̂ = 1

n

∑n
i=1(x ′i − x ′)(yi − y) = σx′y . In other words, if we nor-

malise x by dividing all its values by x’s variance, we can take the covariance between

the normalised feature and the target variable as regression coefficient. In other words,

univariate linear regression can be understood as consisting of two steps:

1. normalisation of the feature by dividing its values by the feature’s variance;

2. calculating the covariance of the target variable and the normalised feature.

We will see below how these two steps change when dealing with more than one fea-

ture.

Another important point to note is that the sum of the residuals of the least-squares

solution is zero:
n∑

i=1
(yi − (â+ b̂xi))= n(y − â− b̂x)= 0

The result follows because â = y − b̂x, as derived in Example 7.1. While this property

is intuitively appealing, it is worth keeping in mind that it also makes linear regres-

sion susceptible to outliers: points that are far removed from the regression line, often

because of measurement errors.

7.1 The least-squares method 199

140 150 160 170 180 190 200
40

45

50

55

60

65

70

75

80

85

90

Figure 7.2. The effect of an outlier in univariate regression. One of the blue points got moved up

10 units to the green point, changing the red regression line to the green line.

Example 7.2 (The effect of outliers). Suppose that, as the result of a transcrip-

tion error, one of the weight values in Figure 7.1 is increased by 10 kg. Figure 7.2

shows that this has a considerable effect on the least-squares regression line.

Despite this sensitivity to outliers, the least-squares method usually works surpris-

ingly well for such a simple method. How can it be justified? One way to look at this

is to assume that the true function f is indeed linear, but that the observed y-values

are contaminated with random noise. That is, our examples are (xi , f (xi)+ εi) rather

than (xi , f (xi)), and we assume that f (x)= ax+b for some a and b. If we knew a and b

we could work out exactly what the residuals are, and if we knew σ2 we could calculate

the probability of observing that set of residuals. Since we don’t know a and b we have

to estimate them, and the estimate we want is the value of a and b that maximises the

probability of the residuals. We will see in Chapter 9 that this so-called �maximum-

likelihood estimate is exactly the least-squares solution.

Variants of the least-squares method exist. Here we discussed ordinary least squares,

which assumes that only the y-values are contaminated with random noise. Total least

squares generalises this to the situation that both x- and y-values are noisy, but this

does not necessarily have a unique solution.

200 7. Linear models

X usually denotes an n-by-d data matrix containing n instances in rows described by d

features or variables in columns. Xr · denotes the r -th row of X, X·c denotes the c-th col-

umn, and Xr c denotes the entry in the r -th row and c-th column. We also use i and

j to range over rows and columns, respectively. The j -th column mean is defined as

μ j = 1
n
∑n

i=1 Xi j ; μT is a row vector containing all column means. If 1 is an n-vector con-

taining only ones, then 1μT is an n-by-d matrix whose rows are μT; hence X′ = X−1μT

has mean zero in each column and is referred to as the zero-centred data matrix.

The scatter matrix is the d-by-d matrix S = X′TX′ =
(
X−1μT

)T (
X−1μT

)
= XTX− nM,

where M = μμT is a d-by-d matrix whose entries are products of column means M j c =
μ jμc . The covariance matrix of X is Σ = 1

n S whose entries are the pairwise covari-

ances σ j c = 1
n
∑n

i=1

(
Xi j −μ j

)(
Xi c −μc

)= 1
n

(∑n
i=1 Xi j Xi c −μiμc

)
. Two uncorrelated fea-

tures have a covariance close to 0; positively correlated features have a positive covari-

ance, indicating a certain tendency to increase or decrease together; a negative covari-

ance indicates that if one feature increases, the other tends to decrease and vice versa.

σ j j = 1
n
∑n

i=1

(
Xi j −μ j

)2 = 1
n

(∑n
i=1 X2

i j −μ2
j

)
is the variance of column j , also denoted

as σ2
j . The variance is always positive and indicates the spread of the values of a feature

around their mean.

A small example clarifies these definitions:

X=

⎛
⎜⎝

5 0

3 5

1 7

⎞
⎟⎠ 1μT =

⎛
⎜⎝

3 4

3 4

3 4

⎞
⎟⎠ X′ =

⎛
⎜⎝

2 −4

0 1

−2 3

⎞
⎟⎠ G=

⎛
⎜⎝

25 15 5

15 34 38

5 38 50

⎞
⎟⎠

XTX=
(

35 22

22 74

)
M=
(

9 12

12 16

)
S=
(

8 −14

−14 26

)
Σ=
(

8/3 −14/3

−14/3 26/3

)

We see that the two features are negatively correlated and that the second feature has the

larger variance. Another way to calculate the scatter matrix is as a sum of outer products,

one for each data point: S=∑n
i=1

(
Xi · −μT

)T (
Xi · −μT

)
. In our example we have

(
X1· −μT

)T (
X1· −μT

)
=
(

2

−4

)(
2 −4

)
=
(

4 −8

−8 16

)

(
X2· −μT

)T (
X2· −μT

)
=
(

0

1

)(
0 1

)
=
(

0 0

0 1

)

(
X3· −μT

)T (
X3· −μT

)
=
(
−2

3

)(
−2 3

)
=
(

4 −6

−6 9

)

Background 7.2. Some more matrix notation.

7.1 The least-squares method 201

Multivariate linear regression

In order to deal with an arbitrary number of features it will be useful to employ matrix

notation (see Background 7.2). We can write univariate linear regression in matrix form

as ⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
...

1

⎞
⎟⎟⎠a+

⎛
⎜⎜⎝

x1

...

xn

⎞
⎟⎟⎠b+

⎛
⎜⎜⎝

ε1

...

εn

⎞
⎟⎟⎠

y = a+Xb+ε

In the second form of this equation, y, a, X and ε are n-vectors, and b is a scalar. In

case of d features, all that changes is that X becomes an n-by-d matrix, and b becomes

a d-vector of regression coefficients.

We can apply the by now familiar trick of using homogeneous coordinates to sim-

plify these equations as follows:⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 x1

...
...

1 xn

⎞
⎟⎟⎠
(

a

b

)
+

⎛
⎜⎜⎝

ε1

...

εn

⎞
⎟⎟⎠

y = X◦w+ε

with X◦ an n-by-(d +1) matrix whose first column is all 1s and the remaining columns

are the columns of X, and w has the intercept as its first entry and the regression coef-

ficients as the remaining d entries. For convenience we will often blur the distinction

between these two formulations and state the regression equation as y=Xw+ε with X

having d columns and w having d rows – from the context it will be clear whether we

are representing the intercept by means of homogeneous coordinates, or have rather

zero-centred the target and features to achieve a zero intercept.

In the univariate case we were able to obtain a closed-form solution for w: can

we do the same in the multivariate case? First, we are likely to need the covariances

between every feature and the target variable. Consider the expression XTy, which is

an n-vector, the j -th entry of which is the product of the j -th row of XT – i.e., the j -th

column of X, which is (x1 j , . . . , xn j) – with (y1, . . . , yn):

(XTy) j =
n∑

i=1
xi j yi =

n∑
i=1

(xi j −μ j)(yi − y)+nμ j y = n(σ j y +μ j y)

Assuming for the moment that every feature is zero-centred, we have μ j = 0 and thus

XTy is an n-vector holding all the required covariances (times n).

In the univariate case we needed to normalise the features to have unit variance.

In the multivariate case we can achieve this by means of a d-by-d scaling matrix: a

202 7. Linear models

diagonal matrix with diagonal entries 1/nσ j j . If S is a diagonal matrix with diagonal

entries nσ j j , we can get the required scaling matrix by simply inverting S. So our first

stab at a solution for the multivariate regression problem is

ŵ= S−1XTy (7.2)

As it turns out, the general case requires a more elaborate matrix instead of S:

ŵ= (XTX)−1XTy (7.3)

Let us try to understand the term (XTX)−1 a bit better. Assume that the features are

uncorrelated (meaning the covariance between every pair of different features is 0)

in addition to being zero-centred. In the notation of Background 7.2, the covariance

matrix Σ is diagonal with entries σ j j . Since XTX = n(Σ+M), and since the entries of

M are 0 because the columns of X are zero-centred, this matrix is also diagonal with

entries nσ j j – in fact, it is the matrix S referred to above. In other words, assuming

zero-centred and uncorrelated features, (XTX)−1 reduces to our scaling matrix S−1. In

the general case we cannot make any assumptions about the features, and (XTX)−1 acts

as a transformation that decorrelates, centres and normalises the features.

To make this a bit more concrete, the next example shows how this works out in the

bivariate case.

Example 7.3 (Bivariate linear regression in matrix notation). First, we derive

the basic expressions.

XTX =
(

x11 · · · xn1

x12 · · · xn2

)⎛⎜⎜⎝
x11 x12

...
...

xn1 xn2

⎞
⎟⎟⎠= n

(
σ11+x1

2 σ12+x1 x2

σ12+x1 x2 σ22+x2
2

)

(XTX)−1 = 1

nD

(
σ22+x2

2 −σ12−x1 x2

−σ12−x1 x2 σ11+x1
2

)

D = (σ11+x1
2)(σ22+x2

2)− (σ12+x1 x2)2

XTy =
(

x11 · · · xn1

x12 · · · xn2

)⎛⎜⎜⎝
y1

...

yn

⎞
⎟⎟⎠= n

(
σ1y +x1 y

σ2y +x2 y

)

We now consider two special cases. The first is that X is in homogeneous coordi-

nates, i.e., we are really dealing with a univariate problem. In that case we have

7.1 The least-squares method 203

xi 1 = 1 for 1≤ i ≤ n; x1 = 1; and σ11 = σ12 = σ1y = 0. We then obtain (we write x

instead of x2, σxx instead of σ22 and σx y instead of σ2y):

(XTX)−1 = 1

nσxx

(
σxx +x2 −x

−x 1

)

XTy = n

(
y

σx y +x y

)

ŵ= (XTX)−1XTy = 1

σxx

(
σxx y −σx y x

σx y

)

This is the same result as obtained in Example 7.1.

The second special case we consider is where we assume x1, x2 and y to be

zero-centred, which means that the intercept is zero and w contains the two re-

gression coefficients. In this case we obtain

(XTX)−1 = 1

n(σ11σ22−σ2
12)

(
σ22 −σ12

−σ12 σ11

)

XTy = n

(
σ1y

σ2y

)

ŵ= (XTX)−1XTy = 1

(σ11σ22−σ2
12)

(
σ22σ1y −σ12σ2y

σ11σ2y −σ12σ1y

)

The last expression shows, e.g., that the regression coefficient for x1 may be non-

zero even if x1 doesn’t correlate with the target variable (σ1y = 0), on account of

the correlation between x1 and x2 (σ12
= 0).

Notice that if we do assume σ12 = 0 then the components of ŵ reduce to σ j y /σ j j ,

which brings us back to Equation 7.2. Assuming uncorrelated features effectively de-

composes a multivariate regression problem into d univariate problems. We shall see

several other examples of decomposing multivariate learning problems into univari-

ate problems in this book – in fact, we have already seen an example in the form of the

�naive Bayes classifier in Chapter 1. So, you may wonder, why take feature correlation

into account at all?

The answer is that ignoring feature correlation can be harmful in certain situa-

tions. Consider Figure 7.3: on the left, there is little correlation among the features,

and as a result the samples provide a lot of information about the true function. On

204 7. Linear models

Figure 7.3. (left) Regression functions learned by linear regression. The true function is y =
x1+x2 (red plane). The red points are noisy samples of this function; the black points show them

projected onto the (x1, x2)-plane. The green plane indicates the function learned by linear re-

gression; the blue plane is the result of decomposing the problem into two univariate regression

problems (blue points). Both are good approximations of the true function. (right) The same

function, but now x1 and x2 are highly (negatively) correlated. The samples now give much less

information about the true function: indeed, from the univariate decomposition it appears that

the function is constant.

the right, the features are highly negatively correlated in such a way that the sampled

values y = x1+ x2+ ε appear nearly constant, as any increase in one feature is accom-

panied by a nearly equal decrease in the other. As a result, decomposing the problem

into two univariate regression problems leads to learning a nearly constant function.

To be fair, taking the full covariance matrix into account doesn’t do so well either in

this example. However, although we will not explore the details here, one advantage of

the full covariance approach is that it allows us to recognise that we can’t place much

confidence in our estimates of the regression parameters in this situation. The com-

putational cost of computing the closed-form solution in Equation 7.3 lies in inverting

the d-by-d matrix XTX, which can be prohibitive in high-dimensional feature spaces.

Regularised regression

We have just seen a situation in which least-squares regression can become unstable:

i.e., highly dependent on the training data. Instability is a manifestation of a tendency

to overfit. Regularisation is a general method to avoid such overfitting by applying

additional constraints to the weight vector. A common approach is to make sure the

weights are, on average, small in magnitude: this is referred to as shrinkage. To show

how this can be achieved, we first write down the least-squares regression problem as

an optimisation problem:

w∗ = argmin
w

(y−Xw)T(y−Xw)

7.1 The least-squares method 205

The right-hand side is just a way to write the sum of squared residuals as a dot product.

The regularised version of this optimisation is then as follows:

w∗ = argmin
w

(y−Xw)T(y−Xw)+λ||w||2 (7.4)

where ||w||2 =∑i w2
i is the squared norm of the vector w, or, equivalently, the dot prod-

uct wTw; λ is a scalar determining the amount of regularisation. This regularised prob-

lem still has a closed-form solution:

ŵ= (XTX+λI)−1XTy (7.5)

where I denotes the identity matrix with 1s on the diagonal and 0s everywhere else.

Comparing this with Equation 7.3 on p.202 we see that regularisation amounts to adding

λ to the diagonal of XTX, a well-known trick to improve the numerical stability of ma-

trix inversion. This form of least-squares regression is known as ridge regression.

An interesting alternative form of regularised regression is provided by the lasso,

which stands for ‘least absolute shrinkage and selection operator’. It replaces the ridge

regularisation term
∑

i w2
i with the sum of absolute weights

∑
i |wi |. (Using terminol-

ogy that will be introduced in Definition 8.2 on p.235: lasso uses L1 regularisation

where ridge regression uses the L2 norm.) The result is that some weights are shrunk,

but others are set to 0, and so the lasso regression favours sparse solutions. It should be

added that lasso regression is quite sensitive to the regularisation parameter λ, which

is usually set on hold-out data or in cross-validation. Also, there is no closed-form so-

lution and so some numerical optimisation technique must be applied.

Using least-squares regression for classification

So far we have used the least-squares method to construct function approximators.

Interestingly, we can also use linear regression to learn a binary classifier by encoding

the two classes as real numbers. For instance, we can label the Pos positive examples

with y⊕ = +1 and the Neg negative examples with y� = −1. It then follows that XTy =
Pos μ⊕−Neg μ�, whereμ⊕ andμ� are d-vectors containing each feature’s mean values

for the positive and negative examples, respectively.

Example 7.4 (Univariate least-squares classifier). In the univariate case we

have
∑

i xi yi = Pos μ⊕ −Neg μ�; we also know (see Example 7.3) that
∑

i xi yi =
n(σx y + x y), and so σx y = pos μ⊕ − neg μ� − x y . Since x = pos μ⊕ + neg μ�

and y = pos− neg, we can rewrite the covariance between x and y as σx y =

206 7. Linear models

�2 �1.5 �1 �0.5 0 0.5 1 1.50
�1

0

1

Figure 7.4. Using univariate linear regression to obtain a decision boundary. The 10 negative

examples are labelled with y� = −1 and the 20 positive examples are labelled y⊕ = +1. μ� and

μ⊕ are indicated by red circles. The blue line is the linear regression line y = y + b̂(x − x), and

the crosshair indicates the decision boundary x0 = x− y/b̂. This results in three examples being

misclassified – notice that this is the best that can be achieved with the given data.

2pos ·neg (μ⊕−μ�), and so the slope of the regression line is

b̂ = 2pos ·neg
μ⊕−μ�

σxx
(7.6)

This equation shows that the slope of the regression line increases with the sepa-

ration between the classes (measured as the distance between the class means in

proportion to the feature’s variance), but also decreases if the class distribution

becomes skewed.

The regression equation y = y + b̂(x − x) can then be used to obtain a deci-

sion boundary. We need to determine the point (x0, y0) such that y0 is half-way

between y⊕ and y� (i.e., y0 = 0 in our case). We then have

x0 = x+ y0− y

b̂
= x− pos−neg

2pos ·neg

σxx

μ⊕−μ�

That is, if there are equal numbers of positive and negative examples we simply

threshold the feature at the feature mean x; in case of unequal class distribution

we shift this threshold to the left or right as appropriate (Figure 7.4).

In the general case, the least-squares classifier learns the decision boundary w·x= t

with

w= (XTX)−1(Pos μ⊕−Neg μ�) (7.7)

7.2 The perceptron 207

We would hence assign class ŷ = sign(w ·x− t) to instance x, where

sign(x)=

⎧⎪⎨
⎪⎩
+1 if x > 0

0 if x = 0

−1 if x < 0

Various simplifying assumptions can be made, including zero-centred features, equal-

variance features, uncorrelated features and equal class prevalences. In the simplest

case, when all these assumptions are made, Equation 7.7 reduces to w = c(μ⊕ −μ�)

where c is some scalar that can be incorporated in the decision threshold t . We recog-

nise this as the �basic linear classifier that was introduced in the Prologue. Equation

7.7 thus tells us how to adapt the basic linear classifier, using the least-squares method,

in order to take feature correlation and unequal class distributions into account.

In summary, a general way of constructing a linear classifier with decision boundary

w ·x = t is by constructing w as M−1(n⊕μ⊕ −n�μ�), with different possible choices of

M, n⊕ and n�. The full covariance approach with M=XTX has time complexity O(n2d)

for construction of M and O(d 3) for inverting it,1 so this approach becomes unfeasible

with large numbers of features.

7.2 The perceptron

Recall from Chapter 1 that labelled data is called �linearly separable if there exists a

linear decision boundary separating the classes. The least-squares classifier may find

a perfectly separating decision boundary if one exists, but this is not guaranteed. To

see this, suppose that the basic linear classifier achieves perfect separation for a given

training set. Now, move all but one of the positive points away from the negative class.

The decision boundary will also move away from the negative class, at some point

crossing the one positive that remains fixed. By construction, the modified data is

still linearly separable, since the original decision boundary separates it; however, the

statistics of the modified data are such that the basic linear classifier will misclassify

the one positive outlier.

A linear classifier that will achieve perfect separation on linearly separable data is

the perceptron, originally proposed as a simple neural network. The perceptron iter-

ates over the training set, updating the weight vector every time it encounters an incor-

rectly classified example. For example, let xi be a misclassified positive example, then

we have yi =+1 and w·xi < t . We therefore want to find w′ such that w′·xi >w·xi , which

moves the decision boundary towards and hopefully past xi . This can be achieved by

calculating the new weight vector as w′ =w+ηxi , where 0< η≤ 1 is the learning rate.

We then have w′ ·xi =w ·xi +ηxi ·xi >w ·xi as required. Similarly, if x j is a misclassified

1A more sophisticated algorithm can achieve O(d2.8), but this is probably the best we can do.

208 7. Linear models

negative example, then we have y j =−1 and w·x j > t . In this case we calculate the new

weight vector as w′ =w−ηx j , and thus w′ ·x j =w ·x j −ηx j ·x j <w ·x j . The two cases

can be combined in a single update rule:

w′ =w+ηyi xi (7.8)

The perceptron training algorithm is given in Algorithm 7.1. It iterates through the

training examples until all examples are correctly classified. The algorithm can easily

be turned into an online algorithm that processes a stream of examples, updating the

weight vector only if the last received example is misclassified. The perceptron is guar-

anteed to converge to a solution if the training data is linearly separable, but it won’t

converge otherwise. Figure 7.5 gives a graphical illustration of the perceptron training

algorithm. In this particular example I initialised the weight vector to the basic linear

classifier, which means the learning rate does have an effect on how quickly we move

away from the initial decision boundary. However, if the weight vector is initialised to

the zero vector, it is easy to see that the learning rate is just a constant factor that does

not affect convergence. We will set it to 1 in the remainder of this section.

The key point of the perceptron algorithm is that, every time an example xi is mis-

classified, we add yi xi to the weight vector. After training has completed, each exam-

ple has been misclassified zero or more times – denote this number αi for example xi .

Algorithm 7.1: Perceptron(D,η) – train a perceptron for linear classification.

Input : labelled training data D in homogeneous coordinates;

learning rate η.

Output : weight vector w defining classifier ŷ = sign(w ·x).

1 w←0 ; // Other initialisations of the weight vector are possible

2 converged←false;

3 while converged= false do

4 converged←true;

5 for i = 1 to |D| do

6 if yi w ·xi ≤ 0 // i.e., ŷi
= yi

7 then

8 w←w+ηyi xi ;

9 converged←false; // We changed w so haven’t converged yet

10 end

11 end

12 end

7.2 The perceptron 209

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 7.5. (left) A perceptron trained with a small learning rate (η= 0.2). The circled examples

are the ones that trigger the weight update. (middle) Increasing the learning rate to η= 0.5 leads

in this case to a rapid convergence. (right) Increasing the learning rate further to η = 1 may

lead to too aggressive weight updating, which harms convergence. The starting point in all three

cases was the basic linear classifier.

Using this notation the weight vector can be expressed as

w=
n∑

i=1
αi yi xi (7.9)

In other words, the weight vector is a linear combination of the training instances. The

perceptron shares this property with, e.g., the basic linear classifier:

wblc =μ⊕−μ� = 1

Pos

∑
x⊕∈Tr⊕

x⊕− 1

Neg

∑
x�∈Tr�

x� = ∑
x⊕∈Tr⊕

α⊕c(x⊕)x⊕+ ∑
x�∈Tr�

α�c(x�)x�

(7.10)

Algorithm 7.2: DualPerceptron(D) – perceptron training in dual form.

Input : labelled training data D in homogeneous coordinates.

Output : coefficients αi defining weight vector w=∑|D|i=1αi yi xi .

1 αi ← 0 for 1≤ i ≤ |D|;
2 converged←false;

3 while converged= false do

4 converged←true;

5 for i = 1 to |D| do

6 if yi
∑|D|

j=1α j y j xi ·x j ≤ 0 then

7 αi ←αi +1;

8 converged←false;

9 end

10 end

11 end

210 7. Linear models

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 7.6. Three differently trained linear classifiers on a data set of 100 positives (top-right)

and 50 negatives (bottom-left): the basic linear classifier in red, the least-squares classifier in

orange and the perceptron in green. Notice that the perceptron perfectly separates the training

data, but its heuristic approach may lead to overfitting in certain situations.

where c(x) is the true class of example x (i.e., +1 or −1), α⊕ = 1/Pos and α� = 1/Neg. In

the dual, instance-based view of linear classification we are learning instance weights

αi rather than feature weights w j . In this dual perspective, an instance x is classified

as ŷ = sign
(∑n

i=1αi yi xi ·x
)
. This means that, during training, the only information

needed about the training data is all pairwise dot products: the n-by-n matrix G =
XXT containing these dot products is called the Gram matrix. Algorithm 7.2 gives the

dual form of the perceptron training algorithm. We will encounter this instance-based

perspective again when we discuss support vector machines in the next section.

Figure 7.6 demonstrates the difference between the basic linear classifier, the least-

squares classifier and the perceptron on some random data. For this particular data

set, neither the basic linear classifier nor the least-squares classifier achieves perfect

separation, but the perceptron does. One difference with other linear methods is that

we cannot derive a closed-form solution for the weight vector learned by the percep-

tron, so it is a more heuristic approach.

The perceptron can easily be turned into a linear function approximator (Algorithm

7.3). To this end the update rule is changed to w′ =w+(yi − ŷi)2xi , which uses squared

7.3 Support vector machines 211

residuals. This is unlikely to converge to the exact function, so the algorithm simply

runs for a fixed number of training epochs (an epoch is one complete run through the

training data). Alternatively, one could run the algorithm until a bound on the sum of

squared residuals is reached.

7.3 Support vector machines

Linearly separable data admits infinitely many decision boundaries that separate the

classes, but intuitively some of these are better than others. For example, the left and

middle decision boundaries in Figure 7.5 seem to be unnecessarily close to some of

the positives; while the one on the right leaves a bit more space on either side, it

doesn’t seem particularly good either. To make this a bit more precise, recall that in

Section 2.2 we defined the �margin of an example assigned by a scoring classifier as

c(x)ŝ(x), where c(x) is +1 for positive examples and −1 for negative examples and ŝ(x)

is the score of example x. If we take ŝ(x) =w ·x− t , then a true positive xi has margin

w · xi − t > 0 and a true negative x j has margin −(w · x j − t) > 0. For a given training

set and decision boundary, let m⊕ be the smallest margin of any positive, and m� the

smallest margin of any negative, then we want the sum of these to be as large as possi-

ble. This sum is independent of the decision threshold t , as long as we keep the nearest

positives and negatives at the right sides of the decision boundary, and so we re-adjust

t such that m⊕ and m� become equal. Figure 7.7 depicts this graphically in a two-

dimensional instance space. The training examples nearest to the decision boundary

are called support vectors: as we shall see, the decision boundary of a support vector

machine (SVM) is defined as a linear combination of the support vectors.

The margin is thus defined as m/||w||, where m is the distance between the deci-

sion boundary and the nearest training instances (at least one of each class) as

Algorithm 7.3: PerceptronRegression(D,T) – train a perceptron for regression.

Input : labelled training data D in homogeneous coordinates;

maximum number of training epochs T .

Output : weight vector w defining function approximator ŷ =w ·x.

1 w←0; t ←0;

2 while t < T do

3 for i = 1 to |D| do

4 w←w+ (yi − ŷi)2xi ;

5 end

6 t ← t +1;

7 end

212 7. Linear models

+
+

+ +

+
+

++

–
–

–
–

–
–

–
–

w

w.x = t + m

w.x = t

w.x = t – m

t
||w||

t + m
||w||

t – m
||w||

2m
||w||

Figure 7.7. The geometry of a support vector classifier. The circled data points are the support

vectors, which are the training examples nearest to the decision boundary. The support vector

machine finds the decision boundary that maximises the margin m/||w||.

measured along w. Since we are free to rescale t , ||w|| and m, it is customary to choose

m = 1. Maximising the margin then corresponds to minimising ||w|| or, more con-

veniently, 1
2 ||w||2, provided of course that none of the training points fall inside the

margin. This leads to a quadratic, constrained optimisation problem:

w∗, t∗ = argmin
w,t

1

2
||w||2 subject to yi (w ·xi − t)≥ 1,1≤ i ≤ n

We will approach this using the method of Lagrange multipliers (see Background 7.3).

Adding the constraints with multipliersαi for each training example gives the Lagrange

function

Λ(w, t ,α1, . . . ,αn) = 1

2
||w||2−

n∑
i=1

αi (yi (w ·xi − t)−1)

= 1

2
||w||2−

n∑
i=1

αi yi (w ·xi)+
n∑

i=1
αi yi t +

n∑
i=1

αi

= 1

2
w ·w−w ·

(
n∑

i=1
αi yi xi

)
+ t

(
n∑

i=1
αi yi

)
+

n∑
i=1

αi

While this looks like a formidable formula, some further analysis will allow us to derive

the simpler dual form of the Lagrange function.

By taking the partial derivative of the Lagrange function with respect to t and set-

ting it to 0 we find that for the optimal threshold t we have
∑n

i=1αi yi = 0. Similarly, by

7.3 Support vector machines 213

Optimisation is a broad term denoting the problem of finding the best item or value

among a set of alternatives. We have already seen a very simple, unconstrained form of

optimisation in Example 7.1 on p.197, where we found the values of a and b minimising

the sum of squared residuals f (a,b)=∑n
i=1(wi − (a+bhi))2; this can be denoted as

a∗,b∗ = argmin
a,b

f (a,b)

f is called the objective function; it can be linear, quadratic (as in this case), or more com-

plex. We found the minimum of f by setting the partial derivatives of f with respect to

a and b to 0, and solving for a and b; the vector of these partial derivatives is called the

gradient and denoted ∇ f , so a succinct way of defining the unconstrained optimisation

problem is: find a and b such that ∇ f (a,b)= 0. In this particular case the objective func-

tion is convex, which essentially means that there is a unique global minimum. This is,

however, not always the case.

A constrained optimisation problem is one where the alternatives are subject to con-

straints, for instance

a∗,b∗ = argmin
a,b

f (a,b) subject to g (a,b)= c

If the relationship expressed by the constraint is linear, say a − b = 0, we can of course

eliminate one of the variables and solve the simpler, unconstrained problem. However,

this may not be possible if the constraints are non-linear. Lagrange multipliers are a pow-

erful way of dealing with the general case. We form the Lagrange function defined by

Λ(a,b,λ)= f (a,b)−λ(g (a,b)−c)

where λ is the Lagrange multiplier, and solve the unconstrained problem ∇Λ(a,b,λ)= 0.

Since ∇a,bΛ(a,b,λ)=∇ f (a,b)−λ∇g (a,b) and ∇λΛ(a,b,λ)= g (a,b)− c, this is a succinct

way of requiring (i) that the gradients of f and g point in the same direction, and (ii) that

the constraint is satisfied. We can include multiple equality constraints and also inequal-

ity constraints, each with their own Lagrange multiplier.

From the Lagrange function it is possible to derive a dual optimisation problem where

we find the optimal values of the Lagrange multipliers. In general, the solution to the

dual problem is only a lower bound on the solution to the primal problem, but under a

set of conditions known as the Karush–Kuhn–Tucker conditions (KKT) the two solutions

become equal. The quadratic optimisation problem posed by support vector machines is

usually solved in its dual form.

Background 7.3. Basic concepts and terminology in mathematical optimisation.

214 7. Linear models

taking the partial derivative of the Lagrange function with respect to w we see that the

Lagrange multipliers define the weight vector as a linear combination of the training

examples:

∂

∂w
Λ(w, t ,α1, . . . ,αn)= ∂

∂w

1

2
w ·w− ∂

∂w
w ·
(

n∑
i=1

αi yi xi

)
=w−

n∑
i=1

αi yi xi

Since this partial derivative is 0 for an optimal weight vector we conclude w=∑n
i=1αi yi xi

– the same expression as we derived for the perceptron in Equation 7.9 on p.209. For

the perceptron, the instance weights αi are non-negative integers denoting the num-

ber of times an example has been misclassified in training. For a support vector ma-

chine, the αi are non-negative reals. What they have in common is that, if αi = 0 for

a particular example xi , that example could be removed from the training set without

affecting the learned decision boundary. In the case of support vector machines this

means that αi > 0 only for the support vectors: the training examples nearest to the

decision boundary.

Now, by plugging the expressions
∑n

i=1αi yi = 0 and w =∑n
i=1αi yi xi back into the

Lagrangian we are able to eliminate w and t , and hence obtain the dual optimisation

problem, which is entirely formulated in terms of the Lagrange multipliers:

Λ(α1, . . . ,αn) = −1

2

(
n∑

i=1
αi yi xi

)
·
(

n∑
i=1

αi yi xi

)
+

n∑
i=1

αi

= −1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

The dual problem is to maximise this function under positivity constraints and one

equality constraint:

α∗1 , . . . ,α∗n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to αi ≥ 0,1≤ i ≤ n and
n∑

i=1
αi yi = 0

The dual form of the optimisation problem for support vector machines illustrates

two important points. First, it shows that searching for the maximum-margin decision

boundary is equivalent to searching for the support vectors: they are the training exam-

ples with non-zero Lagrange multipliers, and through w=∑n
i=1αi yi xi they completely

determine the decision boundary. Secondly, it shows that the optimisation problem

is entirely defined by pairwise dot products between training instances: the entries

of the Gram matrix. As we shall see in Section 7.5, this paves the way for a powerful

adaptation of support vector machines that allows them to learn non-linear decision

boundaries.

The following example makes these issues a bit more concrete by showing detailed

calculations on some toy data.

7.3 Support vector machines 215

+

–

3

12

w

–

+

+

–

3

4

12

w

–

Figure 7.8. (left) A maximum-margin classifier built from three examples, with w = (0,−1/2)

and margin 2. The circled examples are the support vectors: they receive non-zero Lagrange

multipliers and define the decision boundary. (right) By adding a second positive the decision

boundary is rotated to w= (3/5,−4/5) and the margin decreases to 1.

Example 7.5 (Two maximum-margin classifiers and their support vectors).

Let the data points and labels be as follows (see Figure 7.8 (left)):

X=

⎛
⎜⎝

1 2

−1 2

−1 −2

⎞
⎟⎠ y=

⎛
⎜⎝
−1

−1

+1

⎞
⎟⎠ X′ =

⎛
⎜⎝
−1 −2

1 −2

−1 −2

⎞
⎟⎠

The matrix X′ on the right incorporates the class labels; i.e., the rows are yi xi . The

Gram matrix is (without and with class labels):

XXT =

⎛
⎜⎝

5 3 −5

3 5 −3

−5 −3 5

⎞
⎟⎠ X′X′T =

⎛
⎜⎝

5 3 5

3 5 3

5 3 5

⎞
⎟⎠

The dual optimisation problem is thus

argmax
α1,α2,α3

−1

2

(
5α2

1+3α1α2+5α1α3+3α2α1+5α2
2+3α2α3+5α3α1

+3α3α2+5α2
3

)+α1+α2+α3

= argmax
α1,α2,α3

−1

2

(
5α2

1+6α1α2+10α1α3+5α2
2+6α2α3+5α2

3

)+α1+α2+α3

subject to α1 ≥ 0,α2 ≥ 0,α3 ≥ 0 and −α1 −α2 +α3 = 0. While in practice such

problems are solved by dedicated quadratic optimisation solvers, here we will

show how to solve this toy problem by hand.

216 7. Linear models

Using the equality constraint we can eliminate one of the variables, say α3,

and simplify the objective function to

argmax
α1,α2,α3

−1

2

(
5α2

1+6α1α2+10α1(α1+α2)+5α2
2+6α2(α1+α2)+5(α1+α2)2)

+2α1+2α2

= argmax
α1,α2,α3

−1

2

(
20α2

1+32α1α2+16α2
2

)+2α1+2α2

Setting partial derivatives to 0 we obtain−20α1−16α2+2= 0 and−16α1−16α2+
2 = 0 (notice that, because the objective function is quadratic, these equations

are guaranteed to be linear). We therefore obtain the solution α1 = 0 and α2 =
α3 = 1/8. We then have w = 1/8(x3 − x2) =

(
0

−1/2

)
, resulting in a margin of

1/||w|| = 2. Finally, t can be obtained from any support vector, say x2, since y2(w·
x2−t)= 1; this gives−1·(−1−t)= 1, hence t = 0. The resulting maximum-margin

classifier is depicted in Figure 7.8 (left). Notice that the first example x1 is not a

support vector, even though it is on the margin: this is because removing it will

not affect the decision boundary.

We now add an additional positive at (3,1). This gives the following data ma-

trices:

X′ =

⎛
⎜⎜⎜⎜⎝
−1 −2

1 −2

−1 −2

3 1

⎞
⎟⎟⎟⎟⎠ X′X′T =

⎛
⎜⎜⎜⎜⎝

5 3 5 −5

3 5 3 1

5 3 5 −5

−5 1 −5 10

⎞
⎟⎟⎟⎟⎠

It can be verified by similar calculations to those above that the margin decreases

to 1 and the decision boundary rotates to w=
(

3/5

−4/5

)
(Figure 7.8 (right)). The

Lagrange multipliers now are α1 = 1/2, α2 = 0, α3 = 1/10 and α4 = 2/5. Thus,

only x3 is a support vector in both the original and the extended data set.

Soft margin SVM

If the data is not linearly separable, then the constraints w · xi − t ≥ 1 posed by the

examples are not jointly satisfiable. However, there is a very elegant way of adapting

the optimisation problem such that it admits a solution even in this case. The idea is

to introduce slack variables ξi , one for each example, which allow some of them to be

inside the margin or even at the wrong side of the decision boundary – we will call these

margin errors. Thus, we change the constraints to w ·xi − t ≥ 1−ξi and add the sum of

7.3 Support vector machines 217

all slack variables to the objective function to be minimised, resulting in the following

soft margin optimisation problem:

w∗, t∗,ξ∗i =argmin
w,t ,ξi

1

2
||w||2+C

n∑
i=1

ξi

subject to yi (w ·xi − t)≥ 1−ξi and ξi ≥ 0,1≤ i ≤ n (7.11)

C is a user-defined parameter trading off margin maximisation against slack variable

minimisation: a high value of C means that margin errors incur a high penalty, while

a low value permits more margin errors (possibly including misclassifications) in or-

der to achieve a large margin. If we allow more margin errors we need fewer support

vectors, hence C controls to some extent the ‘complexity’ of the SVM and hence is of-

ten referred to as the complexity parameter. It can be seen as a form of regularisation

similar to that discussed in the context of least-squares regression.

The Lagrange function is then as follows:

Λ(w, t ,ξi ,αi ,βi) = 1

2
||w||2+C

n∑
i=1

ξi −
n∑

i=1
αi (yi (w ·xi − t)− (1−ξi))−

n∑
i=1

βiξi

= 1

2
w ·w−w ·

(
n∑

i=1
αi yi xi

)
+ t

(
n∑

i=1
αi yi

)
+

n∑
i=1

αi+
n∑

i=1
(C −αi −βi)ξi

= Λ(w, t ,αi)+
n∑

i=1
(C −αi −βi)ξi

For an optimal solution every partial derivative with respect to ξi should be 0, from

which it follows that C −αi −βi = 0 for all i , and hence the added term vanishes from

the dual problem. Furthermore, since both αi and βi are positive, this means that αi

cannot be larger than C , which manifests itself as an additional upper bound on αi in

the dual problem:

α∗1 , . . . ,α∗n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to 0≤αi≤C and
n∑

i=1
αi yi = 0 (7.12)

This is a remarkable and beautiful result. It follows from the particular way that

slack variables were added to the optimisation problem in Equation 7.11. By restrict-

ing the slack variables to be positive and adding them to the objective function to be

minimised, they function as penalty terms, measuring deviations on the wrong side of

the margin only. Furthermore, the fact that the βi multipliers do not appear in the dual

objective follows from the fact that the penalty term in the primal objective is linear in

ξi . In effect, these slack variables implement what was called hinge loss in Figure 2.6

on p.63: a margin z > 1 incurs no penalty, and a margin z = 1−ξ ≤ 1 incurs a penalty

ξ= 1− z.

218 7. Linear models

+

+

–

3

4

12

w

–

+

+

–

3

4

12

w

–

Figure 7.9. (left) The soft margin classifier learned with C = 5/16, at which point x2 is about to

become a support vector. (right) The soft margin classifier learned with C = 1/10: all examples

contribute equally to the weight vector. The asterisks denote the class means, and the decision

boundary is parallel to the one learned by the basic linear classifier.

What is the significance of the upper bound C on the αi multipliers? Since C −
αi −βi = 0 for all i , αi = C implies βi = 0. The βi multipliers come from the ξi ≥ 0

constraint, and a multiplier of 0 means that the lower bound is not reached, i.e., ξi > 0

(analogous to the fact that α j = 0 means that x j is not a support vector and hence

w · x j − t > 1). In other words, a solution to the soft margin optimisation problem in

dual form divides the training examples into three cases:

αi = 0 these are outside or on the margin;

0<αi <C these are the support vectors on the margin;

αi =C these are on or inside the margin.

Notice that we still have w=∑n
i=1αi yi xi , and so both second and third case examples

participate in spanning the decision boundary.

Example 7.6 (Soft margins). We continue Example 7.5, where we saw that

adding the positive example x4 = (3,1) to the first three examples significantly

reduced the margin from 2 to 1. We will now show that soft margin classifiers

with larger margins are learned with sufficiently large complexity parameter C .

Recall that the Lagrange multipliers for the classifier in Figure 7.8 (right) are

α1 = 1/2, α2 = 0, α3 = 1/10 and α4 = 2/5. So α1 is the largest multiplier, and as

long as C >α1 = 1/2 no margin errors are tolerated. For C = 1/2 we have α1 =C ,

7.4 Obtaining probabilities from linear classifiers 219

and hence for C < 1/2 we have that x1 becomes a margin error and the optimal

classifier is a soft margin classifier. Effectively, with decreasing C the decision

boundary and the upper margin move upward, while the lower margin stays the

same.

The upper margin reaches x2 for C = 5/16 (Figure 7.9 (left)), at which point we

have w=
(

3/8

−1/2

)
, t = 3/8 and the margin has increased to 1.6. Furthermore, we

have ξ1 = 6/8,α1 =C = 5/16,α2 = 0,α3 = 1/16 and α4 = 1/4.

If we now decrease C further, the decision boundary starts to rotate clock-

wise, so that x4 becomes a margin error as well, and only x2 and x3 are sup-

port vectors. The boundary rotates until C = 1/10, at which point we have

w =
(

1/5

−1/2

)
, t = 1/5 and the margin has increased to 1.86. Furthermore, we

have ξ1 = 4/10 and ξ4 = 7/10, and all multipliers have become equal to C (Figure

7.9 (right)).

Finally, when C decreases further the decision boundary stays where it is, but

the norm of the weight vector gradually decreases and all points become margin

errors.

Example 7.6 illustrates an important point: for low enough C , all examples receive

the same multiplier C , and hence we have w = C
∑n

i=1 yi xi = C (Pos ·μ⊕ −Neg ·μ�),

where μ⊕ and μ� are the means of the positive and negative examples, respectively.

In other words, a minimal-complexity soft margin classifier summarises the classes by

their class means in a way very similar to the basic linear classifier. For intermediate

values of C the decision boundary is spanned by the support vectors and the per-class

means of the margin errors.

In summary, support vector machines are linear classifiers that construct the unique

decision boundary that maximises the distance to the nearest training examples (the

support vectors). The complexity parameter C can be used to adjust the number and

severity of allowed margin violations. Training an SVM involves solving a large quadratic

optimisation problem and is usually best left to a dedicated numerical solver.

7.4 Obtaining probabilities from linear classifiers

As we have seen, a linear classifier produces scores ŝ(xi)=w·xi−t that are thresholded

at 0 in order to classify examples. Owing to the geometric nature of linear classifiers,

such scores can be used to obtain the (signed) distance of xi from the decision bound-

ary. To see this, notice that the length of the projection of xi onto w is ||xi ||cosθ, where

220 7. Linear models

+
+

+ +

+
+

++

–
–

–
–
–

–
–w

–

d+ = w��+–t

d– = w��––t

–
�–

�+

+d = 0

d < 0

d > 0

Figure 7.10. We can think of a linear classifier as a projection onto the direction given by w, here

assumed to be a unit vector. w · x− t gives the signed distance from the decision boundary on

the projection line. Also indicated are the class means μ⊕ and μ�, and the corresponding mean

distances d⊕ and d�.

θ is the angle between xi and w. Since w ·xi = ||w|| ||xi ||cosθ, we can write this length

as (w ·xi)/||w||. This gives the following signed distance:

d(xi)= ŝ(xi)

||w|| =
w ·xi − t

||w|| =w′ ·xi − t ′

with w′ = w/||w|| rescaled to unit length and t ′ = t/||w|| the corresponding rescaled

intercept. The sign of this quantity tells us which side of the decision boundary we are

on: positive distances for points on the ‘positive’ side of the decision boundary (the

direction in which w points) and negative distances on the other side (Figure 7.10).

This geometric interpretation of the scores produced by linear classifiers offers an

interesting possibility for turning them into probabilities, a process that was called

�calibration in Section 2.3. Let d
⊕

denote the mean distance of the positive exam-

ples to the decision boundary: i.e., d
⊕ =w·μ⊕−t , where μ⊕ is the mean of the positive

examples and w is unit length (although the latter assumption is not strictly necessary,

as it will turn out that the weight vector will be rescaled). It would not be unreasonable

to expect that the distance of positive examples to the decision boundary is normally

distributed around this mean:2 that is, when plotting a histogram of these distances,

2For instance, with sufficiently many examples this could be justified by the central limit theorem: the

sum of a large number of identically distributed independent random variables is approximately normally

distributed.

7.4 Obtaining probabilities from linear classifiers 221

we would expect the familiar bell curve to appear. Under this assumption, the prob-

ability density function of d is P (d |⊕) = 1�
2πσ

exp
(
− (d−d

⊕
)2

2σ2

)
(see Background 9.1 on

p.267 if you need to remind yourself about the normal distribution). Similarly, the dis-

tances of negative examples to the decision boundary can be expected to be normally

distributed around d
� =w ·μ�− t , with d

� < 0< d
⊕

. We will assume that both normal

distributions have the same variance σ2.

Suppose we now observe a point x with distance d(x). We classify this point as

positive if d(x)> 0 and as negative if d(x)< 0, but we want to attach a probability p̂(x)=
P (⊕|d(x)) to these predictions. Using Bayes’ rule we obtain

P (⊕|d(x))= P (d(x)|⊕)P (⊕)

P (d(x)|⊕)P (⊕)+P (d(x)|�)P (�)
= LR

LR+1/clr

where LR is the likelihood ratio obtained from the normal score distributions, and clr

is the class ratio. We will assume for simplicity that clr = 1 in the derivation below.

Furthermore, assume for now that σ2 = 1 and d
⊕ = −d

� = 1/2 (we will relax this in a

moment). We then have

LR = P (d(x)|⊕)

P (d(x)|�)
= exp

(−(d(x)−1/2)2/2
)

exp
(−(d(x)+1/2)2/2

)
= exp

(−(d(x)−1/2)2/2+ (d(x)+1/2)2/2
)= exp(d(x))

and so

P (⊕|d(x))= exp(d(x))

exp(d(x))+1
= exp(w ·x− t)

exp(w ·x− t)+1

So, in order to obtain probability estimates from a linear classifier outputting distance

scores d , we convert d into a probability by means of the mapping d �→ exp(d)
exp(d)+1 (or,

equivalently, d �→ 1
1+exp(−d)). This S-shaped or sigmoid function is called the logistic

function; it finds applications in a wide range of areas (Figure 7.11).

Suppose now that d
⊕ = −d

�
as before, but we do not assume anything about the

magnitude of these mean distances or of σ2. In this case we have

LR = exp

(
−(d(x)−d

⊕
)2+ (d(x)−d

�
)2

2σ2

)

= exp

⎛
⎜⎝2d

⊕
d(x)−

(
d
⊕)2−2d

�
d(x)+

(
d
�)2

2σ2

⎞
⎟⎠= exp

(
γd(x)

)

with a = (d
⊕ −d

�
)/σ2 a scaling factor that rescales the weight vector so that the mean

distances per class are one unit of variance apart. In other words, by taking the scaling

factor γ into account, we can drop our assumption that w is a unit vector.

If we also drop the assumption that d
⊕

and d
�

are symmetric around the decision

222 7. Linear models

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12

0.25

0.5

0.75

1

d

p̂(+|d)

Figure 7.11. The logistic function, a useful function for mapping distances from a linear deci-

sion boundary into an estimate of the positive posterior probability. The fat red line indicates

the standard logistic function p̂(d) = 1
1+exp(−d) ; this function can be used to obtain probability

estimates if the two classes are equally prevalent and the class means are equidistant from the

decision boundary and one unit of variance apart. The steeper and flatter red lines show how

the function changes if the class means are 2 and 1/2 units of variance apart, respectively. The

three blue lines show how these curves change if d0 = 1, which means that the positives are on

average further away from the decision boundary.

boundary, then we obtain the most general form

LR = P (d(x)|⊕)

P (d(x)|�)
= exp

(
γ(d(x)−d0)

)
(7.13)

γ= d
⊕−d

�

σ2 = w · (μ⊕−μ�)

σ2 , d0 = d
⊕+d

�

2
= w · (μ⊕+μ�)

2
− t

d0 has the effect of moving the decision boundary from w · x = t to x = (μ⊕ +μ�)/2,

that is, halfway between the two class means. The logistic mapping thus becomes d �→
1

1+exp(−γ(d−d0)) , and the effect of the two parameters is visualised in Figure 7.11.

Example 7.7 (Logistic calibration of a linear classifier). Logistic calibration has

a particularly simple form for the basic linear classifier, which has w=μ⊕ −μ�.

It follows that

d
⊕−d

� = w · (μ⊕−μ�)

||w|| = ||μ
⊕−μ�||2

||μ⊕−μ�|| = ||μ
⊕−μ�||

and hence γ = ||μ⊕ −μ�||/σ2. Furthermore, d0 = 0 as (μ⊕ +μ�)/2 is already

on the decision boundary. So in this case logistic calibration does not move the

7.4 Obtaining probabilities from linear classifiers 223

Figure 7.12. The surface shows the sigmoidal probability estimates resulting from logistic cali-

bration of the basic linear classifier on random data satisfying the assumptions of logistic cali-

bration.

decision boundary, and only adjusts the steepness of the sigmoid according to

the separation of the classes. Figure 7.12 illustrates this for some data sampled

from two normal distributions with the same diagonal covariance matrix.

To summarise: in order to get calibrated probability estimates out of a linear clas-

sifier, we first calculate the mean distances d
⊕

and d
�

and the variance σ2, and from

those the location parameter d0 and the scaling parameter γ. The likelihood ratio is

then LR = exp
(
γ(d(x)−d0)

) = exp
(
γ(w ·x− t −d0)

)
. Since the logarithm of the likeli-

hood ratio is linear in x, such models are called log-linear models. Notice that γ(w ·x−
t −d0)=w′ ·x− t ′ with w′ = γw and t ′ = γ(t +d0). This means that the logistic calibra-

tion procedure can change the location of the decision boundary but not its direction.

However, there may be an alternative weight vector with a different direction that as-

signs a higher likelihood to the data. Finding the maximum-likelihood linear classifier

using the logistic model is called �logistic regression, and will be discussed in Section

9.3.

As an alternative to logistic calibration, we can also use the isotonic calibration

224 7. Linear models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.13. (left) ROC curve and convex hull of the same model and data as in Figure 7.12.

(right) The convex hull can be used as a non-parametric calibration method. Each segment of

the convex hull corresponds to a plateau of the probability surface.

method discussed in Section 2.3. Figure 7.13 (left) shows the ROC curve of the basic lin-

ear classifier on the data in Figure 7.12 as well as its convex hull. We can then construct

a piecewise linear calibration function with plateaus corresponding to the convex hull

segments, as shown in Figure 7.13 (right). In contrast with the logistic method this cal-

ibration method is non-parametric and hence does not make any assumptions about

the data. In order to avoid overfitting, non-parametric methods typically need more

data than parametric methods. It is interesting to note that no grading takes place on

the plateaus, which are rather similar to the segments of a grouping model. In other

words, convex hull calibration can potentially produce a hybrid between grouping and

grading models.

7.5 Going beyond linearity with kernel methods

In this chapter we have looked at linear methods for classification and regression.

Starting with the least-squares method for regression, we have seen how to adapt it

to binary classification, resulting in a version of the basic linear classifier that takes

feature correlation into account by constructing the matrix (XTX)−1 and is sensitive to

unequal class distributions. We then looked at the heuristic perceptron algorithm for

linearly separable data, and the support vector machine which finds the unique de-

cision boundary with maximum margin and which can be adapted to non-separable

data. In this section we show that these techniques can be adapted to learn non-linear

decision boundaries. The main idea is simple (and was already explored in Example

1.9 on p.43): to transform the data non-linearly to a feature space in which linear clas-

sification can be applied.

7.5 Going beyond linearity with kernel methods 225

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 7.14. (left) Decision boundaries learned by the basic linear classifier and the perceptron

using the square of the features. (right) Data and decision boundaries in the transformed fea-

ture space.

Example 7.8 (Learning a quadratic decision boundary). The data in Figure

7.14 (left) is not linearly separable, but both classes have a clear circular shape.

Figure 7.14 (right) shows the same data with the feature values squared. In

this transformed feature space the data has become linearly separable, and the

perceptron is able to separate the classes. The resulting decision boundary in

the original space is a near-circle. Also shown is the decision boundary learned

by the basic linear classifier in the quadratic feature space, corresponding to an

ellipse in the original space.

In general, mapping points back from the feature space to the instance space

is non-trivial. E.g., in this example each class mean in feature space maps back

to four points in the original space, owing to the quadratic mapping.

It is customary to call the transformed space the feature space and the original

space the input space. The approach thus appears to be to transform the training data

to feature space and learn a model there. In order to classify new data we transform

that to feature space as well and apply the model. However, the remarkable thing is

that in many cases the feature space does not have to be explicitly constructed, as we

can perform all necessary operations in input space.

Take the perceptron algorithm in dual form, for example (Algorithm 7.2 on p.209).

The algorithm is a simple counting algorithm – the only operation that is somewhat in-

volved is testing whether example xi is correctly classified by evaluating yi
∑|D|

j=1α j y j xi ·

226 7. Linear models

x j . The key component of this calculation is the dot product xi ·x j . Assuming bivariate

examples xi =
(
xi , yi

)
and x j =

(
x j , y j

)
for notational simplicity, the dot product can be

written as xi · x j = xi x j + yi y j . The corresponding instances in the quadratic feature

space are
(
x2

i , y2
i

)
and
(
x2

j , y2
j

)
, and their dot product is

(
x2

i , y2
i

) · (x2
j , y2

j

)
= x2

i x2
j + y2

i y2
j

This is almost equal to

(xi ·x j)2 = (xi x j + yi y j)2 = (xi x j)2+ (yi y j)2+2xi x j yi y j

but not quite because of the third term of cross-products. We can capture this term by

extending the feature vector with a third feature
�

2x y . This gives the following feature

space:

φ(xi)=
(
x2

i , y2
i ,
�

2xi yi

)
φ(x j)=

(
x2

j , y2
j ,
�

2x j y j

)
φ(xi) ·φ(x j)= x2

i x2
j + y2

i y2
j +2xi x j yi y j = (xi ·x j)2

We now define κ(xi ,x j)= (xi ·x j)2, and replace xi ·x j with κ(xi ,x j) in the dual percep-

tron algorithm to obtain the kernel perceptron (Algorithm 7.4), which is able to learn

the kind of non-linear decision boundaries illustrated in Example 7.8.

The introduction of kernels opens up a whole range of possibilities. Clearly we can

define a polynomial kernel of any degree p as κ(xi ,x j) = (xi · x j)p . This transforms

Algorithm 7.4: KernelPerceptron(D,κ) – perceptron training algorithm using a

kernel.

Input : labelled training data D in homogeneous coordinates;

kernel function κ.

Output : coefficients αi defining non-linear decision boundary.

1 αi ← 0 for 1≤ i ≤ |D|;
2 converged←false;

3 while converged= false do

4 converged←true;

5 for i = 1 to |D| do

6 if yi
∑|D|

j=1α j y jκ(xi ,x j)≤ 0 then

7 αi ←αi +1;

8 converged←false;

9 end

10 end

11 end

7.5 Going beyond linearity with kernel methods 227

a d-dimensional input space into a high-dimensional feature space, such that each

new feature is a product of p terms (possibly repeated). If we include a constant, say

κ(xi ,x j)= (xi ·x j +1)p , we would get all lower-order terms as well. So, for example, in

a bivariate input space and setting p = 2 the resulting feature space is

φ(x)=
(
x2, y2,

�
2x y,

�
2x,

�
2y,1
)

with linear as well as quadratic features.

But we are not restricted to polynomial kernels. An often-used kernel is the Gaus-

sian kernel, defined as

κ(xi ,x j)= exp

(
−||xi −x j ||2

2σ2

)
(7.14)

where σ is a parameter known as the bandwidth. To understand the Gaussian kernel

a bit better, notice that κ(x,x)= φ(x) ·φ(x)= ||φ(x)||2 for any kernel obeying a number

of standard properties referred to as ‘positive semi-definiteness’. In this case we have

κ(x,x) = 1, which means that all points φ(x) lie on a hypersphere around the feature

space origin – which is however of infinite dimension, so geometric considerations

don’t help us much here. It is more helpful to think of a Gaussian kernel as imposing

a Gaussian (i.e., multivariate normal, see Background 9.1 on p.267) surface on each

support vector in instance space, so that the decision boundary is defined in terms of

those Gaussian surfaces.

Kernel methods are best known in combination with support vector machines. No-

tice that the soft margin optimisation problem (Equation 7.12 on p.217) is defined in

terms of dot products between training instances and hence the ‘kernel trick’ can be

applied:

α∗1 , . . . ,α∗n = argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y jκ(xi ,x j)+
n∑

i=1
αi

subject to 0≤αi≤C and
n∑

i=1
αi yi = 0

One thing to keep in mind is that the decision boundary learned with a non-linear

kernel cannot be represented by a simple weight vector in input space. Thus, in or-

der to classify a new example x we need to evaluate yi
∑n

j=1α j y jκ(x,x j) which is an

O(n) computation involving all training examples, or at least the ones with non-zero

multipliers α j . This is why support vector machines are a popular choice as a kernel

method, since they naturally promote sparsity in the support vectors. Although we

have restricted attention to numerical features here, it is worth stressing that kernels

can be defined over discrete structures, including trees, graphs, and logical formulae,

and thus open the way to extending geometric models to non-numerical data.

228 7. Linear models

7.6 Linear models: Summary and further reading

After considering logical models in the previous three chapters we had a good look at

linear models in this chapter. Logical models are inherently non-numerical, and so

deal with numerical features by using thresholds to convert them into two or more

intervals. Linear models are almost diametrically opposite in that they can deal with

numerical features directly but need to pre-process non-numerical features.3 Geomet-

rically, linear models use lines and planes to build the model, which essentially means

that a certain increase or decrease in one of the features has the same effect, regardless

of that feature’s value or any of the other features. They are simple and robust to varia-

tions in the training data, but sometimes suffer from underfitting as a consequence.

� In Section 7.1 we considered the least-squares method that was originally con-

ceived to solve a regression problem. This classical method, which derives its

name from minimising the sum of squared residuals between predicted and ac-

tual function values, is described in innumerable introductory mathematics and

engineering texts (and was one of the example programs I remember running

on my father’s Texas Instruments TI-58 programmable calculator). We first had a

look at the problem in univariate form, and then derived the general solution

as ŵ = (XTX)−1XTy, where (XTX)−1 is a transformation that decorrelates, cen-

tres and normalises the features. We then discussed regularised versions of lin-

ear regression: ridge regression was introduced by Hoerl and Kennard (1970),

and the lasso which naturally leads to sparse solutions was introduced by Tib-

shirani (1996). We saw how the least-squares method could be applied to bi-

nary classification by encoding the classes by +1 and −1, leading to the solution

ŵ= (XTX)−1(Pos μ⊕ −Neg μ�). This generalises the basic linear classifier by tak-

ing feature correlation and unequal class prevalence into account, but at a con-

siderably increased computational cost (quadratic in the number of instances

and cubic in the number of features).

� Section 7.2 presented another classical linear model, the perceptron. Unlike the

least-squares method, which always finds the optimal solution in terms of sum

of squared residuals, the perceptron is a heuristic algorithm that depends, for

one thing, on the order in which the examples are presented. Invented by Rosen-

blatt (1958), its convergence for linearly separable data was proved by Novikoff

(1962), who gave an upper bound on the number of mistakes made before the

perceptron converged. Minsky and Papert (1969) proved further formal proper-

ties of the perceptron, but also demonstrated the limitations of a linear classifier.

These were overcome with the development, over an extended period of time

and with contributions from many people, of the multilayer perceptron and its

3Ways to pre-process non-numerical features for use in linear models are discussed in Chapter 10.

7.6 Linear models: Summary and further reading 229

back-propagation training algorithm (Rumelhart, Hinton and Williams, 1986). In

this section we also learned about the dual, instance-based view of linear clas-

sification in which we are learning instance weights rather than feature weights.

For the perceptron these weights are the number of times the example has been

misclassified during training.

� Maximum-margin classification with support vector machines was the topic of

Section 7.3. The approach was proposed by Boser, Guyon and Vapnik (1992).

Using the dual formulation, the instance weights are non-zero only for the sup-

port vectors, which are the training instances on the margin. The soft-margin

generalisation is due to Cortes and Vapnik (1995). Margin errors are allowed, but

the total margin error is added as a regularisation term to the objective function

to be minimised, weighted by the complexity parameter C ; all instances inside

the margin receive instance weight C . As we have seen, by making C sufficiently

small the support vector machine summarises the classes by their unweighted

class means and hence is very similar to the basic linear classifier. A general

introduction to SVMs is provided by Cristianini and Shawe-Taylor (2000). The

sequential minimal optimisation algorithm is an often-used solver which iter-

atively selects pairs of multipliers to optimise analytically and is due to Platt

(1998).

� In Section 7.4 we considered two methods to turn linear classifiers into proba-

bility estimators by converting the signed distance from the decision boundary

into class probabilities. One well-known method is to use the logistic function,

either straight out of the box or by fitting location and spread parameters to the

data. Although this is often presented as a simple trick, we saw how it can be

justified by assuming that the distances per class are normally distributed with

the same variance; this latter assumption is needed to make the transforma-

tion monotonic. A non-parametric alternative is to use the ROC convex hull to

obtain calibrated probability estimates. As was already mentioned in the sum-

mary of Chapter 2, the approach has its roots in isotonic regression (Best and

Chakravarti, 1990) and was introduced to the machine learning community by

Zadrozny and Elkan (2002). Fawcett and Niculescu-Mizil (2007) and Flach and

Matsubara (2007) show its equivalence to calibration by means of the ROC con-

vex hull.

� Finally, Section 7.5 discussed briefly how to go beyond linearity with kernel meth-

ods. The ‘kernel trick’ can be applied to any learning algorithm that can be en-

tirely described in terms of dot products, which includes most approaches dis-

cussed in this chapter. The beauty is that we are implicitly classifying in a high-

dimensional feature space, without having to construct the space explicitly. I

230 7. Linear models

gave the kernel perceptron as a simple example of a kernelised algorithm; in the

next chapter we will see another example. Shawe-Taylor and Cristianini (2004)

provide an excellent reference bringing together a wealth of material on the use

of kernels in machine learning, and Gärtner (2009) discusses how kernel meth-

ods can be applied to structured, non-numerical data.

�

CHAPTER 8

Distance-based models

M
ANY FORMS OF LEARNING are based on generalising from training data to unseen data

by exploiting the similarities between the two. With grouping models such as decision

trees these similarities take the form of an equivalence relation or partition of the in-

stance space: two instances are similar whenever they end up in the same segment of

this partition. In this chapter we consider learning methods that utilise more graded

forms of similarity. There are many different ways in which similarity can be measured,

and in Section 8.1 we take a look at the most important of them. Section 8.2 is devoted

to a discussion of two key concepts in distance-based machine learning: neighbours

and exemplars. In Section 8.3 we consider what is perhaps the best-known distance-

based learning method: the nearest-neighbour classifier. Section 8.4 investigates K -

means clustering and close relatives, and Section 8.5 looks at hierarchical clustering

by constructing dendrograms. Finally, in Section 8.6 we discuss how several of these

methods can be extended using the kind of kernels that we saw in the previous chapter.

8.1 So many roads. . .

It may seem odd at first that there should be many ways to measure distance. I am

not referring to the fact that distance can be measured on different scales (kilometres,

miles, nautical miles, and so on), as such changes of scale are simple monotonic trans-

231

232 8. Distance-based models

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0ZKZ0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

Z Z
Z

Z

Z

Z
Z Z

Z

Z
ZZZ

Z

Z
Z Z Z

Z

Z

Z
ZZZ

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0ZRZ0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

Z Z Z Z

Z

Z

Z

Z

Z

Z
Z Z

Z

Z
ZZZ

Z
Z Z

Z

Z
ZZ

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0Z♦Z0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

Z Z
Z

Z
Z
Z
Z
Z
Z
Z
Z

Z
Z

Z
Z

Z

Z
Z Z

Z

Z
ZZ

Z

Figure 8.1. (left) Distance as experienced by a King on a chessboard: green squares are one

move away, orange ones two moves and red ones three moves. The shape formed by equidistant

squares from the current position is itself a square. (middle) A Rook can travel any number of

squares in one move, but only horizontally or vertically. No square is further than two moves

away. (right) The (fictional) KRook combines the restrictions of King and Rook: it can move only

one square at a time, and only horizontally or vertically. Equidistant squares now form a lozenge.

formations and do not fundamentally alter the distance measure. A better intuition is

obtained by taking the mode of travel into account. Clearly, when travelling from Bris-

tol to Amsterdam by train you travel a larger distance then when travelling by plane,

because planes are less restricted in their paths than trains. We will explore this a bit

further by considering the game of chess.

In chess, each piece is governed by a set of rules that restrict its possible moves.

These restrictions can be directional: for instance, King and Queen can move horizon-

tally, vertically and diagonally, while a Bishop can only move diagonally, a Rook only

horizontally and vertically, and pawns only upwards. King and pawn are further re-

stricted by the fact that they can move only one square at a time, whereas Queen, Rook

and Bishop can move any number of squares in a single allowed direction. Finally, a

Knight moves according to a very specific pattern (one diagonal step and one horizon-

tal or vertical step in a single move).

Although these pieces move around on the same board, they experience distances

in very different ways. For example, the next square down is one move away for King,

Queen and Rook; three moves away for a Knight; and unreachable for Bishop or pawn.

This is, of course, very similar to our experience in the real world. Trains and cars can

only move along tracks or roads, like a Bishop, which leaves remote places unreach-

able. A mountain range can mean large detours when travelling by car, train or on foot,

but is easy to cross when flying. On an underground, two stations a few streets away

may be only reachable with several changes of line, not unlike the way a Knight can

reach a nearby square only in two or three moves. And on foot we are most flexible but

8.1 So many roads. . . 233

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0ZBZ0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0Z!Z0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

Figure 8.2. (left) The Bishop’s world: squares are either one or two moves away, or else unreach-

able. (right) The fictional Bing combines the restrictions of King and Bishop: it can only move

one square at a time, and only diagonally. Equidistant squares now form a punctuated square.

also slow, like a King.

Figure 8.1 visualises the distances experienced by King and Rook. Both can reach all

parts of the chessboard, but a Rook can travel much faster. In fact, a Rook can reach any

square in either one or two moves (assuming no other pieces are in its way). All squares

one move away form a cross, and the remaining squares are one additional move away.

A King will often have to travel more than two moves to reach a particular square (al-

though there are also squares that the King can reach in one move while a Rook needs

two). The squares one move away form a small square shape around the current posi-

tion; those two moves away form a larger square around the smaller square; and so on.

Figure 8.1 (right) shows a piece that doesn’t exist in chess, but could. It combines the

restrictions of King and Rook, and I therefore call it a KRook. Like a King, it can only

move one square at a time; and like a Rook, it can only move horizontally and vertically.

For the KRook, equidistant squares form a sort of lozenge around the current position.

Figure 8.2 (left) visualises the Bishop’s moves. The Bishop is somewhat similar to

the Rook in that some squares (those of the same colour as its current square) are never

more than two moves away; however, the remaining squares of the other colour are un-

reachable. Combining the restrictions of the Bishop (only diagonal moves) with those

of the King (one square per move) we obtain another fictional piece, the Bing (Figure

8.2 (right)). We could say that the world of Bishops and Bings is rotated 45 degrees,

compared with the world of Rooks and KRooks.

What’s the relevance of all this when trying to understand distance-based machine

learning, you may ask? Well, the rank (row) and file (column) on a chessboard is not

unlike a discrete or categorical feature in machine learning (in fact, since ranks and

files are ordered, they are �ordinal features, as we will further discuss in Chapter 10).

We can switch to real-valued features by imagining a ‘continuous’ chessboard with

234 8. Distance-based models

infinitely many, infinitesimally narrow ranks and files. Squares now become points,

and distances are not expressed as the number of squares travelled, but simply as a real

number on some scale. If we now look at the shapes obtained by connecting equidis-

tant points, we see that many of these carry over from the discrete to the continuous

case. For a King, for example, all points a given fixed distance away still form a square

around the current position; and for a KRook they still form a square rotated 45 de-

grees. As it happens, these are special cases of the following generic concept.

Definition 8.1 (Minkowski distance). If X = Rd , the Minkowski distance of order

p > 0 is defined as

Disp (x,y)=
(

d∑
j=1
|x j − y j |p

)1/p

= ||x−y||p

where ||z||p =
(∑d

j=1 |z j |p
)1/p

is the p-norm (sometimes denoted Lp norm) of the

vector z. We will often refer to Disp simply as the p-norm. �

So, the 2-norm refers to the familiar Euclidean distance

Dis2(x,y)=
√√√√ d∑

j=1
(x j − y j)2 =

√
(x−y)T(x−y)

which measures distance ‘as the crow flies’. Two other values of p can be related back

to the chess example. The 1-norm denotes Manhattan distance, also called cityblock

distance:

Dis1(x,y)=
d∑

j=1
|x j − y j |

This is the distance if we can only travel along coordinate axes: similar to a taxi in Man-

hattan or other cities whose streets follow a regular grid pattern, but also the distance

experienced by our fictional KRook piece. If we now let p grow larger, the distance

will be more and more dominated by the largest coordinate-wise distance, from which

we can infer that Dis∞(x,y) = max j |x j − y j |. This is the distance experienced by the

King on a chessboard, who can move diagonally as well as horizontally and vertically

but only one step at a time; it is also called Chebyshev distance. Figure 8.3 (left) visu-

alises equidistant points from the origin using Minkowski distances of various orders.

It can be seen that Euclidean distance is the only Minkowski distance that is rotation-

invariant – in other words, special significance is given to the directions of the coordi-

nate axes whenever p
= 2. Minkowski distances do not refer to a particular choice of

origin and are therefore translation-invariant, but none of them are scaling-invariant.

You will sometimes see references to the 0-norm (or L0 norm) which counts the

number of non-zero elements in a vector. The corresponding distance then counts the

8.1 So many roads. . . 235

Figure 8.3. (left) Lines connecting points at order-p Minkowski distance 1 from the origin for

(from inside) p = 0.8; p = 1 (Manhattan distance, the rotated square in red); p = 1.5; p = 2

(Euclidean distance, the violet circle); p = 4; p = 8; and p = ∞ (Chebyshev distance, the blue

rectangle). Notice that for points on the coordinate axes all distances agree. For the other points,

our reach increases with p; however, if we require a rotation-invariant distance metric then Eu-

clidean distance is our only choice. (right) The rotated ellipse xTRTS2Rx= 1/4; the axis-parallel

ellipse xTS2x= 1/4; and the circle xTx= 1/4 (R and S as in Example 8.1).

number of positions in which vectors x and y differ. This is not strictly a Minkowski

distance; however, we can define it as

Dis0(x,y)=
d∑

j=1
(x j − y j)0 =

d∑
j=1

I [x j = y j]

under the understanding that x0 = 0 for x = 0 and 1 otherwise. This is actually the dis-

tance experienced by a Rook on the chessboard: if both rank and file are different the

square is two moves away, if only one of them is different the square is one move away.

If x and y are binary strings, this is also called the Hamming distance. Alternatively, we

can see the Hamming distance as the number of bits that need to be flipped to change

x into y; for non-binary strings of unequal length this can be generalised to the notion

of edit distance or Levenshtein distance.

Do all of these mathematical constructs make sense as a notion of distance? In

order to answer that question we can draw up a list of properties that a proper distance

measure should have, such as non-negativity and symmetry. The generally agreed-

upon list defines what is known as a metric.

Definition 8.2 (Distance metric). Given an instance space X , a distance metric is

a function Dis : X ×X →R such that for any x, y, z ∈X :

1. distances between a point and itself are zero: Dis(x, x)= 0;

236 8. Distance-based models

A
�

C
�

B
�

A
�

C
�

B
�

A
�

C
�

B
�

Figure 8.4. (left) The green circle connects points the same Euclidean distance (i.e., Minkowski

distance of order p = 2) away from the origin as A. The orange circle shows that B and C are

equidistant from A. The red circle demonstrates that C is closer to the origin than B, which con-

forms to the triangle inequality. (middle) With Manhattan distance (p = 1), B and C are equally

close to the origin and also equidistant from A. (right) With p < 1 (here, p = 0.8) C is further away

from the origin than B; since both are again equidistant from A, it follows that travelling from the

origin to C via A is quicker than going there directly, which violates the triangle inequality.

2. all other distances are larger than zero: if x
= y then Dis(x, y)> 0;

3. distances are symmetric: Dis(y, x)=Dis(x, y);

4. detours can not shorten the distance: Dis(x, z)≤Dis(x, y)+Dis(y, z).

If the second condition is weakened to a non-strict inequality – i.e., Dis(x, y) may be

zero even if x
= y – the function Dis is called a pseudo-metric. �

The last condition is called the triangle inequality (or sub-additivity, as it really con-

cerns the interaction between distance and addition). Figure 8.4 investigates this for

Minkowski distances of various orders. The triangle inequality dictates that the dis-

tance from the origin to C is no more than the sum of the distances from the origin to A

(Dis(O,A)) and from A to C (Dis(A,C)). B is at the same distance from A as C, regardless

of the distance measure used; so Dis(O,A)+Dis(A,C) is equal to the distance from the

origin to B. So, if we draw a circle around the origin through B, the triangle inequality

dictates that C not be outside that circle. As we see in the left figure for Euclidean dis-

tance, B is the only point where the circles around the origin and around A intersect,

so everywhere else the triangle inequality is a strict inequality.

The middle figure shows the same situation for Manhattan distance (p = 1). Now, B

and C are in fact equidistant from the origin, and so travelling via A to C is no longer a

detour, but just one of the many shortest routes. However, if we now decrease p further,

we see that C ends up outside the red shape, and is thus further away than B when seen

from the origin, whereas of course the sum of the distances from the origin to A and

from A to C is still equal to the distance from the origin to B. At this point, our intuition

breaks down: Minkowski distances with p < 1 are simply not very useful as distances

since they all violate the triangle inequality.

8.2 Neighbours and exemplars 237

Sometimes it is useful to use different scales for different coordinates if they are tra-

versed with different speeds. For instance, for people horizontal distances can be tra-

versed more easily than vertical differences, and consequently it is more realistic to use

an ellipse rather than a circle to identify points that can be reached in a fixed amount

of time, with the major axis of the ellipse indicating directions that can be traversed

at larger speed. The ellipse can also be rotated, so that the major axis is not aligned

with any of the coordinates: for instance, this could be the direction of a motorway,

or the wind direction. Mathematically, while hyper-spheres (circles in d ≥ 2 dimen-

sions) of radius r can be defined by the equation xTx = r 2, hyper-ellipses are defined

by xTMx= r 2, where M is a matrix describing the appropriate rotation and scaling.

Example 8.1 (Elliptical distance). Consider the following matrices

R=
(

1/
�

2 1/
�

2

−1/
�

2 1/
�

2

)
S=
(

1/2 0

0 1

)
M=
(

5/8 −3/8

−3/8 5/8

)

The matrix R describes a clockwise rotation of 45 degrees, and the diagonal ma-

trix S scales the x-axis by a factor 1/2. The equation

(SRx)T(SRx)= xTRTSTSRx= xTRTS2Rx= xTMx= 1/4

describes a shape which, after clockwise rotation of 45 degrees and scaling of the

x-axis by a factor 1/2, is a circle with radius 1/2 – i.e., the ‘ascending’ ellipse in

Figure 8.3 (right). The ellipse equation is (5/8)x2+ (5/8)y2− (3/4)x y = 1/2.

Often, the shape of the ellipse is estimated from data as the inverse of the covari-

ance matrix: M=Σ−1. This leads to the definition of the Mahalanobis distance

DisM (x,y|Σ)=
√

(x−y)TΣ−1(x−y) (8.1)

Using the covariance matrix in this way has the effect of decorrelating and normalising

the features, as we saw in Section 7.1. Clearly, Euclidean distance is a special case

of Mahalanobis distance with the identity matrix I as covariance matrix: Dis2(x,y) =
DisM (x,y|I).

8.2 Neighbours and exemplars

Now that we understand the basics of measuring distance in instance space, we pro-

ceed to consider the key ideas underlying distance-based models. The two most

238 8. Distance-based models

important of these are: formulating the model in terms of a number of prototypical

instances or exemplars, and defining the decision rule in terms of the nearest exem-

plars or neighbours. We can understand these concepts by revisiting our old friend, the

basic linear classifier. This classifier uses the two class means μ⊕ and μ� as exemplars,

as a summary of all we need to know about the training data in order to build the clas-

sifier. A fundamental property of the mean of a set of vectors is that it minimises the

sum of squared Euclidean distances to those vectors.

Theorem 8.1 (The arithmetic mean minimises squared Euclidean distance). The

arithmetic mean μ of a set of data points D in a Euclidean space is the unique point

that minimises the sum of squared Euclidean distances to those data points.

Proof. We will show that argminy
∑

x∈D ||x−y||2 =μ, where ||·|| denotes the 2-norm.

We find this minimum by taking the gradient (the vector of partial derivatives with

respect to yi) of the sum and setting it to the zero vector:

∇y
∑

x∈D
||x−y||2 =−2

∑
x∈D

(
x−y
)=−2

∑
x∈D

x+2|D|y= 0

from which we derive y= 1
|D|
∑

x∈D x=μ. �

Notice that minimising the sum of squared Euclidean distances of a given set of

points is the same as minimising the average squared Euclidean distance. You may

wonder what happens if we drop the square here: wouldn’t it be more natural to take

the point that minimises total Euclidean distance as exemplar? This point is known

as the geometric median, as for univariate data it corresponds to the median or ‘mid-

dle value’ of a set of numbers. However, for multivariate data there is no closed-form

expression for the geometric median, which needs to be calculated by successive ap-

proximation. This computational advantage is the main reason why distance-based

methods tend to use squared Euclidean distance.

In certain situations it makes sense to restrict an exemplar to be one of the given

data points. In that case, we speak of a medoid, to distinguish it from a centroid which

is an exemplar that doesn’t have to occur in the data. Finding a medoid requires us

to calculate, for each data point, the total distance to all other data points, in order

to choose the point that minimises it. Regardless of the distance metric used, this is

an O(n2) operation for n points, so for medoids there is no compuational reason to

prefer one distance metric over another. Figure 8.5 shows a set of 10 data points where

the different ways of determining exemplars all give different results. In particular, the

mean and squared 2-norm medoid can be overly sensitive to outliers.

Once we have determined the exemplars, the basic linear classifier constructs the

decision boundary as the perpendicular bisector of the line segment connecting the

two exemplars. An alternative, distance-based way to classify instances without direct

8.2 Neighbours and exemplars 239

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

data points
squared 2−norm centroid (mean)
2−norm centroid (geometric median)
squared 2−norm medoid
2−norm medoid
1−norm medoid

Figure 8.5. A small data set of 10 points, with circles indicating centroids and squares indicating

medoids (the latter must be data points), for different distance metrics. Notice how the outlier on

the bottom-right ‘pulls’ the mean away from the geometric median; as a result the corresponding

medoid changes as well.

reference to a decision boundary is by the following decision rule: if x is nearest to μ⊕

then classify it as positive, otherwise as negative; or equivalently, classify an instance

to the class of the nearest exemplar. If we use Euclidean distance as our closeness mea-

sure, simple geometry tells us we get exactly the same decision boundary (Figure 8.6

(left)).

So the basic linear classifier can be interpreted from a distance-based perspective

as constructing exemplars that minimise squared Euclidean distance within each class,

and then applying a nearest-exemplar decision rule. This change of perspective opens

up many new possibilities. For example, we can investigate what the decision bound-

ary looks like if we use Manhattan distance for the decision rule (Figure 8.6 (right)). It

turns out that the decision boundary can only run along a number of fixed angles: in

two dimensions these are horizontal, vertical and at (plus or minus) 45 degrees. This

can be understood as follows. Suppose the two exemplars have different x- and y-

coordinates, then they span a rectangle (I’ll assume a tall rectangle, as in the figure).

Imagine yourself in the centre of that rectangle, then clearly you are at equal distances

from both exemplars (in fact, that same point is part of the 2-norm decision bound-

ary). Now, imagine that you move one horizontal step, then you will move closer to

one exemplar and away from the other; in order to compensate for that, you will also

need to make a vertical step. So, within the rectangle, you maintain equal distance

240 8. Distance-based models

Figure 8.6. (left) For two exemplars the nearest-exemplar decision rule with Euclidean distance

results in a linear decision boundary coinciding with the perpendicular bisector of the line con-

necting the two exemplars. The crosses denote different locations on the decision boundary, and

the circles centred at those locations demonstrate that the exemplars are equidistant from each

of them. When travelling along the decision boundary from bottom-left to top-right, these cir-

cles first shrink then grow again after passing the location halfway between the two exemplars.

(right) Using Manhattan distance the circles are replaced by diamonds. Travelling from left to

right, the diamonds shrink along the left-most horizontal segment of the decision boundary,

then stay the same size along the 45-degree segment, and then grow again along the right-most

horizontal segment.

Figure 8.7. (left) Decision regions defined by the 2-norm nearest-exemplar decision rule for

three exemplars. (right) With Manhattan distance the decision regions become non-convex.

from the exemplars by moving at a 45 degree angle. Once you reach the perimeter of

the rectangle you will walk away from both exemplars by making horizontal steps, so

from there the decision boundary runs horizontally.

8.2 Neighbours and exemplars 241

Figure 8.8. (left) Voronoi tesselation for five exemplars. (middle) Taking the two nearest ex-

emplars into account leads to a further subdivision of each Voronoi cell. (right) The shading

indicates which exemplars contribute to which cell.

Another useful consequence of switching to the distance-based perspective is that

the nearest-exemplar decision rule works equally well for more than two exemplars,

which gives us a multi-class version of the basic linear classifier.1 Figure 8.7 (left) illus-

trates this for three exemplars. Each decision region is now bounded by two line seg-

ments. As you would expect, the 2-norm decision boundaries are more regular than

the 1-norm ones: mathematicians say that the 2-norm decision regions are convex,

which means that linear interpolation between any two points in the region can never

go outside it. Clearly, this doesn’t hold for 1-norm decision regions (Figure 8.7 (right)).

Increasing the number of exemplars further means that some of the regions be-

come closed convex ‘cells’ (we are assuming Euclidean distance for the remainder of

this section), giving rise to what is known as a Voronoi tesselation. Since the number of

classes is typically much lower than the number of exemplars, decision rules often take

more than one nearest exemplar into account. This increases the number of decision

regions further.

Example 8.2 (Two neighbours know more than one). Figure 8.8 (left) gives a

Voronoi tesselation for five exemplars. Each line segment is part of the perpen-

dicular bisector of two exemplars. There are
(5

2

)= 10 pairs of exemplars, but two

of these pairs are too far away from each other so we observe only eight line seg-

ments in the Voronoi tesselation.

If we now also take the second-nearest exemplars into account, each Voronoi

cell is further subdivided: for instance, since the central point has four neigh-

bours, the central cell is divided into four subregions (Figure 8.8 (middle)). You

can think of those additional line segments as being part of the Voronoi tessela-

1In information retrieval this is often called the Rocchio classifier.

242 8. Distance-based models

tion that results when the central point is removed. The other exemplars have

only three immediate neighbours and so their cells are divided into three subre-

gions. We thus obtain 16 ‘2-nearest exemplar’ decision regions, each of which is

defined by a different pair of nearest and second-nearest exemplars.

Figure 8.8 (right) shades each of these regions according to the two near-

est exemplars spanning it. Notice that we gave each of the two exemplars the

same weight, and so there are pairs of adjacent regions (across each of the orig-

inal Voronoi boundaries) receiving the same shading, resulting in eight different

shadings in all. This will be relevant later on, when we discuss the refinement of

nearest-neighbour classifiers.

To summarise, the main ingredients of distance-based models are

� distance metrics, which can be Euclidean, Manhattan, Minkowski or Mahalanobis,

among many others;

� exemplars: centroids that find a centre of mass according to a chosen distance

metric, or medoids that find the most centrally located data point; and

� distance-based decision rules, which take a vote among the k nearest exemplars.

In the next sections these ingredients are combined in various ways to obtain super-

vised and unsupervised learning algorithms.

8.3 Nearest-neighbour classification

In the previous section we saw how to generalise the basic linear classifier to more than

two classes, by learning an exemplar for each class and using the nearest-exemplar

decision rule to classify new data. In fact, the most commonly used distance-based

classifier is even more straightforward than that: it simply uses each training instance

as an exemplar. Consequently, ‘training’ this classifier requires nothing more than

memorising the training data. This extremely simple classifier is known as the nearest-

neighbour classifier. Its decision regions are made up of the cells of a Voronoi tessela-

tion, with piecewise linear decision boundaries selected from the Voronoi boundaries

(since adjacent cells may be labelled with the same class).

What are the properties of the nearest-neighbour classifier? First, notice that, un-

less the training set contains identical instances from different classes, we will be able

to separate the classes perfectly on the training set – not really a surprise, as we memo-

rised all training examples! Furthermore, by choosing the right exemplars we can more

or less represent any decision boundary, or at least an arbitrarily close piecewise linear

8.3 Nearest-neighbour classification 243

approximation. It follows that the nearest-neighbour classifier has low bias, but also

high variance: move any of the exemplars spanning part of the decision boundary, and

you will also change the boundary. This suggests a risk of overfitting if the training data

is limited, noisy or unrepresentative.

From an algorithmic point of view, training the nearest-neighbour classifier is very

fast, taking only O(n) time for storing n exemplars. The downside is that classifying

a single instance also takes O(n) time, as the instance will need to be compared with

every exemplar to determine which one is the nearest. It is possible to reduce clas-

sification time at the expense of increased training time by storing the exemplars in

a more elaborate data structure, but this tends not to scale well to large numbers of

features.

In fact, high-dimensional instance spaces can be problematic for another reason:

the infamous curse of dimensionality. High-dimensional spaces tend to be extremely

sparse, which means that every point is far away from virtually every other point, and

hence pairwise distances tend to be uninformative. However, whether or not you are

hit by the curse of dimensionality is not simply a matter of counting the number of

features, as there are several reasons why the effective dimensionality of the instance

space may be much smaller than the number of features. For example, some of the

features may be irrelevant and drown out the relevant features’ signal in the distance

calculations. In such a case it would be a good idea, before building a distance-based

model, to reduce dimensionality by performing �feature selection, as will be discussed

in Chapter 10. Alternatively, the data may live on a manifold of lower dimension than

the instance space (e.g., the surface of a sphere is a two-dimensional manifold wrapped

around a three-dimensional object), which allows other dimensionality-reduction tech-

niques such as �principal component analysis, which will be explained in the same

chapter. In any case, before applying nearest-neighbour classification it is a good idea

to plot a histogram of pairwise distances of a sample to see if they are sufficiently var-

ied.

Notice that the nearest-neighbour method can easily be applied to regression prob-

lems with a real-valued target variable. In fact, the method is completely oblivious

to the type of target variable and can be used to output text documents, images and

videos. It is also possible to output the exemplar itself instead of a separate target, in

which case we usually speak of nearest-neighbour retrieval. Of course we can only out-

put targets (or exemplars) stored in the exemplar database, but if we have a way of ag-

gregating these we can go beyond this restriction by applying the k-nearest neighbour

method. In its simplest form, the k-nearest neighbour classifier takes a vote between

the k ≥ 1 nearest exemplars of the instance to be classified, and predicts the majority

class. We can easily turn this into a probability estimator by returning the normalised

class counts as a probability distribution over classes.

244 8. Distance-based models

Figure 8.9. (left) Decision regions of a 3-nearest neighbour classifier; the shading represents the

predicted probability distribution over the five classes. (middle) 5-nearest neighbour. (right)

7-nearest neighbour.

Figure 8.9 illustrates this on a small data set of 20 exemplars from five different

classes, for k = 3,5,7. The class distribution is visualised by assigning each test point

the class of a uniformly sampled neighbour: so, in a region where two of k = 3 neigh-

bours are red and one is orange, the shading is a mix of two-thirds red and one-third

orange. While for k = 3 the decision regions are still mostly discernible, this is much

less so for k = 5 and k = 7. This may seem at odds with our earlier demonstration of the

increase in the number of decision regions with increasing k in Example 8.2. However,

this increase is countered by the fact that the probability vectors become more similar

to each other. To take an extreme example: if k is equal to the number of exemplars

n, every test instance will have the same number of neighbours and will receive the

same probability vector which is equal to the prior distribution over the exemplars. If

k = n−1 we can reduce one of the class counts by 1, which can be done in c ways: the

same number of possibilities as with k = 1!

We conclude that the refinement of k-nearest neighbour – the number of different

predictions it can make – initially increases with increasing k, then decreases again.

Furthermore, we can say that the bias increases and the variance decreases with in-

creasing k. There is no easy recipe to decide what value of k is appropriate for a given

data set. However, it is possible to sidestep this question to some extent by applying

distance weighting to the votes: that is, the closer an exemplar is to the instance to

be classified, the more its vote counts. Figure 8.10 demonstrates this, using the re-

ciprocal of the distance to an exemplar as the weight of its vote. This blurs the deci-

sion boundaries, as the model now applies a combination of grouping by means of the

Voronoi boundaries, and grading by means of distance weighting. Furthermore, since

the weights decrease quickly for larger distances, the effect of increasing k is much

smaller than with unweighted voting. In fact, with distance weighting we can simply

put k = n and still obtain a model that makes different predictions in different parts of

the instance space. One could say that distance weighting makes k-nearest neighbour

8.4 Distance-based clustering 245

Figure 8.10. (left) 3-nearest neighbour with distance weighting on the data from Figure 8.9.

(middle) 5-nearest neighbour. (right) 7-nearest neighbour.

more of a global model, while without it (and for small k) it is more like an aggregation

of local models.

If k-nearest neighbour is used for regression problems, the obvious way to aggre-

gate the predictions from the k neighbours is by taking the mean value, which can

again be distance-weighted. This would lend the model additional predictive power

by predicting values that aren’t observed among the stored exemplars. More generally,

we can apply k-means to any learning problem where we have an appropriate ‘aggre-

gator’ for multiple target values.

8.4 Distance-based clustering

In a distance-based context, unsupervised learning is usually taken to refer to cluster-

ing, and we will now review a number of distance-based clustering methods. The ones

considered in this section are all exemplar-based and hence predictive: they naturally

generalise to unseen instances (see Section 3.3 for the distinction between predictive

and descriptive clustering). In the next section we consider a clustering method that is

not exemplar-based and hence descriptive.

Predictive distance-based clustering methods use the same ingredients as distance-

based classifiers: a distance metric, a way to construct exemplars and a distance-based

decision rule. In the absence of an explicit target variable, the assumption is that the

distance metric indirectly encodes the learning target, so that we aim to find clusters

that are compact with respect to the distance metric. This requires a notion of cluster

compactness that can serve as our optimisation criterion. To that end, we refer back to

the scatter matrix introduced in Background 7.2 on p.200.

Definition 8.3 (Scatter). Given a data matrix X, the scatter matrix is the matrix

S= (X−1μ
)T (X−1μ

)= n∑
i=1

(
Xi · −μ

)T (Xi · −μ
)

246 8. Distance-based models

whereμ is a row vector containing all column means of X. The scatter of X is defined

as Scat(X)=∑n
i=1 ||Xi · −μ||2, which is equal to the trace of the scatter matrix (i.e., the

sum of its diagonal elements). �

Imagine now that we partition D into K subsets D1�. . .�DK =D , and letμ j denote

the mean of D j . Let S be the scatter matrix of D , and S j be the scatter matrices of D j .

These scatter matrices then have the following relationship:

S=
K∑

j=1
S j +B (8.2)

Here, B is the scatter matrix that results by replacing each point in D with the corre-

sponding μ j . Each S j is called a within-cluster scatter matrix and describes the com-

pactness of the j -th cluster. B is the between-cluster scatter matrix and describes the

spread of the cluster centroids. It follows that the traces of these matrices can be de-

composed similarly, which gives

Scat(D)=
K∑

j=1
Scat(D j)+

K∑
j=1
|D j | ||μ j −μ||2 (8.3)

What this tells us is that minimising the total scatter over all clusters is equivalent to

maximising the (weighted) scatter of the centroids. The K -means problem is to find a

partition that minimises the total within-cluster scatter.

Example 8.3 (Reducing scatter by partitioning data). Consider the following

five points: (0,3), (3,3), (3,0), (−2,−4) and (−4,−2). These points are, conve-

niently, centred around (0,0). The scatter matrix is

S=
(

0 3 3 −2 −4

3 3 0 −4 −2

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 3

3 3

3 0

−2 −4

−4 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
(

38 25

25 38

)

with trace Scat(D) = 76. If we cluster the first two points together in one cluster

and the remaining three in another, then we obtain cluster means μ1 = (1.5,3)

and μ2 = (−1,−2) and within-cluster scatter matrices

S1 =
(

0−1.5 3−1.5

3−3 3−3

)(
0−1.5 3−3

3−1.5 3−3

)
=
(

4.5 0

0 0

)

S2 =
(

3− (−1) −2− (−1) −4− (−1)

0− (−2) −4− (−2) −2− (−2)

)⎛⎜⎝
3− (−1) 0− (−2)

−2− (−1) −4− (−2)

−4− (−1) −2− (−2)

⎞
⎟⎠=
(

26 10

10 8

)

8.4 Distance-based clustering 247

with traces Scat(D1) = 4.5 and Scat(D2) = 34. Two copies of μ1 and three copies

of μ2 have, by definition, the same centre of gravity as the complete data set:

(0,0) in this case. We thus calculate the between-cluster scatter matrix as

B=
(

1.5 1.5 −1 −1 −1

3 3 −2 −2 −2

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.5 3

1.5 3

−1 −2

−1 −2

−1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
(

7.5 15

15 30

)

with trace 37.5.

Alternatively, if we treat the first three points as a cluster and put the other two

in a second cluster, then we obtain cluster means μ′1 = (2,2) and μ′2 = (−3,−3),

and within-cluster scatter matrices

S′1 =
(

0−2 3−2 3−2

3−2 3−2 0−2

)⎛⎜⎝
0−2 3−2

3−2 3−2

3−2 0−2

⎞
⎟⎠=
(

6 −3

−3 6

)

S′2 =
(
−2− (−3) −4− (−3)

−4− (−3) −2− (−3)

)(
−2− (−3) −4− (−3)

−4− (−3) −2− (−3)

)
=
(

2 −2

−2 2

)

with traces Scat(D ′
1)= 12 and Scat(D ′

2)= 4. The between-cluster scatter matrix is

B′ =
(

2 2 2 −3 −3

2 2 2 −3 −3

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 2

2 2

2 2

−3 −3

−3 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
(

30 30

30 30

)

with trace 60. Clearly, the second clustering produces tighter clusters whose cen-

troids are further apart.

K -means algorithm

The K -means problem is NP-complete, which means that there is no efficient solution

to find the global minimum and we need to resort to a heuristic algorithm. The best-

known algorithm is usually also called K -means, although the name ‘Lloyd’s algorithm’

is also used. The outline of the algorithm is given in Algorithm 8.1. The algorithm

iterates between partitioning the data using the nearest-centroid decision rule, and

248 8. Distance-based models

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 8.11. (left) First iteration of 3-means on Gaussian mixture data. The dotted lines are

the Voronoi boundaries resulting from randomly initialised centroids; the violet solid lines are

the result of the recalculated means. (middle) Second iteration, taking the previous partition as

starting point (dotted line). (right) Third iteration with stable clustering.

recalculating centroids from a partition. Figure 8.11 demonstrates the algorithm on a

small data set with three clusters, and Example 8.4 gives the result on our example data

set describing properties of different machine learning methods.

Example 8.4 (Clustering MLM data). Refer back to the MLM data set in Table

1.4 on p.39 (it is also helpful to look at its two-dimensional approximation in

Figure 1.7 on p.37). When we run K -means on this data with K = 3, we obtain

the clusters {Associations,Trees,Rules}, {GMM,naive Bayes}, and a larger clus-

ter with the remaining data points. When we run it with K = 4, we get that

the large cluster splits into two: {kNN,Linear Classifier,Linear Regression} and

Algorithm 8.1: KMeans(D,K) – K -means clustering using Euclidean distance

Dis2.

Input : data D ⊆Rd ; number of clusters K ∈N.

Output : K cluster means μ1, . . . ,μK ∈Rd .

1 randomly initialise K vectors μ1, . . . ,μK ∈Rd ;

2 repeat

3 assign each x ∈D to argmin j Dis2(x,μ j);

4 for j = 1 to K do

5 D j ← {x ∈D|x assigned to cluster j };

6 μ j = 1
|D j |
∑

x∈D j
x;

7 end

8 until no change in μ1, . . . ,μK ;

9 return μ1, . . . ,μK ;

8.4 Distance-based clustering 249

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 8.12. (left) First iteration of 3-means on the same data as Figure 8.11 with differently

initialised centroids. (right) 3-means has converged to a sub-optimal clustering.

{Kmeans,Logistic Regression,SVM}; but also that GMM gets reallocated to the

latter cluster, and naive Bayes ends up as a singleton.

It can be shown that one iteration of K -means can never increase the within-cluster

scatter, from which it follows that the algorithm will reach a stationary point: a point

where no further improvement is possible. It is worth noting that even the simplest

data set will have many stationary points.

Example 8.5 (Stationary points in clustering). Consider the task of dividing

the set of numbers {8,44,50,58,84} into two clusters. There are four pos-

sible partitions that 2-means can find: {8}, {44,50,58,84}; {8,44}, {50,58,84};

{8,44,50}, {58,84}; and {8,44,50,58}, {84}. It is easy to verify that each of these

establishes a stationary point for 2-means, and hence will be found with a suit-

able initialisation. Only the first clustering is optimal; i.e., it minimises the total

within-cluster scatter.

In general, while K -means converges to a stationary point in finite time, no guaran-

tees can be given about whether the convergence point is in fact the global minimum,

or if not, how far we are from it. Figure 8.12 shows how an unfortunate initialisation of

the centroids can lead to a sub-optimal solution. In practice it is advisable to run the

algorithm a number of times and select the solution with the smallest within-cluster

scatter.

250 8. Distance-based models

Clustering around medoids

It is straightforward to adapt the K -means algorithm to use a different distance metric;

note that this will also change the objective function being minimised. Algorithm 8.2

gives the K -medoids algorithm, which additionally requires the exemplars to be data

points. Notice that calculating the medoid of a cluster requires examining all pairs of

points – whereas calculating the mean requires just a single pass through the points

– which can be prohibitive for large data sets. Algorithm 8.3 gives an alternative al-

gorithm called partitioning around medoids (PAM) that tries to improve a clustering

locally by swapping medoids with other data points. The quality of a clustering Q is

calculated as the total distance over all points to their nearest medoid. Notice that

there are k(n−k) pairs of one medoid and one non-medoid, and evaluating Q requires

iterating over n−k data points, so the computational cost of one iteration is quadratic

in the number of data points. For large data sets one can run PAM on a small sample

but evaluate Q on the whole data set, and repeat this a number of times for different

samples.

An important limitation of the clustering methods discussed in this section is that

they represent clusters only by means of exemplars. This disregards the shape of the

clusters, and sometimes leads to counter-intuitive results. The two data sets in Fig-

ure 8.13 are identical, except for a rescaling of the y-axis. Nevertheless, K -means finds

entirely different clusterings. This is not actually a shortcoming of the K -means algo-

rithm as such, as in Figure 8.13 (right) the two centroids are further away than in the

intended solution, and hence this represents a better solution in terms of Equation

Algorithm 8.2: KMedoids(D,K ,Dis) – K -medoids clustering using arbitrary dis-

tance metric Dis.

Input : data D ⊆X ; number of clusters K ∈N;

distance metric Dis : X ×X →R.

Output : K medoids μ1, . . . ,μK ∈D , representing a predictive clustering of X .

1 randomly pick K data points μ1, . . . ,μK ∈D ;

2 repeat

3 assign each x ∈D to argmin j Dis(x,μ j);

4 for j = 1 to k do

5 D j ← {x ∈D|x assigned to cluster j };

6 μ j = argminx∈D j

∑
x′∈D j

Dis(x,x′);

7 end

8 until no change in μ1, . . . ,μK ;

9 return μ1, . . . ,μK ;

8.4 Distance-based clustering 251

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 8.13. (left) On this data 2-means detects the right clusters. (right) After rescaling the

y-axis, this configuration has a higher between-cluster scatter than the intended one.

8.3. The real issue is that in this case we want to estimate the ‘shape’ of the clusters as

well as the cluster centroids, and hence take account of more than just the trace of the

scatter matrices. We will discuss this further in the next chapter.

Algorithm 8.3: PAM(D,K ,Dis) – Partitioning around medoids clustering using ar-

bitrary distance metric Dis.

Input : data D ⊆X ; number of clusters K ∈N;

distance metric Dis : X ×X →R.

Output : K medoids μ1, . . . ,μK ∈D , representing a predictive clustering of X .

1 randomly pick K data points μ1, . . . ,μK ∈D ;

2 repeat

3 assign each x ∈D to argmin j Dis(x,μ j);

4 for j = 1 to k do

5 D j ← {x ∈D|x assigned to cluster j };

6 end

7 Q ←∑ j
∑

x∈D j
Dis(x,μ j);

8 for each medoid m and each non-medoid o do

9 calculate the improvement in Q resulting from swapping m with o;

10 end

11 select the pair with maximum improvement and swap;

12 until no further improvement possible;

13 return μ1, . . . ,μK ;

252 8. Distance-based models

0 0.2 0.4 0.6 0.8 1

1

2

Silhouette Value

C
lu

s
te

r

0 0.2 0.4 0.6 0.8 1

1

2

Silhouette Value

C
lu

s
te

r

Figure 8.14. (left) Silhouette for the clustering in Figure 8.13 (left), using squared Euclidean

distance. Almost all points have a high s(x), which means that they are much closer, on average,

to the other members of their cluster than to the members of the neighbouring cluster. (right)

The silhouette for the clustering in Figure 8.13 (right) is much less convincing.

Silhouettes

How could we detect the poor quality of the clustering in Figure 8.13 (right)? An inter-

esting technique is the use of silhouettes. For any data point xi , let d(xi ,D j) denote the

average distance of xi to the data points in cluster D j , and let j (i) denote the index of

the cluster that xi belongs to. Furthermore, let a(xi) = d(xi ,D j (i)) be the average dis-

tance of xi to the points in its own cluster D j (i), and let b(xi) = mink
= j (i) d(xi ,Dk) be

the average distance to the points in its neighbouring cluster. We would expect a(xi) to

be considerably smaller than b(xi), but this cannot be guaranteed. So we can take the

difference b(xi)−a(xi) as an indication of how ‘well-clustered’ xi is, and divide this by

b(xi) to obtain a number less than or equal to 1.

It is, however, conceivable that a(xi) > b(xi), in which case the difference b(xi)−
a(xi) is negative. This describes the situation that, on average, the members of the

neighbouring cluster are closer to xi than the members of its own cluster. In order

to get a normalised value we divide by a(xi) in this case. This leads to the following

definition:

s(xi)= b(xi)−a(xi)

max(a(xi),b(xi))
(8.4)

A silhouette then sorts and plots s(x) for each instance, grouped by cluster. Examples

are shown in Figure 8.14 for the two clusterings in Figure 8.13. In this particular case

we have used squared Euclidean distance in the construction of the silhouette, but

the method can be applied to other distance metrics. We can clearly see that the first

clustering is much better than the second. In addition to the graphical representation,

we can compute average silhouette values per cluster and over the whole data set.

8.5 Hierarchical clustering 253

510152025

Logistic Regression

SVM

kNN

Kmeans

Linear Classifier

Linear Regression

naive Bayes

GMM

Trees

Rules

Associations

Figure 8.15. A dendrogram (printed left to right to improve readability) constructed by hier-

archical clustering from the data in Table 1.4 on p.39.

8.5 Hierarchical clustering

The clustering methods discussed in the previous section use exemplars to represent

a predictive clustering: a partition of the entire instance space. In this section we

take a look at methods that represent clusters using trees. We previously encountered

�clustering trees in Section 5.3: those trees use features to navigate the instance space,

similar to decision trees, and aren’t distance-based as such. Here we consider trees

called dendrograms, which are purely defined in terms of a distance measure. Because

dendrograms use features only indirectly, as the basis on which the distance measure

is calculated, they partition the given data rather than the entire instance space, and

hence represent a descriptive clustering rather than a predictive one.

Example 8.6 (Hierarchical clustering of MLM data). We continue Example 8.4

on p.248. A hierarchical clustering of the MLM data is given in Figure 8.15.

The tree shows that the three logical methods at the top form a strong clus-

ter. If we wanted three clusters, we get the logical cluster, a second small

cluster {GMM,naive Bayes}, and the remainder. If we wanted four clusters,

we would separate GMM and naive Bayes, as the tree indicates this cluster is

the least tight of the three (notice that this is slightly different from the so-

lution found by 4-means). If we wanted five clusters, we would construct

{Linear Regression,LinearClassifier} as a separate cluster. This illustrates the key

254 8. Distance-based models

advantage of hierarchical clustering: it doesn’t require fixing the number of clus-

ters in advance.

A precise definition of a dendrogram is as follows.

Definition 8.4 (Dendrogram). Given a data set D, a dendrogram is a binary tree

with the elements of D at its leaves. An internal node of the tree represents the subset

of elements in the leaves of the subtree rooted at that node. The level of a node is

the distance between the two clusters represented by the children of the node. Leaves

have level 0. �

For this definition to work, we need a way to measure how close two clusters are. You

might think that this is straightforward: just calculate the distance between the two

cluster means. However, this occasionally leads to problems, as discussed later in this

section. Furthermore, taking cluster means as exemplars assumes Euclidean distance,

and we may want to use one of the other distance metrics discussed earlier. This has

led to the introduction of the so-called linkage function, which is a general way to turn

pairwise point distances into pairwise cluster distances.

Definition 8.5 (Linkage function). A linkage function L : 2X × 2X → R calculates

the distance between arbitrary subsets of the instance space, given a distance metric

Dis : X ×X →R. �

The most common linkage functions are as follows:

Single linkage defines the distance between two clusters as the smallest pairwise

distance between elements from each cluster.

Complete linkage defines the distance between two clusters as the largest pointwise

distance.

Average linkage defines the cluster distance as the average pointwise distance.

Centroid linkage defines the cluster distance as the point distance between the clus-

ter means.

These linkage functions can be defined mathematically as follows:

Lsingle(A,B)= min
x∈A,y∈B

Dis(x, y)

Lcomplete(A,B)= max
x∈A,y∈B

Dis(x, y)

Laverage(A,B)=
∑

x∈A,y∈B Dis(x, y)

|A| · |B |
Lcentroid(A,B)=Dis

(∑
x∈A x

|A| ,

∑
y∈B y

|B |
)

8.5 Hierarchical clustering 255

Clearly, all these linkage functions coincide for singleton clusters: L({x}, {y})=Dis(x, y).

However, for larger clusters they start to diverge. For example, suppose Dis(x, y) <
Dis(x, z), then the linkage between {x} and {y, z} is different in all four cases:

Lsingle({x}, {y, z})=Dis(x, y)

Lcomplete({x}, {y, z})=Dis(x, z)

Laverage({x}, {y, z})= (Dis(x, y)+Dis(x, z)
)

/2

Lcentroid({x}, {y, z})=Dis(x, (y + z)/2)

The general algorithm to build a dendrogram is given in Algorithm 8.4. The tree is

built from the data points upwards and is hence a bottom–up or agglomerative algo-

rithm. At each iteration the algorithm constructs a new partition of the data by merg-

ing the two nearest clusters together. In general, the HAC algorithm gives different

results when different linkage functions are used. Single linkage is the easiest case to

understand, as it effectively builds a graph by adding increasingly longer links between

points, one at a time, such that ultimately there is a path between any pair of points

(hence the term ‘linkage’). At any point during this process, the connected compo-

nents are the clusters found at that iteration, and the linkage of the most recently found

cluster is the length of the most recently added link. Hierarchical clustering using sin-

gle linkage can essentially be done by calculating and sorting all pairwise distances

between data points, which requires O(n2) time for n points. The other linkage func-

tions require at least O(n2 logn). Notice that the unoptimised algorithm in Algorithm

8.4 has time complexity O(n3).

Algorithm 8.4: HAC(D,L) – Hierarchical agglomerative clustering.

Input : data D ⊆X ; linkage function L : 2X ×2X →R defined in terms of

distance metric.

Output : a dendrogram representing a descriptive clustering of D .

1 initialise clusters to singleton data points;

2 create a leaf at level 0 for every singleton cluster;

3 repeat

4 find the pair of clusters X ,Y with lowest linkage l , and merge;

5 create a parent of X ,Y at level l ;

6 until all data points are in one cluster;

7 return the constructed binary tree with linkage levels;

256 8. Distance-based models

1 2 3 4

5 6 7 8

A

B

D

E FG

4 8 2 3 6 7 1 5

C

AC B D

E

F

G

G

F

1 2 3 4

5 6 7 8

A

B

D

E FG

4 8 2 3 6 7 1 5

C

AC B DE

1 2 3 4

5 6 7 8

A

B

D

E FG

4 8 2 3 6 7 1 5

C

AC B DEF

G

Figure 8.16. (left) Complete linkage defines cluster distance as the largest pairwise distance

between elements from each cluster, indicated by the coloured lines between data points. The

clustering found can be represented as nested partitions (bottom) or a dendrogram (top); the

level of a horizontal connection between clusters in the dendrogram corresponds to the length

of a linkage line. The example assumes that ties are broken by small irregularities in the grid.

(middle) Centroid linkage defines the distance between clusters as the distance between their

means. Notice that E obtains the same linkage as A and B, and so the latter clusters effectively

disappear. (right) Single linkage defines the distance between clusters as the smallest pairwise

distance. The dendrogram all but collapses, which means that no meaningful clusters are found

in the given grid configuration.

Example 8.7 (Linkage matters). We consider a regular grid of 8 points in two

rows of four (Figure 8.16). We assume that ties are broken by small irregulari-

ties. Each linkage function merges the same clusters in the same order, but the

linkages are quite different in each case. Complete linkage gives the impression

that D is far removed from the rest, whereas by moving D very slightly to the

right it would have been added to E before C. With centroid linkage we see that E

has in fact the same linkage as A and B, which means that A and B are not really

discernible as separate clusters, even though they are found first. Single link-

age seems preferable in this case, as it most clearly demonstrates that there is no

meaningful cluster structure in this set of points.

Single and complete linkage both define the distance between clusters in terms of

a particular pair of points. Consequently, they cannot take the shape of the cluster

into account, which is why average and centroid linkage can offer an advantage. How-

ever, centroid linkage can lead to non-intuitive dendrograms, as illustrated in Figure

8.5 Hierarchical clustering 257

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

1 2

3

1 2 3
0

0.5

1

1.5

2

Figure 8.17. (left) Points 1 and 2 are closer to each other than to point 3. However, the distance

between point 3 to the centroid of the other two points is less than any of the pairwise distances.

(right) This results in a decrease in linkage when adding point 3 to cluster {1,2}, and hence a

non-monotonic dendrogram.

8.17. The issue here is that we have L({1}, {2})< L({1}, {3}) and L({1}, {2})< L({2}, {3}) but

L({1}, {2}) > L({1,2}, {3}). The first two inequalities mean that 1 and 2 are the first to be

merged into a cluster; but the second inequality means that the level of cluster {1,2,3}

in the dendrogram drops below the level of {1,2}. Centroid linkage violates the require-

ment of monotonicity, which stipulates that L(A,B)< L(A,C) and L(A,B)< L(B ,C) im-

plies L(A,B)< L(A∪B ,C) for any clusters A, B and C . The other three linkage functions

are monotonic (the example also serves as an illustration why average linkage and cen-

troid linkage are not the same).

Another thing to keep in mind when constructing dendrograms is that the hier-

archical clustering method is deterministic and will always construct a clustering. Con-

sider Figure 8.18, which shows a data set of 20 uniformly randomly sampled points.

One would be hard-pressed to find any cluster structure in this data; yet a dendro-

gram constructed with complete linkage and Euclidean distance appears to indicate

that there are three or four clearly discernible clusters. But if we look closer, we see

that the linkage levels are very close together in the bottom of the tree, and the fact

that linkages are higher towards the top comes primarily from the use of complete link-

age, which concentrates on maximal pairwise distances. The silhouette in Figure 8.18

(right) confirms that the cluster structure is not very strong. Effectively, we are witness-

ing here a particular, clustering-related kind of overfitting, already familiar from other

tree-based models discussed in Chapter 5. Furthermore, dendrograms – like other tree

models – have high variance in that small changes in the data points can lead to large

changes in the dendrogram.

In conclusion, hierarchical clustering methods have the distinct advantage that the

number of clusters does not need to be fixed in advance. However, this advantage

comes at considerable computational cost. Furthermore, we now need to choose not

258 8. Distance-based models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2
3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

1920

 8 15 7 2 4 16 5 12 10 17 1 3 13 14 18 6 9 19 11 20
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1

2

3

Silhouette Value

C
lu

s
te

r

Figure 8.18. (left) 20 data points, generated by uniform random sampling. (middle) The den-

drogram generated from complete linkage. The three clusters suggested by the dendrogram are

spurious as they cannot be observed in the data. (right) The rapidly decreasing silhouette val-

ues in each cluster confirm the absence of a strong cluster structure. Point 18 has a negative

silhouette value as it is on average closer to the green points than to the other red points.

just the distance measure used, but also the linkage function.

8.6 From kernels to distances

In Section 7.5 we discussed how kernels can be used to extend the power of linear mod-

els considerably. Recall that a kernel is a function κ(xi ,x j)=φ(xi)·φ(x j) that calculates

a dot product in some feature space, but without constructing the feature vectors φ(x)

explicitly. Any learning method that can be defined purely in terms of dot products

of data points is amenable to such ‘kernelisation’. Because of the close connection

between Euclidean distance and dot products we can apply the same ‘kernel trick’ to

many distance-based learning methods.

The key insight is that Euclidean distance can be rewritten in terms of dot products:

Dis2(x,y)= ||x−y||2 =
√

(x−y) · (x−y)=√x ·x−2x ·y+y ·y

This formula clearly shows that the distance between x and y decreases whenever the

dot product x ·y increases, which suggests that the dot product itself is a kind of sim-

ilarity measure. However, it is not translation-invariant, because it depends on the

location of the origin. The two terms x ·x and y ·y have the effect of making the overall

expression translation-invariant. Replacing the dot product with a kernel function κ,

we can construct the following kernelised distance:

Disκ(x,y)=√κ(x,x)−2κ(x,y)+κ(y,y) (8.5)

It turns out that Disκ defines a pseudo-metric (see Definition 8.2 on p.235) whenever

κ is a positive semi-definite kernel.2

2It is only a metric if the feature mapping φ is injective: suppose not, then some distinct x and y are

mapped to the same feature vector φ(x)=φ(y), from which we derive κ(x,x)−2κ(x,y)+κ(y,y)=φ(x) ·φ(x)−
2φ(x) ·φ(y)+φ(y) ·φ(y)= 0.

8.6 From kernels to distances 259

As an illustration, Algorithm 8.5 adapts the �K -means algorithm (Algorithm 8.1

on p.248) to use a kernelised distance. So, the algorithm clusters according to a non-

linear distance in instance space, corresponding to Euclidean distance in an implicit

feature space. However, one complication arises, which is that Theorem 8.1 doesn’t

apply to non-linear distances, and so we cannot construct cluster means in instance

space. For this reason Algorithm 8.5 treats the clustering as a partition rather than a set

of exemplars. Consequently, assigning each data point x to its nearest cluster (step 3)

is now of quadratic complexity, since for each cluster we need to sum up the distances

of all its members to x. In contrast, this step is linear in |D| for the K -means algorithm.

There is an alternative way to turn dot products into distances. Since the dot prod-

uct can be written as ||x|| · ||y||cosθ, where θ is the angle between the vectors x and y,

we define the cosine similarity as

cosθ = x ·y
||x|| · ||y|| =

x ·y√
(x ·x)(y ·y)

(8.6)

Cosine similarity differs from Euclidean distance in that it doesn’t depend on the length

of the vectors x and y. On the other hand, it is not translation-independent, but assigns

special status to the origin: one way to think of it is as a projection onto a unit sphere

around the origin, and measuring distance on that sphere. Cosine similarity is usually

turned into a distance metric by taking 1−cosθ. Being defined entirely in terms of dot

products, it is as easily kernelised as Euclidean distance.

Algorithm 8.5: Kernel-KMeans(D,K) – K -means clustering using kernelised dis-

tance Disκ.

Input : data D ⊆X ; number of clusters K ∈N.

Output : K -fold partition D1� . . .�DK =D .

1 randomly initialise K clusters D1, . . . ,DK ;

2 repeat

3 assign each x ∈D to argmin j
1
|D j |
∑

y∈D j
Disκ(x,y);

4 for j = 1 to K do

5 D j ← {x ∈D|x assigned to cluster j };

6 end

7 until no change in D1, . . . ,DK ;

8 return D1, . . . ,DK ;

260 8. Distance-based models

8.7 Distance-based models: Summary and further reading

Along with linear models, distance-based models are the second group of models with

strong geometric intuitions. The literature on distance-based models is rich and di-

verse; in this chapter I’ve concentrated on getting the main intuitions across.

� In Section 8.1 we reviewed the most commonly used distance metrics: the Minkowski

distance or p-norm with special cases Euclidean distance (p = 2) and Manhat-

tan distance (p = 1); the Hamming distance, which counts the number of bits or

literals that are different; and the Mahalanobis distance, which decorrelates and

normalises the features (Mahalanobis, 1936). Other distances can be taken into

account, as long as they satisfy the requirements of a distance metric listed in

Definition 8.2.

� Section 8.2 investigated the key concepts of neighbours and exemplars. Exem-

plars are either centroids that find a centre of mass according to a chosen dis-

tance metric, or medoids that find the most centrally located data point. The

most commonly used centroid is the arithmetic mean, which minimises squared

Euclidean distance to all other points. Other definitions of centroids are possi-

ble but harder to compute: e.g., the geometric median is the point minimising

Euclidean distance, but does not admit a closed-form solution. The complex-

ity of finding a medoid is always quadratic regardless of the distance metric. We

then considered nearest-neighbour decision rules, and looked in particular at

the difference between 2-norm and 1-norm nearest-exemplar decision bound-

aries, and how these get refined by switching to a 2-nearest-exemplars decision

rule.

� In Section 8.3 we discussed nearest-neighbour models which simply use the train-

ing data as exemplars. This is a very widely used model for classification, the ori-

gins of which can be traced back to Fix and Hodges (1951). Despite its simplicity,

it can be shown that with sufficient training data the error rate is at most twice

the optimal error rate (Cover and Hart, 1967). The 1-nearest neighbour classi-

fier has low bias but high variance; by increasing the number of neighbours over

which we aggregate we can reduce the variance but at the same time increase

the bias. The nearest-neighbour decision rule can also be applied to real-valued

target variables, and more generally to any task where we have an appropriate

aggregator for multiple target values.

� Section 8.4 considered a number of algorithms for distance-based clustering us-

ing either arithmetic means or medoids. The K -means algorithm is a simple

heuristic approach to solve the K -means problem that was originally proposed

8.7 Distance-based models: Summary and further reading 261

in 1957 and is sometimes referred to as Lloyd’s algorithm (Lloyd, 1982). It is de-

pendent on the initial configuration and can easily converge to the wrong sta-

tionary point. We also looked at the K -medoids and partitioning around medoids

algorithms, the latter due to Kaufman and Rousseeuw (1990). These are compu-

tationally more expensive due to the use of medoids. Silhouettes (Rousseeuw,

1987) are a useful technique to check whether points are on average closer to the

other members of their cluster than they are to the members of the neighbouring

cluster. Much more detail about these and other clustering methods is provided

by Jain, Murty and Flynn (1999).

� Whereas the previous clustering methods all result in a partition of the instance

space and are therefore predictive, hierarchical clustering discussed in Section

8.5 applies only to the given data and is hence descriptive. A distinct advantage

is that the clustering is constructed in the form of a dendrogram, which means

that the number of clusters does not need to be specified in advance and can be

chosen by inspecting the dendrogram. However, the method is computationally

expensive and infeasible for large data sets. Furthermore, it is not always obvious

which of the possible linkage functions to choose.

� Finally, in Section 8.6 we briefly considered how distances can be ‘kernelised’,

and we gave one example in the form of kernel K -means. The use of a non-

Euclidean distance metric leads to quadratic complexity of recalculating the clus-

ters in each iteration.

�

