
CHAPTER 3

Beyond binary classification

T
HE PREVIOUS CHAPTER introduced binary classification and associated tasks such as

ranking and class probability estimation. In this chapter we will go beyond these basic

tasks in a number of ways. Section 3.1 discusses how to handle more than two classes.

In Section 3.2 we consider the case of a real-valued target variable. Section 3.3 is de-

voted to various forms of learning that are either unsupervised or aimed at learning

descriptive models.

3.1 Handling more than two classes

Certain concepts are fundamentally binary. For instance, the notion of a coverage

curve does not easily generalise to more than two classes. We will now consider general

issues related to having more than two classes in classification, scoring and class prob-

ability estimation. The discussion will address two issues: how to evaluate multi-class

performance, and how to build multi-class models out of binary models. The latter

is necessary for some models, such as linear classifiers, that are primarily designed to

separate two classes. Other models, including decision trees, handle any number of

classes quite naturally.
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82 3. Beyond binary classification

Multi-class classification

Classification tasks with more than two classes are very common. For instance, once

a patient has been diagnosed as suffering from a rheumatic disease, the doctor will

want to classify him or her further into one of several variants. If we have k classes,

performance of a classifier can be assessed using a k-by-k contingency table. Assessing

performance is easy if we are interested in the classifier’s accuracy, which is still the

sum of the descending diagonal of the contingency table, divided by the number of

test instances. However, as before, this can obscure differences in performance on

different classes, and other quantities may be more meaningful.

Example 3.1 (Performance of multi-class classifiers). Consider the following

three-class confusion matrix (plus marginals):

Predicted

15 2 3 20

Actual 7 15 8 30

2 3 45 50

24 20 56 100

The accuracy of this classifier is (15+15+45)/100 = 0.75. We can calculate per-

class precision and recall: for the first class this is 15/24 = 0.63 and 15/20 = 0.75

respectively, for the second class 15/20= 0.75 and 15/30= 0.50, and for the third

class 45/56 = 0.80 and 45/50 = 0.90. We could average these numbers to obtain

single precision and recall numbers for the whole classifier, or we could take a

weighted average taking the proportion of each class into account. For instance,

the weighted average precision is 0.20 ·0.63+0.30 ·0.75+0.50 ·0.80= 0.75. Notice

that we still have that accuracy is weighted average per-class recall, as in the two-

class case (see Example 2.1 on p.56).

Another possibility is to perform a more detailed analysis by looking at pre-

cision and recall numbers for each pair of classes: for instance, when distin-

guishing the first class from the third precision is 15/17 = 0.88 and recall is

15/18 = 0.83, while distinguishing the third class from the first these numbers

are 45/48= 0.94 and 45/47= 0.96 (can you explain why these numbers are much

higher in the latter direction?).

Imagine now that we want to construct a multi-class classifier, but we only have

the ability to train two-class models – say linear classifiers. There are various ways to
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combine several of them into a single k-class classifier. The one-versus-rest scheme

is to train k binary classifiers, the first of which separates class C1 from C2, . . . ,Cn , the

second of which separates C2 from all other classes, and so on. When training the i -

th classifier we treat all instances of class Ci as positive examples, and the remaining

instances as negative examples. Sometimes the classes are learned in a fixed order,

in which case we learn k −1 models, the i -th one separating Ci from Ci+1, . . . ,Cn with

1≤ i < n. An alternative to one-versus-rest is one-versus-one. In this scheme, we train

k(k −1)/2 binary classifiers, one for each pair of different classes. If a binary classifier

treats the classes asymmetrically, as happens with certain models, it makes more sense

to train two classifiers for each pair, leading to a total of k(k−1) classifiers.

A convenient way to describe all these and other schemes to decompose a k-class

task into l binary classification tasks is by means of a so-called output code matrix.

This is a k-by-l matrix whose entries are +1, 0 or −1. The following are output codes

describing the two ways to transform a three-class task by means of one-versus-one:

⎛
⎜⎝
+1 +1 0

−1 0 +1

0 −1 −1

⎞
⎟⎠

⎛
⎜⎝
+1 −1 +1 −1 0 0

−1 +1 0 0 +1 −1

0 0 −1 +1 −1 +1

⎞
⎟⎠

Each column of these matrices describes a binary classification task, using the class

corresponding to the row with the +1 entry as positive class and the class with the −1

entry as the negative class. So, in the symmetric scheme on the left, we train three clas-

sifiers: one to distinguish between C1 (positive) and C2 (negative), one to distinguish

between C1 (positive) and C3 (negative), and the remaining one to distinguish between

C2 (positive) and C3 (negative). The asymmetric scheme on the right learns three more

classifiers with the roles of positives and negatives swapped. The code matrices for the

unordered and ordered version of the one-versus-rest scheme are as follows:

⎛
⎜⎝
+1 −1 −1

−1 +1 −1

−1 −1 +1

⎞
⎟⎠

⎛
⎜⎝
+1 0

−1 +1

−1 −1

⎞
⎟⎠

On the left, we learn one classifier to distinguish C1 (positive) from C2 and C3 (nega-

tive), another one to distinguish C2 (positive) from C1 and C3 (negative), and the third

one to distinguish C3 (positive) from C1 and C2 (negative). On the right, we have or-

dered the classes in the order C1 – C2 – C3, and thus only two classifiers are needed.

In order to decide the class for a new test instance, we collect predictions from

all binary classifiers which can again be +1 for positive, −1 for negative and 0 for no

prediction or reject (the latter is possible, for instance, with a rule-based classifier).

Together, these predictions form a ‘word’ that can be looked up in the code matrix, a

process also known as decoding. Suppose the word is−1 +1 −1 and the scheme is un-
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ordered one-versus-rest, then we know the decision should be class C2. The question

is: what should we with words that do not appear in the code matrix? For instance,

suppose the word is 0 + 1 0, and the scheme is symmetric one-versus-one (the first

of the above four code matrices). In this case we could argue that the nearest code

word is the first row in the matrix, and so we should predict C1. To make this a lit-

tle bit more precise, we define the distance between a word w and a code word c as

d(w,c)=∑i (1−wi ci )/2, where i ranges over the ‘bits’ of the words (the columns in the

code matrix). That is, bits where the two words agree do not contribute to the distance;

each bit where one word has +1 and the other −1 contributes 1; and if one of the bits

is 0 the contribution is 1/2, regardless of the other bit.1 The predicted class for word w

is then argmin j d(w,c j ), where c j is the j -th row of the code matrix. So, if w = 0 +1 0

then d(w,c1)= 1 and d(w,c2)= d(w,c3)= 1.5, which means that we predict C1.

However, the nearest code word is not always unique. For instance, suppose we use

a four-class one-versus-rest scheme, and two of the binary classifiers predict positive

and the other two negative, then this word is equidistant to two code words, and so we

can’t resolve which of the two classes corresponding to the two nearest code words to

predict. We can improve the situation by adding more columns to our code matrix:

⎛
⎜⎜⎜⎜⎝
+1 −1 −1 −1

−1 +1 −1 −1

−1 −1 +1 −1

−1 −1 −1 +1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
+1 −1 −1 −1 +1 +1 +1

−1 +1 −1 −1 +1 −1 −1

−1 −1 +1 −1 −1 +1 −1

−1 −1 −1 +1 −1 −1 +1

⎞
⎟⎟⎟⎟⎠

On the left we see a standard four-class one-versus-rest code matrix, which has been

extended with three extra columns (i.e., binary learning problems) on the right. As a re-

sult, the distance between any two code words has now increased from 2 to 4, increas-

ing the likelihood that we can decode words that are not contained in the code matrix.

The resulting scheme can be seen as a mix between one-versus-rest and one-versus-

one classification. However, notice that the additional binary learning problems may

be hard. For instance, if our four classes are spam e-mails, work e-mails, household

e-mails (e.g., utility bills or credit card statements) and private e-mails, then each one-

versus-rest binary classification task may be much easier than, say, distinguishing be-

tween spam and work e-mails on the one hand and household and private e-mails on

the other.

The one-versus-rest and one-versus-one schemes are the most commonly used

ways to turn binary classifiers into multi-class classifiers. In order to force a decision in

the one-versus-rest scenario we can settle on a class ordering prior to or after learning.

In the one-versus-one scheme we can use voting to arrive at a decision, which is actu-

1This is a slight generalisation of the Hamming distance for binary strings, which counts the number of

positions in which the two strings differ.
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ally equivalent to distance-based decoding as demonstrated by the following example.

Example 3.2 (One-versus-one voting). A one-versus-one code matrix for k = 4

classes is as follows: ⎛
⎜⎜⎜⎜⎝
+1 +1 +1 0 0 0

−1 0 0 +1 +1 0

0 −1 0 −1 0 +1

0 0 −1 0 −1 −1

⎞
⎟⎟⎟⎟⎠

Suppose our six pairwise classifiers predict w = +1 −1 +1 −1 +1 +1. We can

interpret this as votes for C1 – C3 – C1 – C3 – C2 – C3; i.e., three votes for C3, two

votes for C1 and one vote for C2. More generally, the i -th classifier’s vote for the

j -th class can be expressed as (1+wi c j i )/2, where c j i is the entry in the j -th row

and i -th column of the code matrix. However, this overcounts the 0 entries in the

code matrix; since every class participates in k−1 pairwise binary tasks, and there

are l = k(k −1)/2 tasks, the number of zeros in every row is k(k−1)/2− (k −1)=
(k−1)(k−2)/2= l (k−2)/k (3 in our case). For each zero we need to subtract half

a vote, so the number of votes for C j is

v j =
(

l∑
i=1

1+wi c j i

2

)
− l

k−2

2k
=
(

l∑
i=1

wi c j i −1

2

)
+ l − l

k−2

2k

=−d j + l
2k−k+2

2k
= (k−1)(k+2)

4
−d j

where d j = ∑i (1−wi c j i )/2 is the bit-wise distance we used earlier. In other

words, the distance and number of votes for each class sum to a constant de-

pending only on the number of classes; with three classes this is 4.5. This can

be checked by noting that the distance between w and the first code word is 2.5

(two votes for C1); with the second code word, 3.5 (one vote for C2); with the third

code word, 1.5 (three votes for C3); and 4.5 with the fourth code word (no votes).

If our binary classifiers output scores, we can take these into account as follows. As

before we assume that the sign of the scores si indicates the class. We can then use

the appropriate entry in the code matrix c j i to calculate a margin zi = si c j i , which we

feed into a loss function L (margins and loss functions were discussed in Section 2.2).

We thus define the distance between a vector of scores s and the j -th code word c j as

d(s,c j )=∑i L(si c j i ), and we assign the class which minimises this distance. This way

of arriving at a multi-class decision from binary scores is called loss-based decoding.
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Example 3.3 (Loss-based decoding). Continuing the previous example, sup-

pose the scores of the six pairwise classifiers are (+5,−0.5,+4,−0.5,+4,+0.5).

This leads to the following margins, in matrix form:

⎛
⎜⎜⎜⎜⎝
+5 −0.5 +4 0 0 0

−5 0 0 −0.5 +4 0

0 +0.5 0 +0.5 0 +0.5

0 0 −4 0 −4 −0.5

⎞
⎟⎟⎟⎟⎠

Using 0–1 loss we ignore the magnitude of the margins and thus predict C3 as in

the voting-based scheme of Example 3.2. Using exponential loss L(z)= exp(−z),

we obtain the distances (4.67,153.08,4.82,113.85). Loss-based decoding would

therefore (just) favour C1, by virtue of its strong wins against C2 and C4; in con-

trast, all three wins of C3 are with small margin.

It should be noted that loss-based decoding assumes that each binary classifier scores

on the same scale.

Multi-class scores and probabilities

If we want to calculate multi-class scores and probabilities from binary classifiers, we

have a number of different options.

� We can use the distances obtained by loss-based decoding and turn them into

scores by means of some appropriate transformation, just as we turned bit-wise

distances into votes in Example 3.2. This method is applicable if the binary clas-

sifiers output calibrated scores on a single scale.

� Alternatively, we can use the output of each binary classifier as features (real-

valued if we use the scores, binary if we only use the predicted class) and train a

model that can produce multi-class scores, such as naive Bayes or tree models.

This method is generally applicable but requires additional training.

� A simple alternative that is also generally applicable and often produces satis-

factory results is to derive scores from coverage counts: the number of examples

of each class that are classified as positive by the binary classifer. Example 3.4

illustrates this.



3.1 Handling more than two classes 87

Example 3.4 (Coverage counts as scores). Suppose we have three classes and

three binary classifiers which either predict positive or negative (there is no reject

option). The first classifier classifies 8 examples of the first class as positive, no

examples of the second class, and 2 examples of the third class. For the second

classifier these counts are 2, 17 and 1, and for the third they are 4, 2 and 8. Sup-

pose a test instance is predicted as positive by the first and third classifiers. We

can add the coverage counts of these two classifiers to obtain a score vector of

(12,2,10). Likewise, if all three classifiers ‘fire’ for a particular test instance (i.e.,

predict positive), the score vector is (14,19,11).

We can describe this scheme conveniently using matrix notation:

(
1 0 1

1 1 1

)⎛⎜⎝
8 0 2

2 17 1

4 2 8

⎞
⎟⎠=
(

12 2 10

14 19 11

)
(3.1)

The middle matrix contains the class counts (one row for each classifier). The left

2-by-3 matrix contains, for each example, a row indicating which classifiers fire

for that example. The right-hand side then gives the combined counts for each

example.

With l binary classifiers, this scheme divides the instance space into up to 2l regions.

Each of these regions is assigned its own score vector, so in order to obtain diverse

scores l should be reasonably large.

Once we have multi-class scores, we can ask the familiar question of how good

these are. As we have seen in Section 2.1, an important performance index of a binary

scoring classifier is the area under the ROC curve or AUC, which is the proportion of

correctly ranked positive–negative pairs. Unfortunately ranking does not have a di-

rect multi-class analogue, and so the most obvious thing to do is to calculate the aver-

age AUC over binary classification tasks, either in a one-versus-rest or one-versus-one

fashion. For instance, the one-versus-rest average AUC estimates the probability that,

taking a uniformly drawn class as positive, a uniformly drawn example from that class

gets a higher score than a uniformly drawn example over all other classes. Notice that

the ‘negative’ is more likely to come from the more prevalent classes; for that reason

the positive class is sometimes also drawn from a non-uniform distribution in which

each class is weighted with its prevalence in the test set.
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Example 3.5 (Multi-class AUC). Assume we have a multi-class scoring classifier

that produces a k-vector of scores ŝ(x)= (ŝ1(x), . . . , ŝk (x)) for each test instance x.

By restricting attention to ŝi (x) we obtain a scoring classifier for class Ci against

the other classes, and we can calculate the one-versus-rest AUC for Ci in the nor-

mal way.

By way of example, suppose we have three classes, and the one-versus-rest

AUCs come out as 1 for the first class, 0.8 for the second class and 0.6 for the third

class. Thus, for instance, all instances of class 1 receive a higher first entry in their

score vectors than any of the instances of the other two classes. The average

of these three AUCs is 0.8, which reflects the fact that, if we uniformly choose

an index i , and we select an instance x uniformly among class Ci and another

instance x ′ uniformly among all instances not from Ci , then the expectation that

ŝi (x)> ŝi (x ′) is 0.8.

Suppose now C1 has 10 instances, C2 has 20 and C3 70. The weighted average

of the one-versus-rest AUCs is then 0.68: that is, if we uniformly choose x without

reference to the class, and then choose x ′ uniformly from among all instances not

of the same class as x ′, the expectation that ŝi (x) > ŝi (x ′) is 0.68. This is lower

than before, because it is now more likely that a random x comes from class C3,

whose scores do a worse ranking job.

We can obtain similar averages from one-versus-one AUCs. For instance, we can

define AUCi j as the AUC obtained using scores ŝi to rank instances from classes Ci and

C j . Notice that ŝ j may rank these instances differently, and so AUC j i 
= AUCi j . Taking

an unweighted average over all i 
= j estimates the probability that, for uniformly cho-

sen classes i and j 
= i , and uniformly chosen x ∈Ci and x ′ ∈C j , we have ŝi (x)> ŝi (x ′).

The weighted version of this estimates the probability that the instances are correctly

ranked if we don’t pre-select the class.

The simplest way to turn multi-class scores into classifications is by assigning the

class that achieves the maximum score – that is, if ŝ(x) = (ŝ1(x), . . . , ŝk (x)) is the score

vector assigned to instance x and m = argmaxi ŝi (x), then the class assigned to x is

ĉ(x)=Cm . However, just as in the two-class case such a fixed decision rule can be sub-

optimal, and instead we may want to learn it from data. What this means is that we

want to learn a weight vector w= (w1, . . . , wk ) to adjust the scores and assign ĉ(x)=Cm′

with m′ = argmaxi wi ŝi (x) instead.2 Since the weight vector can be multiplied with

a constant without affecting m′, we can fix one of the degrees of freedom by setting

2Notice that with two classes such a weighted decision rule assigns class C1 if w1 ŝ1(x) > w2 ŝ2(x), or

equivalently, ŝ1(x)/ŝ2(x) > w2/w1. This can be interpreted as a threshold on suitably transformed scores,
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(0,0,1)

(1,0,0)

(0,1,0)

3

1 2

Figure 3.1. (left) Triples of probabilistic scores represented as points in an equilateral triangle

connecting three corners of the unit cube. (right) The arrows show how the weights are adjusted

from the initial equal weights (dotted lines), first by optimising the separation of C2 against C1

(dashed line), then by optimising the separation of C3 against the other two classes (solid lines).

The end result is that the weight of C1 is considerably decreased, to the benefit of the other two

classes.

w1 = 1. Unfortunately, finding a globally optimal weight vector is computationally in-

tractable. A heuristic approach that works well in practice is to first learn w2 to opti-

mally separate C2 from C1 as in the two-class case; then learn w3 to separate C3 from

C1∪C2, and so on.

Example 3.6 (Reweighting multi-class scores). We illustrate the proce-

dure for a three-class probabilistic classifier. The probability vectors

p̂(x) = (p̂1(x), p̂2(x), p̂3(x)
)

can be thought of as points inside the unit cube.

Since the probabilities add up to 1, the points lie in an equilateral triangle

connecting three corners of the cube (Figure 3.1 (left)). Each corner of this

triangle represents one of the classes; the probability assigned to a particular

class in a given point is proportional to the distance to the opposite side.

Any decision rule of the form argmaxi wi ŝi (x) cuts the triangle in three areas

using lines perpendicular to the sides. For the unweighted decision rule these

lines intersect in the triangle’s centre of mass (Figure 3.1 (right)). Optimising the

separation between C2 against C1 means moving this point along a line paral-

lel to the base of the triangle, moving away from the class that receives greater

weight. Once the optimal point on this line is found, we optimise the separation

so the weighted decision rule indeed generalises the two-class decision threshold.
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of C3 against the first two classes by moving in a direction perpendicular to the

previous line.

Finally, we briefly look at the issue of obtaining calibrated multi-class probabilities.

This is not a solved problem and several approaches have been suggested in the lit-

erature. One of the simplest and most robust of these calculates normalised coverage

counts. Specifically, we take the summed or averaged coverage counts of all classifiers

that fire, and normalise these to obtain probability vectors whose components sum to

one. Equivalently, we can obtain probability vectors for each classifier separately, and

take a weighted average of these with weights determined by the relative coverage of

each classifier.

Example 3.7 (Multi-class probabilities from coverage counts). In Example 3.4

on p.87 we can divide the class counts by the total number of positive predic-

tions. This results in the following class distributions: (0.80,0,0.20) for the first

classifier, (0.10,0.85,0.05) for the second classifier, and (0.29,0.14,0.57) for the

third. The probability distribution associated with the combination of the first

and third classifiers is

10

24
(0.80,0,0.20)+ 14

24
(0.29,0.14,0.57)= (0.50,0.08,0.42)

which is the same distribution as obtained by normalising the combined counts

(12,2,10). Similarly, the distribution associated with all three classifiers is

10

44
(0.80,0,0.20)+ 20

44
(0.10,0.85,0.05)+ 14

44
(0.29,0.14,0.57)= (0.32,0.43,0.25)

Matrix notation describes this very succinctly as

(
10/24 0 14/24

10/44 20/44 14/44

)⎛⎜⎝
0.80 0.00 0.20

0.10 0.85 0.05

0.29 0.14 0.57

⎞
⎟⎠=
(

0.50 0.08 0.42

0.32 0.43 0.25

)

The middle matrix is a row-normalised version of the middle matrix in Equation

3.1. Row normalisation works by dividing each entry by the sum of the entries in

the row in which it occurs. As a result the entries in each row sum to one, which

means that each row can be interpreted as a probability distribution. The left

matrix combines two pieces of information: (i) which classifiers fire for each ex-

ample (for instance, the second classifier doesn’t fire for the first example); and
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(ii) the coverage of each classifier. The right-hand side then gives the class dis-

tribution for each example. Notice that the product of row-normalised matrices

again gives a row-normalised matrix.

In this section we have seen that many interesting issues arise, once we have more

than two classes. The general way of addressing a k-class learning problem with binary

classifiers is to (i) break the problem up into l binary learning problems; (ii) train l bi-

nary classifiers on two-class versions of the original data; and (iii) combine the predic-

tions from these l classifiers into a single k-class prediction. The most common ways

to do the first and third step is one-versus-one or one-versus-rest, but the use of code

matrices gives the opportunity of implementing other schemes. We have also looked at

ways of obtaining multi-class scores and probabilities from the binary classifiers, and

discussed a heuristic method to calibrate the multi-class decision rule by reweighting.

This concludes our discussion of classification, arguably the most common task in

machine learning. In the remainder of this chapter we will look at one more supervised

predictive task in the next section, before we turn our attention to unsupervised and

descriptive learning in Section 3.3.

3.2 Regression

In all the tasks considered so far – classification, scoring, ranking and probability esti-

mation – the label space was a discrete set of classes. In this section we will consider

the case of a real-valued target variable. A function estimator, also called a regressor, is

a mapping f̂ : X →R. The regression learning problem is to learn a function estimator

from examples (xi , f (xi )). For instance, we might want to learn an estimator for the

Dow Jones index or the FTSE 100 based on selected economic indicators.

While this may seem a natural and innocuous generalisation of discrete classifica-

tion, it is not without its consequences. For one thing, we switched from a relatively

low-resolution target variable to one with infinite resolution. Trying to match this pre-

cision in the function estimator will almost certainly lead to overfitting – besides, it is

highly likely that some part of the target values in the examples is due to fluctuations

that the model is unable to capture. It is therefore entirely reasonable to assume that

the examples are noisy, and that the estimator is only intended to capture the general

trend or shape of the function.
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Figure 3.2. (left) Polynomials of different degree fitted to a set of five points. From bottom to

top in the top right-hand corner: degree 1 (straight line), degree 2 (parabola), degree 3, degree 4

(which is the lowest degree able to fit the points exactly), degree 5. (right) A piecewise constant

function learned by a grouping model; the dotted reference line is the linear function from the

left figure.

Example 3.8 (Line fitting example). Consider the following set of five points:

x y

1.0 1.2

2.5 2.0

4.1 3.7

6.1 4.6

7.9 7.0

We want to estimate y by means of a polynomial in x. Figure 3.2 (left) shows the

result for degrees of 1 to 5 using �linear regression, which will be explained in

Chapter 7. The top two degrees fit the given points exactly (in general, any set

of n points can be fitted by a polynomial of degree no more than n−1), but they

differ considerably at the extreme ends: e.g., the polynomial of degree 4 leads to

a decreasing trend from x = 0 to x = 1, which is not really justified by the data.

To avoid overfitting the kind of data exemplified in Example 3.8 it is advisable to choose

the degree of the polynomial as low as possible – often a simple linear relationship is

assumed.

Regression is a task where the distinction between grouping and grading models

comes to the fore. The philosophy of grouping models is to cleverly divide the instance

space into segments and learn a local model in each segment that is as simple as pos-

sible. For instance, in decision trees the local model is a majority class classifier. In the
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same spirit, to obtain a regression tree we could predict a constant value in each leaf.

In the univariate problem of Example 3.8 this would result in the piecewise constant

curve of Figure 3.2 (right). Notice that such a grouping model is able to fit the given

points exactly, just as a polynomial of sufficiently high degree, and the same caveat

regarding overfitting applies.

We can understand the phenomenon of overfitting a bit better by looking at the

number of parameters that each model has. An n-degree polynomial has n+1 param-

eters: e.g., a straight line y = a ·x+b has two parameters, and the polynomial of degree

4 that fits the five points exactly has five parameters. A piecewise constant model with

n segments has 2n − 1 parameters: n y-values and n − 1 x-values where the ‘jumps’

occur. So the models that are able to fit the points exactly are the models with more

parameters. A rule of thumb is that, to avoid overfitting, the number of parameters esti-

mated from the data must be considerably less than the number of data points.

We have seen that classification models can be evaluated by applying a loss func-

tion to the margins, penalising negative margins (misclassifications) and rewarding

positive margins (correct classifications). Regression models are evaluated by apply-

ing a loss function to the residuals f (x)− f̂ (x). Unlike classification loss functions a

regression loss function will typically be symmetric around 0 (although it is conceiv-

able that positive and negative residuals have different weights). The most common

choice here is to take the squared residual as the loss function. This has the advan-

tage of mathematical convenience, and can also be justified by the assumption that

the observed function values are the true values contaminated by additive, normally

distributed noise. However, it is well-known that squared loss is sensitive to outliers:

you can see an example of this in Figure 7.2 on p.199.

If we underestimate the number of parameters of the model, we will not be able

to decrease the loss to zero, regardless of how much training data we have. On the

other hand, with a larger number of parameters the model will be more dependent on

the training sample, and small variations in the training sample can result in a con-

siderably different model. This is sometimes called the bias–variance dilemma: a low-

complexity model suffers less from variability due to random variations in the training

data, but may introduce a systematic bias that even large amounts of training data

can’t resolve; on the other hand, a high-complexity model eliminates such bias but can

suffer non-systematic errors due to variance.

We can make this a bit more precise by noting that expected squared loss on a train-

ing example x can be decomposed as follows:3

E
[(

f (x)− f̂ (x)
)2]= ( f (x)−E

[
f̂ (x)
])2+E

[(
f̂ (x)−E

[
f̂ (x)
])2]

(3.2)

3The derivation expands the squared difference term, making use of the linearity of E [·] and that E
[

f (x)
]=

f (x), after which terms can be rearranged to yield Equation 3.2.
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Figure 3.3. A dartboard metaphor illustrating the concepts of bias and variance. Each dartboard

corresponds to a different learning algorithm, and each dart signifies a different training sample.

The top row learning algorithms exhibit low bias, staying close to the bull’s eye (the true function

value for a particular x) on average, while the ones on the bottom row have high bias. The left

column shows low variance and the right column high variance.

It is important to note that the expectation is taken over different training sets and

hence different function estimators, but the learning algorithm and the example are

fixed. The first term on the right-hand side in Equation 3.2 is zero if these function es-

timators get it right on average; otherwise the learning algorithm exhibits a systematic

bias of some kind. The second term quantifies the variance in the function estimates

f̂ (x) as a result of variations in the training set. Figure 3.3 illustrates this graphically

using a dartboard metaphor. The best situation is clearly achieved in the top left-hand

corner of the figure, but in practice this is rarely achievable and we need to settle either

for a low bias and a high variance (e.g., approximating the target function by a high-

degree polynomial) or for a high bias and a low variance (e.g., using a linear approx-

imation). We will return to the bias–variance dilemma at several places in the book:

although the decomposition is not unique for most loss functions other than squared

loss, it serves as a useful conceptual tool for understanding over- and underfitting.
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3.3 Unsupervised and descriptive learning

So far, we have concerned ourselves exclusively with supervised learning of predictive

models. That is, we learn a mapping from instance space X to output space Y using

labelled examples (x, l (x)) ∈X ×L (or a noisy version thereof). This kind of learning

is called ‘supervised’ because of the presence of the target variable l (x) in the train-

ing data, which has to be supplied by a ‘supervisor’ or ‘teacher’ with some knowledge

about the true labelling function l . Furthermore, the models are called ‘predictive’

because the outputs produced by the models are either direct estimates of the target

variable or provide us with further information about its most likely value. Thus, we

have only paid attention to the top-left entry in Table 3.1. In the remainder of this

chapter we will briefly introduce the other three learning settings by means of selected

examples:

� unsupervised learning of a predictive model in the form of predictive clustering;

� unsupervised learning of a descriptive model, exemplified by descriptive clus-

tering and association rule discovery;

� supervised learning of a descriptive model, with subgroup discovery as practical

realisation.

Predictive model Descriptive model

Supervised learning classification, regression subgroup discovery

Unsupervised learning predictive clustering descriptive clustering,

association rule discovery

Table 3.1. The learning settings indicated in bold are introduced in the remainder of this chapter.

It is worthwhile reflecting for a moment on the nature of descriptive learning. The

task here is to come up with a description of the data – to produce a descriptive model.

It follows that the task output, being a model, is of the same kind as the learning out-

put. Furthermore, it makes no sense to employ a separate training set to produce the

descriptive model, as we want the model to describe our actual data rather than some

hold-out set. In other words, in descriptive learning the task and learning problem co-

incide (Figure 3.4). This makes some things harder: for example, it is unlikely that a

‘ground truth‘ or ‘gold standard’ is available to test the descriptive models against, and

hence evaluating descriptive learning algorithms is much less straightforward than

evaluating predictive ones. On the other hand, one could say that descriptive learn-

ing leads to the discovery of genuinely new knowledge, and it is often situated at the

intersection of machine learning and data mining.
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Task

Descriptive 

model
Features

Domain 

objects

Discovery 
algorithm

Data

Learning problem

Figure 3.4. In descriptive learning the task and learning problem coincide: we do not have a

separate training set, and the task is to produce a descriptive model of the data.

Predictive and descriptive clustering

The distinction between predictive and descriptive models can be clearly observed in

clustering tasks. One way to understand clustering is as learning a new labelling func-

tion from unlabelled data. So we could define a ‘clusterer’ in the same way as a classi-

fier, namely as a mapping q̂ : X →C , where C = {C1,C2, . . . ,Ck } is a set of new labels.

This corresponds to a predictive view of clustering, as the domain of the mapping is

the entire instance space, and hence it generalises to unseen instances. A descriptive

clustering model learned from given data D ⊆X would be a mapping q̂ : D →C whose

domain is D rather than X . In either case the labels have no intrinsic meaning, other

than to express whether two instances belong to the same cluster. So an alternative

way to define a clusterer is as an equivalence relation q̂ ⊆ X ×X or q̂ ⊆ D ×D (see

Background 2.1 on p.51 for the definition of an equivalence relation), or, equivalently,

as a partition of X or D .

The distinction between predictive and descriptive clustering is subtle and not al-

ways articulated clearly in the literature. Several well-known clustering algorithms in-

cluding �K -means (discussed in more detail in Chapter 8) learn a predictive cluster-

ing. Thus, they learn a clustering model from training data that can subsequently be

used to assign new data to clusters. This is in keeping with our distinction between the

task (clustering arbitrary data) and the learning problem (learning a clustering model

from training data). However, this distinction isn’t really applicable to descriptive clus-

tering methods: here, the clustering model learned from D can only be used to cluster

D . In effect, the task becomes learning a suitable clustering model for the given data.

Without any further information, any clustering is as good as any other. What dis-

tinguishes a good clustering is that the data is partitioned into coherent groups or clus-

ters. ‘Coherence’ here means that, on average, two instances from the same cluster

have more in common – are more similar – than two instances from different clusters.

This assumes some way of assessing the similarity or, as is usually more convenient,

the dissimilarity or distance of an arbitrary pair of instances. If our features are nu-

merical, i.e., X = Rd , the most obvious distance measure is Euclidean distance, but
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other choices are possible, some of which generalise to non-numerical features. Most

distance-based clustering methods depend on the possibility of defining a ‘centre of

mass’ or exemplar for an arbitrary set of instances, such that the exemplar minimises

some distance-related quantity over all instances in the set, called its scatter. A good

clustering is then one where the scatter summed over each cluster – the within-cluster

scatter – is much smaller than the scatter of the entire data set.

This analysis suggests a definition of the clustering problem as finding a partition

D = D1� . . .�DK that minimises the within-cluster scatter. However, there are a few

issues with this definition:

� the problem as stated has a trivial solution: set K = |D| so that each ‘cluster’

contains a single instance from D and thus has zero scatter;

� if we fix the number of clusters K in advance, the problem cannot be solved effi-

ciently for large data sets (it is NP-hard).

The first problem is the clustering equivalent of overfitting the training data. It could be

dealt with by penalising large K . Most approaches, however, assume that an educated

guess of K can be made. This leaves the second problem, which is that finding a glob-

ally optimal solution is intractable for larger problems. This is a well-known situation

in computer science and can be dealt with in two ways:

� by applying a heuristic approach, which finds a ‘good enough’ solution rather

than the best possible one;

� by relaxing the problem into a ‘soft’ clustering problem, by allowing instances a

degree of membership in more than one cluster.

Most clustering algorithms follow the heuristic route, including the K -means algo-

rithm. The soft clustering approach can be addressed in various ways, including

�Expectation-Maximisation (Section 9.4) and �matrix decomposition (Section 10.3).

Figure 3.5 illustrates the heuristic and soft clustering approaches. Notice that a soft

clustering generalises the notion of a partition, in the same way that a probability esti-

mator generalises a classifier.

The representation of clustering models depends on whether they are predictive,

descriptive or soft. A descriptive clustering of n data points into c clusters could be

represented by a partition matrix: an n-by-c binary matrix with exactly one 1 in each

row (and at least one 1 in each column, otherwise there would be empty clusters). A

soft clustering corresponds to a row-normalised n-by-c matrix. A predictive clustering

partitions the whole instance space and is therefore not suitable for a matrix represen-

tation. Typically, predictive clustering methods represent a cluster by their centroid or

exemplar: in that case, the cluster boundaries are a set of straight lines called a Voronoi
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Figure 3.5. (left) An example of a predictive clustering. The coloured dots were sampled from

three bivariate Gaussians centred at (1,1), (1,2) and (2,1). The crosses and solid lines are the

cluster exemplars and cluster boundaries found by 3-means. (right) A soft clustering of the

same data found by matrix decomposition.

diagram (Figure 3.5 (left)). More generally, each cluster could be represented by a prob-

ability density, with the boundaries occurring where densities of neighbouring clusters

are equal; this would allow non-linear cluster boundaries.

Example 3.9 (Representing clusterings). The cluster exemplars in Figure 3.5

(left) can be given as a c-by-2 matrix:

⎛
⎜⎝

0.92 0.93

0.98 2.02

2.03 1.04

⎞
⎟⎠

The following n-by-c matrices represent a descriptive clustering (left) and a soft

clustering (right) of given data points:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

1 0 0

0 0 1

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.40 0.30 0.30

0.40 0.51 0.09

0.44 0.29 0.27

0.35 0.08 0.57

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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An interesting question is how clustering models should be evaluated. In the ab-

sence of labelled data we cannot use a test set in the same way as we would in classi-

fication or regression. We can use within-cluster scatter as a measure of the quality of

a clustering. For a predictive clustering it is possible to evaluate within-cluster scatter

on hold-out data that wasn’t used to build the clusters in the first place. An alternative

way of evaluating a clustering arises if we have some knowledge about instances that

should, or should not, be clustered together.

Example 3.10 (Evaluating clusterings). Suppose we have five test instances that

we think should be clustered as {e1,e2}, {e3,e4,e5}. So out of the 5·4= 20 possible

pairs, 4 are considered ‘must-link’ pairs and the other 16 as ‘must-not-link’ pairs.

The clustering to be evaluated clusters these as {e1,e2,e3}, {e4,e5} – so two of the

must-link pairs are indeed clustered together (e1–e2, e4–e5), the other two are

not (e3–e4, e3–e5), and so on.

We can tabulate this as follows:

Are together Are not together

Should be together 2 2 4

Should not be together 2 14 16

4 16 20

We can now treat this as a two-by-two contingency table, and evaluate it accord-

ingly. For instance, we can take the proportion of pairs on the ‘good’ diagonal,

which is 16/20= 0.8. In classification we would call this accuracy, but in the clus-

tering context this is known as the Rand index.

Note that there are usually many more must-not-link pairs than must-link pairs,

and it is a good idea to compensate for this. One way to do that is to calculate the har-

monic mean of precision and recall (the latter the same as true positive rate, see Table

2.3 on p.57), which in the information retrieval literature is known as the F-measure.4

Precision is calculated on the left column of the contingency table and recall on the top

row; as a result the bottom right-hand cell (the must-not-link pairs that are correctly

not clustered together) are ignored, which is precisely what we want. In the example

both precision and recall are 2/4 = 0.5, and so is the F-measure. This shows that the

relatively good Rand index is mostly accounted for by the must-not-link pairs that end

up in different clusters.

4The harmonic mean of precision and recall is 2
1/prec+1/rec =

2prec·rec
prec+rec . The harmonic mean is appropriate

for averaging ratios; see Background 10.1 on p.300.
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Other descriptive models

To wrap up our catalogue of machine learning tasks we will briefly look at two other

descriptive models, one learned in a supervised fashion from labelled data and the

other entirely unsupervised.

Subgroup models don’t try to approximate the labelling function, but rather aim at

identifying subsets of the data exhibiting a class distribution that is significantly differ-

ent from the overall population. Formally, a subgroup is a mapping ĝ : D → {true, false}

and is learned from a set of labelled examples (xi , l (xi )), where l : X → C is the true

labelling function. Note that ĝ is the characteristic function of the set G = {x ∈D|ĝ (x)=
true}, which is called the extension of the subgroup. Note also that we used the given

data D rather than the whole instance space X for the domain of a subgroup, since it

is a descriptive model.

Example 3.11 (Subgroup discovery). Imagine you want to market the new ver-

sion of a successful product. You have a database of people who have been sent

information about the previous version, containing all kinds of demographic,

economic and social information about those people, as well as whether or not

they purchased the product. If you were to build a classifier or ranker to find the

most likely customers for your product, it is unlikely to outperform the major-

ity class classifier (typically, relatively few people will have bought the product).

However, what you are really interested in is finding reasonably sized subsets

of people with a proportion of customers that is significantly higher than in the

overall population. You can then target those people in your marketing cam-

paign, ignoring the rest of your database.

A subgroup is essentially a binary classifier, and so one way to develop a subgroup

discovery system is to adapt an existing classifier training algorithm. This may not in-

volve much more than adapting the search heuristic to reflect the specific objective of

a subgroup (to identify subsets of the data with a significantly different class distribu-

tion). However, this would only give us a single subgroup. Rule learners are particularly

appropriate for subgroup discovery since every rule can be interpreted as a separate

subgroup.

How do we distinguish interesting subgroups from uninteresting ones? This can be

determined by constructing a contingency table similar to the ones we use in binary

classification. For three classes such a table looks as follows:
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In subgroup Not in subgroup

Labelled C1 g1 C1− g1 C1

Labelled C2 g2 C2− g2 C2

Labelled C3 g3 C3− g3 C3

|G| |D|− |G| |D|
where gi = |{x ∈D|ĝ (x) = true ∧ l (x) =Ci }| and Ci is shorthand for |{x ∈D|l (x) =Ci }|.
From here there are a number of possibilities. One idea is to measure the extent to

which the class distribution in the left column is different from the class distribution

in the row marginals (the right-most column). As we shall see later (Example 6.6 on

p.180), this boils down to using an adaptation of average recall as evaluation measure.

Another idea is to treat the subgroup as a decision tree split and borrow splitting crite-

ria from �decision tree learning (Section 5.1). It is also possible to use the χ2 statistic to

evaluate the extent to which each gi differs from what would be expected on the basis

of the marginals Ci and |G|. What these evaluation measures have in common is that

they prefer different class distributions in the subgroup and its complement from the

overall distribution in D , and also larger subgroups over smaller ones. Most of these

measures are actually symmetric in that they assign the same evaluation to a subgroup

and its complement, from which it follows that they also prefer larger complements

over smaller ones – in other words, they prefer subgroups that are about half the size

of the data (other things being equal).

I will now give an example of unsupervised learning of descriptive models. Asso-

ciations are things that usually occur together. For example, in market basket analysis

we are interested in items frequently bought together. An example of an association

rule is ·if beer then crisps·, stating that customers who buy beer tend to also buy crisps.

Association rule discovery starts with identifying feature values that often occur to-

gether. There is some superficial similarity with subgroups here, but these so-called

frequent item sets are identified in a purely unsupervised manner, without need for

labelled training data. Item sets then give rise to rules describing co-occurrences be-

tween feature values. These association rules are if-then rules similar to classification

rules, except that the then-part isn’t restricted to a particular class variable and can

contain any feature (or even several features). Rather than adapting a given learning

algorithm we need a new algorithm that first finds frequent item sets and then turns

them into association rules. The process needs to take into account a mix of statistics

in order to avoid generating trivial rules.

Example 3.12 (Association rule discovery). In a motorway service station most

clients will buy petrol. This means that there will be many frequent item sets
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involving petrol, such as {newspaper,petrol}. This might suggest the construc-

tion of an association rule ·if newspaper then petrol· – however, this is predictable

given that {petrol} is already a frequent item set (and clearly at least as fre-

quent as {newspaper,petrol}). Of more interest would be the converse rule

·if petrol then newspaper· which expresses that a considerable proportion of the

people buying petrol also buy a newspaper.

We clearly see a relationship with subgroup discovery in that association rules also

identify subsets that have a different distribution when compared with the full data

set, namely with respect to the then-part of the rule. The difference is that the then-

part is not a fixed target variable but it is found as part of the discovery process. Both

subgroup discovery and association rule discovery will be discussed in the context of

rule learning in Section 6.3.

3.4 Beyond binary classification: Summary and further reading

While binary classification is an important task in machine learning, there are many

other relevant tasks and in this chapter we looked at a number of them.

� In Section 3.1 we considered classification tasks with more than two classes. We

shall see in the coming chapters that some models handle this situation very

naturally, but if our models are essentially two-class (such as linear models) we

have to approach it via a combination of binary classification tasks. One key idea

is the use of a code matrix to combine the results of several binary classifiers,

as proposed by Dietterich and Bakiri (1995) under the name ‘error-correcting

output codes’ and developed by Allwein et al. (2000). We also looked at ways

to obtain scores for more than two classes and to evaluate those scores using

multi-class adaptations of the area under the ROC curve. One of these multi-

class extensions of AUC was proposed and analysed by Hand and Till (2001). The

heuristic procedure for reweighting multi-class scores in Example 3.6 on p.89

was proposed by Lachiche and Flach (2003); Bourke et al. (2008) demonstrated

that it achieves good performance in comparison with a number of alternative

approaches.

� Section 3.2 was devoted to regression: predicting a real-valued target value. This

is a classical data analysis problem that was already studied by Carl Friedrich

Gauss in the late eighteenth century. It is natural to use a quadratic loss func-

tion on the residuals, although this carries with it a certain sensitivity to out-

liers. Grading models are most common here, although it is also possible to



3.4 Beyond binary classification: Summary and further reading 103

learn a grouping model that divides the instance space into segments that admit

a simple local model. Since it is often possible to fit a set of points exactly (e.g.,

with a high-degree polynomial), care must be taken to avoid overfitting. Finding

the right balance between over- and underfitting is sometimes called the bias–

variance dilemma; an extensive discussion (including the dartboard metaphor)

can be found in Rajnarayan and Wolpert (2010).

� In Section 3.3 we considered unsupervised and descriptive learning tasks. We

saw that in descriptive learning the task and learning problem coincide. A clus-

tering model can be either predictive or descriptive: in the former case it is meant

to construct classes in a wholly unsupervised manner, after which the learned

model can be applied to unseen data in the usual way. Descriptive clustering,

on the other hand, only applies to the data at hand. It should be noted that

the distinction between predictive and descriptive clustering is not universally

recognised in the literature; sometimes the term ‘predictive clustering’ is used

in the slightly different sense of clustering simultaneously on the target variable

and the features (Blockeel et al., 1998).

� Like descriptive clustering, association rule discovery is another descriptive task

which is wholly unsupervised. It was introduced by Agrawal, Imielinski and Swami

(1993) and has given rise to a very large body of work in the data mining litera-

ture. Subgroup discovery is a form of supervised learning of descriptive mod-

els aimed at finding subsets of the data with a significantly different distribu-

tion of the target variable. It was first studied by Klösgen (1996) and extended

to the more general notion of exceptional model mining in order to deal with,

e.g., real-valued target variables by Leman et al. (2008). More generally, unsu-

pervised learning of descriptive models is a large subject that was pioneered by

Tukey (1977).

�



CHAPTER 4

Concept learning

H
AVING DISCUSSED A VARIETY of tasks in the preceding two chapters, we are now in an

excellent position to start discussing machine learning models and algorithms for learn-

ing them. This chapter and the next two are devoted to logical models, the hallmark

of which is that they use logical expressions to divide the instance space into segments

and hence construct grouping models. The goal is to find a segmentation such that

the data in each segment is more homogeneous, with respect to the task to be solved.

For instance, in classification we aim to find a segmentation such that the instances in

each segment are predominantly of one class, while in regression a good segmentation

is such that the target variable is a simple function of a small number of predictor vari-

ables. There are essentially two kinds of logical models: tree models and rule models.

Rule models consist of a collection of implications or if–then rules, where the if-part

defines a segment, and the then-part defines the behaviour of the model in this seg-

ment. Tree models are a restricted kind of rule model where the if-parts of the rules are

organised in a tree structure.

In this chapter we consider methods for learning logical expressions or concepts

from examples, which lies at the basis of both tree models and rule models. In concept

learning we only learn a description for the positive class, and label everything that

doesn’t satisfy that description as negative. We will pay particular attention to the gen-

erality ordering that plays an important role in logical models. In the next two chapters

104
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The simplest logical expressions are equalities of the form Feature=Value and,

for numerical features, inequalities of the form Feature<Value; these are called

literals. Complex Boolean expressions can be built using logical connectives:

conjunction ∧ , disjunction ∨ , negation ¬ and implication → . The following

equivalences hold (the left two are called the De Morgan laws):

¬(A ∧ B)≡¬A ∨ ¬B ¬¬A ≡ A

¬(A ∨ B)≡¬A ∧ ¬B A → B ≡¬A ∨ B

If Boolean expression A is true of instance x, we say that A covers x. The set

of instances covered by expression A is called its extension and denoted XA =
{x ∈X |A covers x}, where X denotes the instance space which acts as the uni-

verse of discourse (see Background 2.1 on p.51). There is a direct correspondence

between logical connectives and operations on sets: e.g., XA ∧ B = XA ∩XB ,

XA ∨ B = XA ∪XB and X¬A = X \ XA . If XA ⊇ XA′ , we say that A is at least

as general as A′, and if in addition XA 
⊆XA′ we say that A is more general than

A′. This generality ordering is a partial order on logical expressions as defined in

Background 2.1. (More precisely: it is a partial order on the equivalence classes

of the relation of logical equivalence ≡.)

A clause is an implication P →Q such that P is a conjunction of literals and Q

is a disjunction of literals. Using the equivalences above we can rewrite such an

implication as

(A ∧ B)→ (C ∨D)≡¬(A ∧ B) ∨ (C ∨D)≡¬A ∨ ¬B ∨C ∨D

and hence a clause can equivalently be seen as a disjunction of literals or their

negations. Any logical expression can be rewritten as a conjunction of clauses;

this is referred to as conjunctive normal form (CNF). Alternatively, any logical ex-

pression can be written as a disjunction of conjunctions of literals or their nega-

tion; this is called disjunctive normal form (DNF). A rule is a clause A → B where

B is a single literal; this is also often referred to as a Horn clause, after the Ameri-

can logician Alfred Horn.

Background 4.1. Some logical concepts and notation.

we consider tree and rule models, which go considerably beyond concept learning as

they can handle multiple classes, probability estimation, regression, as well as cluster-

ing tasks.
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4.1 The hypothesis space

The simplest concept learning setting is where we restrict the logical expressions de-

scribing concepts to conjunctions of literals (see Background 4.1 for a review of impor-

tant definitions and notation from logic). The following example illustrates this.1

Example 4.1 (Learning conjunctive concepts). Suppose you come across a

number of sea animals that you suspect belong to the same species. You observe

their length in metres, whether they have gills, whether they have a prominent

beak, and whether they have few or many teeth. Using these features, the first

animal can described by the following conjunction:

Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

The next one has the same characteristics but is a metre longer, so you drop the

length condition and generalise the conjunction to

Gills= no ∧ Beak= yes ∧ Teeth=many

The third animal is again 3 metres long, has a beak, no gills and few teeth, so your

description becomes

Gills= no ∧ Beak= yes

All remaining animals satisfy this conjunction, and you finally decide they are

some kind of dolphin.

Despite the simplicity of this example, the space of possible concepts – usually

called the hypothesis space – is already fairly large. Let’s assume we have three different

lengths: 3, 4 and 5 metres, while the other three features have two values each. We then

have 3 ·2 ·2 ·2= 24 possible instances. How many conjunctive concepts are there using

these same features? We can answer this question if we treat the absence of a feature

as an additional ‘value’. This gives a total of 4 ·3 ·3 ·3 = 108 different concepts. While

this seems quite a lot, you should realise that the number of possible extensions – sets

of instances – is much larger: 224, which is more than 16 million! That is, if you pick

a random set of instances, the odds that you can’t find a conjunctive concept that ex-

actly describes those instances are well over 100 000 to 1. This is actually a good thing,

as it forces the learner to generalise beyond the training data and cover instances that it

hasn’t seen before. Figure 4.1 depicts this hypothesis space, making use of the general-

1Inspired by www.cwtstrandings.org.
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ity ordering (i.e., the subset relationship between concept extensions; see Background

4.1).

Least general generalisation

If we rule out all concepts that don’t cover at least one of the instances in Example 4.1,

the hypothesis space is reduced to 32 conjunctive concepts (Figure 4.2). Insisting that

any hypothesis cover all three instances reduces this further to only four concepts, the

least general one of which is the one found in the example – it is called their least gen-

eral generalisation (LGG). Algorithm 4.1 formalises the procedure, which is simply to

repeatedly apply a pairwise LGG operation (Algorithm 4.2) to an instance and the cur-

rent hypothesis, as they both have the same logical form. The structure of the hypoth-

esis space ensures that the result is independent of the order in which the instances are

processed.

Intuitively, the LGG of two instances is the nearest concept in the hypothesis space

where paths upward from both instances intersect. The fact that this point is unique

is a special property of many logical hypothesis spaces, and can be put to good use

in learning. More precisely, such a hypothesis space forms a lattice: a partial order in

which each two elements have a least upper bound (lub) and a greatest lower bound

(glb). So, the LGG of a set of instances is exactly the least upper bound of the instances

in that lattice. Furthermore, it is the greatest lower bound of the set of all generalisa-

tions of the instances: all possible generalisations are at least as general as the LGG.

In this very precise sense, the LGG is the most conservative generalisation that we can

learn from the data.

If we want to be a bit more adventurous, we could choose one of the more gen-

eral hypotheses, such as Gills= no or Beak= yes. However, we probably don’t want to

choose the most general hypothesis, which is simply that every animal is a dolphin,

Algorithm 4.1: LGG-Set(D) – find least general generalisation of a set of instances.

Input : data D .

Output : logical expression H .

1 x ←first instance from D ;

2 H ←x;

3 while instances left do

4 x ←next instance from D ;

5 H ←LGG(H , x) ; // e.g., LGG-Conj (Alg. 4.2) or LGG-Conj-ID (Alg. 4.3)

6 end

7 return H
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as this would clearly be an over-generalisation. Negative examples are very useful to

prevent over-generalistion.

Example 4.2 (Negative examples). In Example 4.1 we observed the following

dolphins:

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

Suppose you next observe an animal that clearly doesn’t belong to the species –

a negative example. It is described by the following conjunction:

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

This negative example rules out some of the generalisations that were hitherto

still possible: in particular, it rules out the concept Beak= yes, as well as the

empty concept which postulates that everything is a dolphin.

The process is illustrated in Figure 4.3. We now have two hypotheses left, one which is

least general and the other most general.

Internal disjunction

You might be tempted to conclude from this and the previous example that we always

have a unique most general hypothesis, but that is not the case in general. To demon-

strate that, we are going to make our logical language slightly richer, by allowing a

restricted form of disjunction called internal disjunction. The idea is very simple: if

you observe one dolphin that is 3 metres long and another one of 4 metres, you may

want to add the condition ‘length is 3 or 4 metres’ to your concept. We will write this

as Length= [3,4], which logically means Length= 3 ∨ Length= 4. This of course only

makes sense for features that have more than two values: for instance, the internal

disjunction Teeth= [many, few] is always true and can be dropped.

Algorithm 4.2: LGG-Conj(x, y) – find least general conjunctive generalisation of

two conjunctions.

Input : conjunctions x, y .

Output : conjunction z.

1 z ←conjunction of all literals common to x and y ;

2 return z
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Example 4.3 (Internal disjunction). Using the same three positive examples as

in Example 4.1, the second and third hypothesis are now

Length= [3,4] ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

and

Length= [3,4] ∧ Gills= no ∧ Beak= yes

We can drop any of the three conditions in the latter LGG without covering the

negative example from Example 4.2. Generalising further to single conditions,

we see that Length= [3,4] and Gills= no are still OK but Beak= yes is not, as it

covers the negative example.

Algorithm 4.3 details how we can calculate the LGG of two conjunctions employing

internal disjunction. The function Combine-ID(vx , vy ) returns [vx , vy ] if vx and vy are

constants, and their union if vx or vy are already sets of values: e.g., Combine-ID([3,4], [4,5])=
[3,4,5].

4.2 Paths through the hypothesis space

As we can clearly see in Figure 4.4, in this example we have not one but two most gen-

eral hypotheses. What we can also notice is that every concept between the least general

one and one of the most general ones is also a possible hypothesis, i.e., covers all the

positives and none of the negatives. Mathematically speaking we say that the set of

Algorithm 4.3: LGG-Conj-ID(x, y) – find least general conjunctive generalisation

of two conjunctions, employing internal disjunction.

Input : conjunctions x, y .

Output : conjunction z.

1 z ←true;

2 for each feature f do

3 if f = vx is a conjunct in x and f = vy is a conjunct in y then

4 add f = Combine-ID(vx , vy ) to z ; // Combine-ID: see text

5 end

6 end

7 return z
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Length=3 & Gills=no & Beak=yes & Teeth=many

Length=[3,4] & Gills=no & Beak=yes & Teeth=many Length=[3,5] & Gills=no & Beak=yes & Teeth=manyLength=3 & Beak=yes & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Gills=no & Beak=yes & Teeth=manyLength=[3,4] & Beak=yes & Teeth=many Length=[3,4] & Gills=no & Teeth=many Length=[3,4] & Gills=no & Beak=yes

Beak=yes & Teeth=many

=yes & Teeth=many

Gills=no & Teeth=many

Length=[3,5] & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=[3,5] & Gills=no & Beak=yes

Teeth=many

Length=[3,4] & Teeth=manyLength=[3,5] & Teeth=many

Beak=yes

Length=[3,4] & Beak=yesLength=[3,5] & Beak=yes

true

Gills=noLength=[3,4]Length=[3,5]

Length=[3,4] & Gills=no Length=[3,5] & Gills=no

Length=3 & Teeth=many Length=3 & Beak=yes

Length=3

Length=[3,4] & Gills=no & Beak=yes

Length=[3,4] & Beak=yes Length=[3,4] & Gills=no Gills=no & Beak=yes

Length=[3,4] Gills=no

Figure 4.4. (top) A snapshot of the expanded hypothesis space that arises when internal dis-

junction is used for the ‘Length’ feature. We now need one more generalisation step to travel

upwards from a completely specified example to the empty conjunction. (bottom) The version

space consists of one least general hypothesis, two most general hypotheses, and three in be-

tween.

hypotheses that agree with the data is a convex set, which basically means that we can

interpolate between any two members of the set, and if we find a concept that is less

general than one and more general than the other then that concept is also a member

of the set. This in turn means that we can describe the set of all possible hypotheses by

its least and most general members. This is summed up in the following definition.

Definition 4.1 (Version space). A concept is complete if it covers all positive exam-

ples. A concept is consistent if it covers none of the negative examples. The version

space is the set of all complete and consistent concepts. This set is convex and is fully

defined by its least and most general elements. �
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A: Length=3 & Gills=no & Beak=yes & Teeth=many

B: Length=[3,4] & Gills=no & Beak=yes & Teeth=many

C: Length=[3,4] & Gills=no & Beak=yes

E: Beak=yes

D: Length=[3,4] & Beak=yes

F: true

Negatives
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n1

A
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C,D E,F

Figure 4.5. (left) A path in the hypothesis space of Figure 4.3 from one of the positive examples

(p1, see Example 4.2 on p.110) all the way up to the empty concept. Concept A covers a single

example; B covers one additional example; C and D are in the version space, and so cover all

three positives; E and F also cover the negative. (right) The corresponding coverage curve, with

ranking p1 – p2 – p3 – n1.

We can draw a useful connection between logical hypothesis spaces and the cover-

age plots introduced in Chapter 2. Suppose you were to follow a path in the hypothesis

space from a positive example, through a selection of its generalisations, all the way up

to the empty concept. The latter, by construction, covers all positives and all negatives,

and hence occupies the top-right point (Neg,Pos) in the coverage plot. The starting

point, being a single positive example, occupies the point (0,1) in the coverage plot.

In fact, it is customary to extend the hypothesis space with a bottom element which

doesn’t cover any examples and hence is less general than any other concept. Taking

that point as the starting point of the path means that we start in the bottom-left point

(0,0) in the coverage plot.

Moving upwards in the hypothesis space by generalisation means that the numbers

of covered positives and negatives can stay the same or increase, but never decrease.

In other words, an upward path through the hypothesis space corresponds to a cover-

age curve and hence to a ranking. Figure 4.5 illustrates this for the running example.

The chosen path is but one among many possible paths; however, notice that if a path,

like this one, includes elements of the version space, the corresponding coverage curve

passes through ‘ROC heaven’ (0,Pos) and AUC= 1. In other words, such paths are op-

timal. Concept learning can be seen as the search for an optimal path through the
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hypothesis space.

What happens, you may ask, if the LGG of the positive examples covers one or more

negatives? In that case, any generalisation of the LGG will be inconsistent as well. Con-

versely, any consistent hypothesis will be incomplete. It follows that the version space

is empty in this case; we will say that the data is not conjunctively separable. The fol-

lowing example illustrates this.

Example 4.4 (Data that is not conjunctively separable). Suppose we have the

following five positive examples (the first three are the same as in Example 4.1):

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and the following negatives (the first one is the same as in Example 4.2):

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

The least general complete hypothesis is Gills= no ∧ Beak= yes as before, but

this covers n5 and hence is inconsistent. There are seven most general consis-

tent hypotheses, none of which are complete:

Length= 3 (covers p1 and p3)

Length= [3,5] ∧ Gills= no (covers all positives except p2)

Length= [3,5] ∧ Teeth= few (covers p3 and p5)

Gills= no ∧ Teeth=many (covers p1, p2 and p4)

Gills= no ∧ Beak= no

Gills= yes ∧ Teeth= few

Beak= no ∧ Teeth= few

The last three of these do not cover any positive examples.
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Most general consistent hypotheses

As this example suggests, finding most general consistent hypotheses is considerably

more involved than finding least general complete ones. Essentially, the process is

one of enumeration. Algorithm 4.4 gives an algorithm which returns all most general

consistent specialisations of a given concept, where a minimal specialisation of a con-

cept is one that can be reached in one downward step in the hypothesis lattice (e.g.,

by adding a conjunct, or removing a value from an internal disjunction). Calling the

algorithm with C = true returns the most general consistent hypotheses.

Figure 4.6 shows a path through the hypothesis space of Example 4.4, and the corre-

sponding coverage curve. We see that the path goes through three consistent hypothe-

ses, which are consequently plotted on the y-axis of the coverage plot. The other three

hypotheses are complete, and therefore end up on the top of the graph; one of these is,

in fact, the LGG of the positives (D). The ranking corresponding to this coverage curve

is p3 – p5 – [p1,p4] – [p2,n5] – [n1–4]. This ranking commits half a ranking error out of

25, and so AUC = 0.98. We can choose one concept from the ranking by applying the

techniques discussed in Section 2.2. For instance, suppose that classification accuracy

is the criterion we want to optimise. In coverage space, accuracy isometrics have slope

1, and so we see immediately that concepts C and D (or E) both achieve the best ac-

curacy in Figure 4.6. If performance on the positives is more important we prefer the

complete but inconsistent concept D; if performance on the negatives is valued more

we choose the incomplete but consistent concept C.

Closed concepts

It is worthwhile to reflect on the fact that concepts D and E occupy the same point in

coverage space. What this means is that generalising D into E by dropping Beak= yes

does not change the coverage in terms of positive and negative examples. One could

Algorithm 4.4: MGConsistent(C , N ) – find most general consistent specialisations

of a concept.

Input : concept C ; negative examples N .

Output : set of concepts S.

1 if C doesn’t cover any element from N then return {C };

2 S ←�;

3 for each minimal specialisation C ′ of C do

4 S ←S∪MGConsistent(C ′, N );

5 end

6 return S
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A: Length=3 & Gills=no & Beak=yes & Teeth=few

B: Length=[3,5] & Gills=no & Beak=yes & Teeth=few

C: Length=[3,5] & Gills=no & Beak=yes

D: Gills=no & Beak=yes

E: Gills=no

F: true

Negatives
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Figure 4.6. (left) A path in the hypothesis space of Example 4.4. Concept A covers a single pos-

itive (p3); B covers one additional positive (p5); C covers all positives except p4; D is the LGG of

all five positive examples, but also covers a negative (n5), as does E. (right) The corresponding

coverage curve.

say that the data suggests that, in the context of concept E, the condition Beak= yes

is implicitly understood. A concept that includes all implicitly understood conditions

is called a closed concept. Essentially, a closed concept is the LGG of all examples that

it covers. For instance, D and E both cover all positives and n5; the LGG of those six

examples is Gills= no ∧ Beak= yes, which is D. Mathematically speaking we say that

the closure of E is D, which is also its own closure – hence the term ‘closed concept’.

This doesn’t mean that D and E are logically equivalent: on the contrary, since XD ⊂XE

– the extension of D is a proper subset of the extension of E – there exist instances in

X that are covered by E but not by D. However, none of these ‘witnesses’ are present

in the data, and thus, as far as the data is concerned, D and E are indistinguishable.

As can be seen in Figure 4.7, limiting attention to closed concepts can considerably

reduce the hypothesis space.

In this section we have looked at the problem of learning a single logical expression

that covers most or all positive examples and few or no negative examples. We have

seen that such concepts live in a hypothesis space ordered by generality, and learning

a concept can be understood as finding a good path through that hypothesis space.

Such a path has a natural interpretation as a ranker, which allows a connection with

coverage curves and ROC curves. On the other hand, insisting on a single conjunction

of feature-value literals is a strong limitation; in the next section we look at ways to

relax it.
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4.3 Beyond conjunctive concepts

Recall from Background 4.1 that a conjunctive normal form expression (CNF) is a con-

junction of disjunctions of literals, or equivalently, a conjunction of clauses. The con-

junctions of literals we have looked at until now are trivially in CNF where each disjunc-

tion consists of a single literal. CNF expressions are much more expressive, particularly

since literals can occur in several clauses. We will look at an algorithm for learning

Horn theories, where each clause A → B is a Horn clause, i.e., A is a conjunction of lit-

erals and B is a single literal. For ease of notation we will restrict attention to Boolean

features, and write F for F= true and ¬F for F= false. In the example below we adapt

the dolphins example to Boolean variables ManyTeeth (standing for Teeth=many),

Gills, Short (standing for Length= 3) and Beak.

When we looked at learning conjunctive concepts, the main intuition was that un-

covered positive examples led us to generalise by dropping literals from the conjunc-

tion, while covered negative examples require specialisation by adding literals. This

intuition still holds if we are learning Horn theories, but now we need to think ‘clauses’

rather than ‘literals’. Thus, if a Horn theory doesn’t cover a positive we need to drop all

clauses that violate the positive, where a clause A → B violates a positive if all literals

in the conjunction A are true in the example, and B is false.

Things get more interesting if we consider covered negatives, since then we need

to find one or more clauses to add to the theory in order to exclude the negative. For

example, suppose that our current hypothesis covers the negative

ManyTeeth ∧ Gills ∧ Short ∧ ¬Beak

To exclude it, we can add the following Horn clause to our theory:

ManyTeeth ∧ Gills ∧ Short→ Beak

While there are other clauses that can exclude the negative (e.g., ManyTeeth→ Beak)

this is the most specific one, and hence least at risk of also excluding covered positives.

However, the most specific clause excluding a negative is only unique if the negative

has exactly one literal set to false. For example, if our covered negative is

ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak

then we have a choice between the following two Horn clauses:

ManyTeeth ∧ Gills→ Short

ManyTeeth ∧ Gills→ Beak

Notice that, the fewer literals are set to true in the negative example, the more general

the clauses excluding the negative are.
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The approach of Algorithm 4.5 is to add all of these clauses to the hypothesis. How-

ever, the algorithm applies two clever tricks. The first is that it maintains a list S of

negative examples, from which it periodically rebuilds the hypothesis. The second is

that, rather than simply adding new negative examples to the list, it tries to find neg-

atives with fewer literals set to true, since this will result in more general clauses. This

is possible if we assume we have access to a membership oracle Mb which can tell us

whether a particular example is a member of the concept we’re learning or not. So in

line 7 of the algorithm we form the intersection of a new negative x and an existing one

s ∈ S – i.e., an example with only those literals set to true which are true in both x and

s – and pass the result z to the membership oracle to check whether it belongs to the

target concept. The algorithm also assumes access to an equivalence oracle Eq which

either tells us that our current hypothesis h is logically equivalent to the target formula

f , or else produces a counter-example that can be either a false positive (it is covered

by h but not by f ) or a false negative (it is covered by f but not by h).

Algorithm 4.5: Horn(Mb,Eq) – learn a conjunction of Horn clauses from member-

ship and equivalence oracles.

Input : equivalence oracle Eq; membership oracle Mb.

Output : Horn theory h equivalent to target formula f .

1 h ←true; // conjunction of Horn clauses, initially empty

2 S ←� ; // a list of negative examples, initially empty

3 while Eq(h) returns counter-example x do

4 if x violates at least one clause of h then // x is a false negative

5 specialise h by removing every clause that x violates

6 else // x is a false positive

7 find the first negative example s ∈ S such that (i) z = s∩x has fewer true

literals than s, and (ii) Mb(z) labels it as a negative;

8 if such an example exists then replace s in S with z, else append x to the

end of S;

9 h ←true;

10 for all s ∈ S do // rebuild h from S

11 p ←the conjunction of literals true in s;

12 Q ←the set of literals false in s;

13 for all q ∈Q do h ←h ∧ (p → q);

14 end

15 end

16 end

17 return h
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Example 4.5 (Learning a Horn theory). Suppose the target theory f is

(ManyTeeth ∧ Short→ Beak) ∧ (ManyTeeth ∧ Gills→ Short)

This theory has 12 positive examples: eight in which ManyTeeth is false; another

two in which ManyTeeth is true but both Gills and Short are false; and two more

in which ManyTeeth, Short and Beak are true. The negative examples, then, are

n1: ManyTeeth ∧ Gills ∧ Short ∧ ¬Beak
n2: ManyTeeth ∧ Gills ∧ ¬Short ∧ Beak

n3: ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak
n4: ManyTeeth ∧ ¬Gills ∧ Short ∧ ¬Beak

S is initialised to the empty list and h to the empty conjunction. We call

the equivalence oracle which returns a counter-example which has to be a false

positive (since every example satisfies our initial hypothesis), say n1 which vi-

olates the first clause in f . There are no negative examples in S yet, so we add

n1 to S (step 8 of Algorithm 4.5). We then generate a new hypothesis from

S (steps 9–13): p is ManyTeeth ∧ Gills ∧ Short and Q is {Beak}, so h becomes

(ManyTeeth ∧ Gills ∧ Short→ Beak). Notice that this clause is implied by our tar-

get theory: if ManyTeeth and Gills are true then so is Short by the second clause

of f ; but then so is Beak by f ’s first clause. But we need more clauses to exclude

all the negatives.

Now, suppose the next counter-example is the false positive n2. We form the

intersection with n1 which was already in S to see if we can get a negative exam-

ple with fewer literals set to true (step 7). The result is equal to n3 so the mem-

bership oracle will confirm this as a negative, and we replace n1 in S with n3. We

then rebuild h from S which gives (p is ManyTeeth ∧ Gills and Q is {Short,Beak})

(ManyTeeth ∧ Gills→ Short) ∧ (ManyTeeth ∧ Gills→ Beak)

Finally, assume that n4 is the next false positive returned by the equivalence

oracle. The intersection with n3 on S is actually a positive example, so instead

of intersecting with n3 we append n4 to S and rebuild h. This gives the previous

two clauses from n3 plus the following two from n4:

(ManyTeeth ∧ Short→ Gills) ∧ (ManyTeeth ∧ Short→ Beak)

The first of this second pair will subsequently be removed by a false negative from
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the equivalence oracle, leading to the final theory

(ManyTeeth ∧ Gills→ Short) ∧
(ManyTeeth ∧ Gills→ Beak) ∧

(ManyTeeth ∧ Short→ Beak)

which is logically equivalent (though not identical) to f .

The Horn algorithm combines a number of interesting new ideas. First, it is an

active learning algorithm: rather than learning from a provided data set, it constructs

its own training examples and asks the membership oracle to label them. Secondly, the

core of the algorithm is the list of cleverly chosen negative examples, from which the

hypothesis is periodically rebuilt. The intersection step is crucial here: if the algorithm

just remembered negatives, the hypothesis would consist of many specific clauses. It

can be shown that, in order to learn a theory consisting of m clauses and n Boolean

variables, the algorithm requires O(mn) equivalence queries and O(m2n) membership

queries. In addition, the runtime of the algorithm is quadratic in both m and n. While

this is probably prohibitive in practice, the Horn algorithm can be shown to always

successfully learn a Horn theory that is equivalent to the target theory. Furthermore,

if we don’t have access to an equivalence oracle the algorithm is still guaranteed to

‘almost always’ learn a Horn theory that is ‘mostly correct’. This will be made more

precise in Section 4.4.

Using first-order logic

Another way to move beyond conjunctive concepts defined by simple features is to

use a richer logical language. The languages we have been using so far are propo-

sitional: each literal is a proposition such as Gills= yes – standing for ‘the dolphin

has gills’ – from which larger expressions are built using logical connectives. First-

order predicate logic, or first-order logic for short, generalises this by building more

complex literals from predicates and terms. For example, a first-order literal could be

BodyPart(Dolphin42,PairOf(Gill)). Here, Dolphin42 and PairOf(Gill) are terms refer-

ring to objects: Dolphin42 is a constant, and PairOf(Gill) is a compound term consist-

ing of the function symbol PairOf and the term Gills. BodyPart is a binary predicate

forming a proposition (something that can be true or false) out of two terms. This

richer language brings with it a number of advantages:

� we can use terms such asDolphin42 to refer to individual objects we’re interested

in;
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� the structure of objects can be explicitly described; and

� we can introduce variables to refer to unspecified objects and quantify over them.

To illustrate the latter point, the first-order literal BodyPart(x,PairOf(Gill)) can be used

to refer to the set of all objects having a pair of gills; and the following expression ap-

plies universal quantification to state that everything with a pair of gills is a fish:

∀x : BodyPart(x,PairOf(Gill))→ Fish(x)

Since we modified the structure of literals, we need to revisit notions such as gener-

alisation and LGG. Remember that for propositional literals with internal disjunction

we used the function Combine-ID for merging two internal disjunctions: thus, for ex-

ample, LGG-Conj-ID(Length= [3,4],Length= [4,5]) returns Length= [3,4,5]. In order

to generalise first-order literals we use variables. Consider, for example, the two first-

order literalsBodyPart(Dolphin42,PairOf(Gill)) andBodyPart(Human123,PairOf(Leg)):

these generalise to BodyPart(x,PairOf(y)),signifying the set of objects that have a pair

of some unspecified body part. There is a well-defined algorithm for computing LGGs

of first-order literals called anti-unification, as it is the mathematical dual of the de-

ductive operation of unification.

Example 4.6 (Unification and anti-unification). Consider the following terms:

BodyPart(x,PairOf(Gill)) describing the objects that have a pair of

gills;

BodyPart(Dolphin42,PairOf(y)) describing the body parts that Dolphin42 has

a pair of.

The following two terms are their unification and anti-unification, respectively:

BodyPart(Dolphin42,PairOf(Gill)) describingDolphin42 as having a pair of gills;

BodyPart(x,PairOf(y)) describing the objects that have a pair of un-

specified body parts.

So we see that in first-order logic literals already have quite a rich structure, owing

to the use of variables. We will revisit this in Section 6.4 when we discuss how to learn

classification rules in first-order logic.
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4.4 Learnability

In this chapter we have seen several hypothesis languages for concept learning, includ-

ing conjunctions of literals (possibly with internal disjunction), conjunctions of Horn

clauses, and clauses in first-order logic. It is intuitively clear that these languages dif-

fer in expressivity: for example, a conjunction of literals is also a conjunction of Horn

clauses with empty if-part, so Horn theories are strictly more expressive than conjunc-

tive concepts. The downside of a more expressive concept language is that it may be

harder to learn. The field of computational learning theory studies exactly this ques-

tion of learnability.

To kick things off we need a learning model: a clear statement of what we mean if

we say that a concept language is learnable. One of the most common learning models

is the model of probably approximately correct (PAC) learning. PAC-learnability means

that there exists a learning algorithm that gets it mostly right, most of the time. The

model makes an allowance for mistakes on non-typical examples: hence the ‘mostly

right’ or ‘approximately correct’. The model also makes an allowance for sometimes

getting it completely wrong, for example when the training data contains lots of non-

typical examples: hence the ‘most of the time’ or ‘probably’. We assume that typical-

ity of examples is determined by some unspecified probability distribution D , and we

evaluate the error rate errD of a hypothesis with respect to this distribution D . More

formally, for arbitrary allowable error rate ε < 1/2 and failure rate δ < 1/2 we require

a PAC-learning algorithm to output with probability at least 1−δ a hypothesis h such

that errD < ε.

Let’s assume for the moment that our data is noise-free, and that the target hypoth-

esis is chosen from our hypothesis language. Furthermore, we assume our learner al-

ways outputs a hypothesis that is complete and consistent with the training sample.

There is a possibility that this zero training error is misleading, and that the hypothesis

is actually a ‘bad’ one, having a true error over the instance space that is larger than

ε. We just want to make sure that this happens with probability less than δ. I will now

show that this can be guaranteed by choosing the training sample large enough. Sup-

pose our hypothesis space H contains a single bad hypothesis, then the probability it

is complete and consistent on m independently sampled training examples is at most

(1−ε)m . Since 1−ε≤ e−ε for any 0≤ ε≤ 1, we have that this probability is at most e−mε.

We want this to be at most δ, which can be achieved by setting m ≥ 1
ε ln 1

δ . Now, H may

contain several bad hypotheses, say k ≤ |H |; then the probability that at least one of

them is complete and consistent on m independently sampled training examples is at

most k(1−ε)m ≤ |H |(1−ε)m ≤ |H |e−mε, which is at most δ if

m ≥ 1

ε

(
ln |H |+ ln

1

δ

)
(4.1)

This is called the sample complexity of a complete and consistent learner. The good
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news is that it is linear in 1/ε and logarithmic in 1/δ. Notice that this suggests that it is

exponentially cheaper to reduce the failure rate than it is to reduce the error. Any learn-

ing algorithm that takes time polynomial in 1/ε and 1/δ to process a single training ex-

ample will therefore also take polynomial training time, another requirement for PAC-

learnability. However, finding a complete and consistent hypothesis is not tractable in

many hypothesis languages.

Notice that the term ln |H | arose because in the worst case almost all hypotheses

in H are bad. However, in practice this means that the bound in Equation 4.1 is overly

pessimistic. Still, it allows us to see that concept languages whose size is exponential in

some parameter n are PAC-learnable. For example, the number of conjunctions over

n Boolean variables is 3n , since each variable can occur unnegated, negated or not at

all. Consequently, the sample complexity is (1/ε) (n ln3+ ln(1/δ)). For example, if we

set δ = 0.05 and ε = 0.1 then the sample complexity is approximately 10(n ·1.1+ 3) =
11n + 30. For our dolphin example with n = 4 this is clearly pessimistic, since there

are only 24 = 16 distinct examples! For larger n this is more realistic. Notice also that

the PAC model is distribution-free: the learner is not given any information about the

instance distribution D . This is another source for pessimism in the bound on the

sample complexity.

We may not always be able to output a complete and consistent hypothesis: for

instance, this may be computationally intractable, the target hypothesis may not be

representable in our hypothesis language, or the examples may be noisy. A reasonable

strategy would be to choose the hypothesis with lowest training error. A ‘bad’ hypoth-

esis is then one whose true error exceeds the training error by at least ε. Using some

results from probability theory, we find that this probability is at most e−2mε2
. As a re-

sult, the 1/ε factor in Equation 4.1 is replaced by 1/2ε2: for ε= 0.1 we thus need 5 times

as many training examples compared to the previous case.

It has already been mentioned that the |H | term is a weak point in the above analy-

sis. What we need is a measure that doesn’t just count the size of the hypothesis space,

but rather gives its expressivity or capacity in terms of classification. Such a measure

does in fact exist and is called the VC-dimension after its inventors Vladimir Vapnik and

Alexey Chervonenkis. We will illustrate the main idea by means of an example.

Example 4.7 (Shattering a set of instances). Consider the following instances:

m = ManyTeeth ∧ ¬Gills ∧ ¬Short ∧ ¬Beak
g = ¬ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak
s = ¬ManyTeeth ∧ ¬Gills ∧ Short ∧ ¬Beak
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b = ¬ManyTeeth ∧ ¬Gills ∧ ¬Short ∧ Beak

There are 16 different subsets of the set {m, g , s,b}. Can each of them be rep-

resented by its own conjunctive concept? The answer is yes: for every instance

we want to exclude, we add the corresponding negated literal to the conjunc-

tion. Thus, {m, s} is represented by ¬Gills ∧ ¬Beak, {g , s,b} is represented by

¬ManyTeeth, {s} is represented by¬ManyTeeth ∧ ¬Gills ∧ ¬Beak, and so on. We

say that this set of four instances is shattered by the hypothesis language of con-

junctive concepts.

The VC-dimension is the size of the largest set of instances that can be shattered

by a particular hypothesis language or model class. The previous example shows that

the VC-dimension of conjunctive concepts over d Boolean literals is at least d . It is in

fact equal to d , although this is harder to prove (since it involves showing that no set

of d +1 instances can be shattered). This measures the capacity of the model class for

representing concepts or binary classifiers. As another example, the VC-dimension of

a linear classifier in d dimensions is d +1: a threshold on the real line can shatter two

points but not three (since the middle point cannot be separated from the other two by

a single threshold); a straight line in a two-dimensional space can shatter three points

but not four; and so on.

The VC-dimension can be used to bound the difference between sample error and

true error of a hypothesis (which is the step where |H | appeared in our previous argu-

ments). Consequently, it can also be used to derive a bound on the sample complexity

of a complete and consistent learner in terms of the VC-dimension D rather than |H |:

m ≥ 1

ε
max

(
8D log2

13

ε
,4 log2

2

δ

)
(4.2)

We see that the bound is linear in D , where previously it was logarithmic in |H |. This is

natural, since to shatter D points we need at least 2D hypotheses, and so log2 |H | ≥D .

Furthermore, it is still logarithmic in 1/δ, but linear times logarithmic in 1/ε. Plug-

ging in our previous values of δ = 0.05 and ε = 0.1, we obtain a sample complexity of

max(562 ·D,213).

We conclude that the VC-dimension allows us to derive the sample complexity of

infinite concept classes, as long as they have finite VC-dimension. It is furthermore

worth mentioning a classical result from computational learning theory which says

that a concept class is PAC-learnable if and only if its VC-dimension is finite.
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4.5 Concept learning: Summary and further reading

In this chapter we looked at methods for inductive concept learning: the process of

constructing a logical expression defining a set of objects from examples. This problem

was a focus of early work in artificial intelligence (Winston, 1970; Vere, 1975; Banerji,

1980), following the seminal work by psychologists Bruner, Goodnow and Austin (1956)

and Hunt, Marin and Stone (1966).

� In Section 4.1 we considered the structure of the hypothesis space: the set of pos-

sible concepts. Every hypothesis has an extension (the set of instances it covers),

and thus relationships between extensions such as subset relationships carry

over to the hypothesis space. This gives the hypothesis space a lattice structure:

a partial order with least upper bounds and greatest lower bounds. In particular,

the LGG is the least upper bound of a set of instances, and is the most conser-

vative generalisation that we can learn from the data. The concept was defined

in the context of first-order logic by Plotkin (1971), who showed that it was the

mathematical dual of the deductive operation of unification. We can extend the

hypothesis language with internal disjunction among values of a feature, which

creates a larger hypothesis space that still has a lattice structure. Internal dis-

junction is a common staple of attribute-value languages for learning following

the work of Michalski (1973). For further pointers regarding hypothesis language

and hypothesis space the reader is referred to (Blockeel, 2010a,b).

� Section 4.2 defined complete and consistent hypotheses as concepts that cover

all positive examples and no negative examples. The set of complete and consis-

tent concepts is called the version space, a notion introduced by Mitchell (1977).

The version space can be summarised by its least general and most general mem-

bers, since any concept between one least general hypothesis and another most

general one is also complete and consistent. Alternatively, we can describe the

version space by all paths from a least general to a most general hypothesis. Such

upward paths give rise to a coverage curve which describes the extension of each

concept on the path in terms of covered positives and negatives. Concept learn-

ing can then be seen as finding an upward path that goes through ROC heaven.

Syntactically different concepts can have the same extension in a particular data

set: a closed concept is the most specific one of these (technically, the LGG of

the instances in its extension). The notion is studied in formal concept anal-

ysis (Ganter and Wille, 1999) and was introduced in a data mining context by

Pasquier, Bastide, Taouil and Lakhal (1999); Garriga, Kralj and Lavrač (2008) in-

vestigate its usefulness for labelled data.

� In Section 4.3 we discussed the Horn algorithm for learning concepts described
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by conjunctions of Horn rules, first published in Angluin et al. (1992). The al-

gorithm makes use of a membership oracle, which can be seen as an early form

of active learning (Cohn, 2010; Dasgupta, 2010). Horn theories are superficially

similar to classification rule models which will be studied in Chapter 6. However,

there is an important difference, since those classification rules have the target

variable in the then-part of the rule, while the Horn clauses we are looking at here

can have any literal in the then-part. In fact, in this chapter the target variable is

not part of the logical language at all. This setting is sometimes called learning

from interpretations, since examples are truth-value assignments to our theory.

The classification rule setting is called learning from entailment, since in order

to find out whether a particular rule covers an example we need to apply logical

inference. De Raedt (1997) explains and explores the differences between these

two settings. Further introductions to first-order logic and its use in learning are

given by Flach (2010a) and De Raedt (2010).

� Section 4.4 briefly reviewed some basic concepts and results in learnability the-

ory. My account partly followed Mitchell (1997, Chapter 7); another excellent

introduction is given by Zeugmann (2010). PAC-learnability, which allows an er-

ror rate of ε and a failure rate of δ, was introduced in a seminal paper by Valiant

(1984). Haussler (1988) derived the sample complexity for complete and consis-

tent learners (Equation 4.1), which is linear in 1/ε and logarithmic in 1/δ and the

size of the hypothesis space. The VC-dimension as a measure of the capacity of

a hypothesis language was introduced by Vapnik and Chervonenkis (1971) in or-

der to quantify the difference between training error and true error. This allows a

statement of the sample complexity in terms of the VC-dimension (Equation 4.2)

which is due to Blumer, Ehrenfeucht, Haussler and Warmuth (1989). This same

paper proved that a model class is PAC-learnable if and only if its VC-dimension

is finite.

�


