
CHAPTER 9

Probabilistic models

T
HE THIRD AND FINAL FAMILY of machine learning models considered in this book are

probabilistic models. We have already seen how probabilities can be useful to express

a model’s expectation about the class of a given instance. For example, a �probability

estimation tree (Section 5.2) attaches a class probability distribution to each leaf of the

tree, and each instance that gets filtered down to a particular leaf in a tree model is la-

belled with that particular class distribution. Similarly, a calibrated linear model trans-

lates the distance from the decision boundary into a class probability (Section 7.4).

These are examples of what are called discriminative probabilistic models. They model

the posterior probability distribution P (Y |X), where Y is the target variable and X are

the features. That is, given X they return a probability distribution over Y .

The other main class of probabilistic models are called generative models. They

model the joint distribution P (Y , X) of the target Y and the feature vector X . Once

we have access to this joint distribution we can derive any conditional or marginal

distribution involving the same variables. In particular, since P (X)=∑y P (Y = y, X) it

follows that the posterior distribution can be obtained as

P (Y |X)= P (Y , X)∑
y P (Y = y, X)

Alternatively, generative models can be described by the likelihood function P (X |Y),

since P (Y , X) = P (X |Y)P (Y) and the target or prior distribution (usually abbreviated

262

9. Probabilistic models 263

to ‘prior’) can be easily estimated or postulated. Such models are called ‘generative’

because we can sample from the joint distribution to obtain new data points together

with their labels. Alternatively, we can use P (Y) to sample a class and P (X |Y) to sample

an instance for that class – this was illustrated for the spam e-mail example on p.29.

In contrast, a discriminative model such as a probability estimation tree or a linear

classifier models P (Y |X) but not P (X), and hence can be used to label data but not

generate it.

Since generative models can do anything that discriminative models do, they may

seem preferable. However, they have a number of drawbacks as well. First of all, note

that storing the joint distribution requires space exponential in the number of fea-

tures. This necessitates simplifying assumptions such as independence between fea-

tures, which may lead to inaccuracies if they are not valid in a particular domain. The

most common criticism levied against generative models is that accuracy in modelling

P (X) may actually be achieved at the expense of less accurate modelling of P (Y |X).

However, the issue is not yet fully understood, and there are certainly situations where

knowledge of P (X) provides welcome additional understanding of the domain. For

example, we may be less concerned about misclassifying certain instances if they are

unlikely according to P (X).

One of the most attractive features of the probabilistic perspective is that it allows

us to view learning as a process of reducing uncertainty. For instance, a uniform class

prior tells us that, before knowing anything about the instance to be classified, we are

maximally uncertain about which class to assign. If the posterior distribution after ob-

serving the instance is less uniform, we have reduced our uncertainty in favour of one

class or the other. We can repeat this process every time we receive new information,

using the posterior obtained in the previous step as the prior for the next step. This

process can be applied, in principle, to any unknown quantity that we come across.

Example 9.1 (Spam or not?). Suppose we want to estimate the probability θ that

an arbitrary e-mail is spam, so that we can use the appropriate prior distribution.

The natural thing to do is to inspect n e-mails, determine the number of spam e-

mails d , and set θ̂ = d/n; we don’t really need any complicated statistics to tell us

that. However, while this is the most likely estimate of θ – the maximum a pos-

teriori (MAP) estimate, using the terminology introduced on p.28 – this doesn’t

mean that other values of θ are completely ruled out. We model this by a proba-

bility distribution over θ which is updated each time new information comes in.

This is further illustrated in Figure 9.1 for a distribution that is more and more

skewed towards spam.

264 9. Probabilistic models

0.2 0.4 0.6 0.8

1

2

3

4

5

Figure 9.1. Each time we inspect an e-mail, we are reducing our uncertainty regarding the prior

spam probability θ. After we inspect two e-mails and observe one spam, the possible θ values

are characterised by a symmetric distribution around 1/2. If we inspect a third, fourth, . . . , tenth

e-mail and each time (except the first one) it is spam, then this distribution narrows and shifts

a little bit to the right each time. As you would expect, the distribution for n e-mails reaches

its maximum at θ̂MAP = n−1
n (e.g., θ̂MAP = 0.8 for n = 5); however, asymmetric distributions like

these contain information that cannot be conveyed by single numbers such as the mean or the

maximum.

Explicitly modelling the posterior distribution over the parameter θ has a number

of advantages that are usually associated with the ‘Bayesian’ perspective:

� We can precisely characterise the uncertainty that remains about our estimate

by quantifying the spread of the posterior distribution.

� We can obtain a generative model for the parameter by sampling from the poste-

rior distribution, which contains much more information than a summary statis-

tic such as the MAP estimate can convey – so, rather than using a single e-mail

with θ = θMAP, our generative model can contain a number of e-mails with θ

sampled from the posterior distribution.

� We can quantify the probability of statements such as ‘e-mails are biased towards

ham’ (the tiny shaded area in Figure 9.1 demonstrates that after observing one

ham and nine spam e-mails this probability is very small, about 0.6%).

� We can use one of these distributions to encode our prior beliefs: e.g., if we be-

lieve that the proportions of spam and ham are typically 50–50, we can take the

distribution for n = 2 (the lowest, symmetric one in Figure 9.1) as our prior.1

1Statisticians call a prior that has the same mathematical form as a posterior distribution a conjugate

9. Probabilistic models 265

The key point is that probabilities do not have to be interpreted as estimates of relative

frequencies, but can carry the more general meaning of (possibly subjective) degrees of

belief . Consequently, we can attach a probability distribution to almost anything: not

just features and targets, but also model parameters and even models. For instance,

in the example just given we were considering the distribution P (θ|D), where D repre-

sents the data (i.e., the classes of the inspected e-mails).

An important concept related to probabilistic models is Bayes-optimality. A clas-

sifier is Bayes-optimal if it always assigns argmaxy P∗(Y = y |X = x) to an instance x,

where P∗ denotes the true posterior distribution. Even if we almost never know the

true distribution in a practical situation, there are several ways in which we can make

this concrete. For example, we can perform experiments with artificially generated

data for which we have chosen the true distribution ourselves: this allows us to exper-

imentally evaluate how close the performance of a model is to being Bayes-optimal.

Alternatively, the derivation of a probabilistic learning method usually makes certain

assumptions about the true distribution, which allows us to prove theoretically that the

model will be Bayes-optimal provided these assumptions are met. For example, later

on in this chapter we will state the conditions under which the basic linear classifier is

Bayes-optimal. The property is therefore best understood as a yardstick by which we

measure the performance of probabilistic models.

Since many models discussed in previous chapters are able to estimate class prob-

abilities and hence are discriminative probabilistic models, it is worth pointing out

that the choice of a single model, often referred to as model selection, does not nec-

essarily lead to Bayes-optimality – even if the model chosen is the one that performs

best under the true distribution. To illustrate this, let m∗ be the best probability es-

timation tree we have learned from a sufficient amount of data. Using m∗ we would

predict argmaxy P (Y = y |M =m∗, X = x) for an instance x, where M is a random vari-

able ranging over the model class m∗ was chosen from. However, these predictions are

not necessarily Bayes-optimal since

P (Y |X = x)= ∑
m∈M

P (Y , M =m|X = x) by marginalising over M

= ∑
m∈M

P (Y |M =m, X = x)P (M =m|X = x) by the chain rule

= ∑
m∈M

P (Y |M =m, X = x)P (M =m) by independence of M and X

Here, P (M) can be interpreted as a posterior distribution over models after seeing

the training data (the MAP model is therefore m∗ = argmaxm P (M = m)). The final

prior – in this case we have used the Beta distribution, which is conjugate to the binomial distribution.

Conjugate priors not only simplify the mathematics, but also allow more intuitive interpretations: in this

case we pretend we have already inspected two e-mails, one of which was spam – a very useful idea that we

have in fact already used in the form of the �Laplace correction in Section 2.3.

266 9. Probabilistic models

expression in the preceding derivation tells us to average the predictions of all mod-

els, weighted by their posterior probabilities. Clearly, this distribution is only equal

to P (Y |M = m∗, X = x) if P (M) is zero for all models other than m∗, i.e., if we have

seen sufficient training data to rule out all but one remaining model. This is obviously

unrealistic.2

The outline of the chapter is as follows. In Section 9.1 we will see some useful con-

nections between the geometric perspective and the probabilistic viewpoint, which

come about when features are normally distributed. This allows us, as already men-

tioned, to state the conditions under which the basic linear classifier is Bayes-optimal.

In Section 9.2 we consider the case of categorical features, leading to the well-known

naive Bayes classifier. Section 9.3 revisits the linear classifier from a probabilistic per-

spective, which results in a new training algorithm explicitly aimed at optimising the

posterior probability of the examples. Section 9.4 discusses ways to deal with hid-

den variables. Finally, in Section 9.5 we briefly look at compression-based learning

methods, which can be given a probabilistic interpretation by means of information-

theoretic notions.

9.1 The normal distribution and its geometric interpretations

We can draw a connection between probabilistic and geometric models by considering

probability distributions defined over Euclidean spaces. The most common such dis-

tributions are normal distributions, also called Gaussians; Background 9.1 recalls the

most important facts concerning univariate and multivariate normal distributions. We

start by considering the univariate, two-class case. Suppose the values of x ∈ R follow

a mixture model: i.e., each class has its own probability distribution (a component of

the mixture model). We will assume a Gaussian mixture model, which means that the

components of the mixture are both Gaussians. We thus have

P (x|⊕)= 1�
2πσ⊕

exp

(
−1

2

[
x−μ⊕

σ⊕

]2
)

P (x|�)= 1�
2πσ�

exp

(
−1

2

[
x−μ�

σ�

]2
)

where μ⊕ and σ⊕ are the mean and standard deviation for the positive class, and μ�

and σ� are the mean and standard deviation for the negative class. This gives the fol-

lowing likelihood ratio:

LR(x)= P (x|⊕)

P (x|�)
= σ�

σ⊕
exp

(
−1

2

[(
x−μ⊕

σ⊕

)2
−
(

x−μ�

σ�

)2])
(9.1)

2Note that we do not require the two distributions to be equal, but rather that they reach the same maxi-

mum for Y . It is not hard to demonstrate that this, too, is not generally the case.

9.1 The normal distribution and its geometric interpretations 267

The univariate normal or Gaussian distribution has the following probability density func-

tion:

P (x|μ,σ)= 1�
2πσ

exp

(
− (x−μ)2

2σ2

)
= 1

E
exp

(
−1

2

[x−μ

σ

]2)= 1

E
exp
(
−z2/2

)
, E =�2πσ

The distribution has two parameters: μ, which is the mean or expected value, as well as

the median (i.e., the point where the area under the density function is split in half) and

the mode (i.e., the point where the density function reaches its maximum); and σ, which

is the standard deviation and determines the width of the bell-shaped curve.

z = (x −μ)/σ is the z-score associated with x; it measures the number of standard devia-

tions between x and the mean (it has itself mean 0 and standard deviation 1). It follows

that P (x|μ,σ) = 1
σP (z|0,1), where P (z|0,1) denotes the standard normal distribution. In

other words, any normal distribution can be obtained from the standard normal distribu-

tion by scaling the x-axis with a factor σ, scaling the y-axis with a factor 1/σ (so the area

under the curve remains 1), and translating the origin over μ.

The multivariate normal distribution over d-vectors x= (x1, . . . , xd)T ∈Rd is

P (x|μ,Σ)= 1

Ed
exp

(
−1

2
(x−μ)TΣ−1(x−μ)

)
, Ed = (2π)d/2

√
|Σ| (9.2)

The parameters are the mean vector μ = (μ1, . . . ,μd)T and the d-by-d covariance matrix

Σ (see Background 7.2 on p.200). Σ−1 is the inverse of the covariance matrix, and |Σ| is

its determinant. The components of x may be thought of as d features that are possibly

correlated.

If d = 1, then Σ = σ2 = |Σ| and Σ−1 = 1/σ2, which gives us the univariate Gaussian as

a special case. For d = 2 we have Σ =
(

σ2
1 σ12

σ12 σ2
2

)
, |Σ| = σ2

1σ
2
2 − (σ12)2 and Σ−1 =

1
|Σ|

(
σ2

2 −σ12

−σ12 σ2
1

)
. Using z-scores we derive the following expression for the bivariate

normal distribution:

P (x1, x2|μ1,μ2,σ1,σ2,ρ)= 1

E2
exp

(
− 1

2(1−ρ2)
(z2

1 + z2
2 −2ρz1z2)

)
, E2 = 2πσ1σ2

√
1−ρ2

(9.3)

where zi = (xi −μi)/σi for i = 1,2, and ρ =σ12/σ1σ2 is the correlation coefficient between

the two features.

The multivariate standard normal distribution has μ= 0 (a d-vector with all 0s) and Σ= I

(the d-by-d identity matrix), and thus P (x|0,I)= 1
(2π)d/2 exp

(
− 1

2 x ·x
)
.

Background 9.1. The normal distribution.

268 9. Probabilistic models

-1.85 0 1.85

0.1

0.2

0.3

0.4

+

–

Figure 9.2. If positive examples are drawn from a Gaussian with mean and standard deviation 1

and negatives from a Gaussian with mean and standard deviation 2, then the two distributions

cross at x = ±1.85. This means that the maximum-likelihood region for positives is the closed

interval [−1.85,1.85], and hence the negative region is non-contiguous.

Let’s first consider the case that both components have the same standard devia-

tion, i.e., σ⊕ =σ� =σ. We can then simplify the exponent in Equation 9.1 as follows:

− 1

2σ2

[
(x−μ⊕)2− (x−μ�)2]=− 1

2σ2

[
x2−2μ⊕x+μ⊕2− (x2−2μ�x+μ�2)

]
=− 1

2σ2

[
−2(μ⊕−μ�)x+ (μ⊕2−μ�2)

]

= μ⊕−μ�

σ2

[
x− μ⊕+μ�

2

]

The likelihood ratio can thus be written as LR(x)= exp
(
γ(x−μ)

)
, with two parameters:

γ = (μ⊕ −μ�)/σ2 is the difference between the means in proportion to the variance,

and μ = (μ⊕ +μ�)/2 is the midpoint between the two class means. It follows that the

maximum-likelihood decision threshold (the value of x such that LR(x)= 1) is xML =μ.

If σ⊕
=σ�, the x2 terms in Equation 9.1 do not cancel. This results in two decision

boundaries and a non-contiguous decision region for one of the classes.

Example 9.2 (Univariate mixture model with unequal variances). Suppose

μ⊕ = 1, μ� = 2 and σ� = 2σ⊕ = 2, then LR(x)= 2exp
(−[(x−1)2− (x−2)2/4]/2

)=
2exp

(
3x2/8

)
. It follows that the ML decision boundaries are x = ±(8/3) ln2 =

±1.85. As can be observed in Figure 9.2, these are the points where the two

Gaussians cross. In contrast, if σ� = σ⊕ then we get a single ML decision

boundary at x = 1.5.

9.1 The normal distribution and its geometric interpretations 269

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

�4 �3 �2 �1 0 1 2 3 4
�4

�3

�2

�1

0

1

2

3

4

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

Figure 9.3. (left) If the features are uncorrelated and have the same variance, maximum-

likelihood classification leads to the basic linear classifier, whose decision boundary is orthogo-

nal to the line connecting the means. (middle) As long as the per-class covariance matrices are

identical, the Bayes-optimal decision boundary is linear – if we were to decorrelate the features

by rotation and scaling, we would again obtain the basic linear classifier. (right) Unequal co-

variance matrices lead to hyperbolic decision boundaries, which means that one of the decision

regions is non-contiguous.

Non-contiguous decision regions can also occur in higher-dimensional spaces. The

following example demonstrates this for m = 2.

Example 9.3 (Bivariate Gaussian mixture). We use Equation 9.3 on p.267 to ob-

tain explicit expressions for the ML decision boundary in the bivariate case.

Throughout the example we assume μ1
⊕ =μ2

⊕ = 1 and μ1
� =μ2

� =−1.

(i) If all variances are 1 and both correlations are 0, then the ML decision

boundary is given by (x1−1)2+(x2−1)2−(x1+1)2−(x2+1)2 =−2x1−2x2−2x1−
2x2 = 0, i.e., x1+x2 = 0 (Figure 9.3 (left)).

(ii) If σ1
⊕ = σ1

� = 1, σ2
⊕ = σ2

� =�2 and ρ⊕ = ρ� =�2/2, then the ML deci-

sion boundary is (x1−1)2+ (x2−1)2/2−�2(x1−1)(x2−1)/
�

2− (x1+1)2− (x2+
1)2/2+�2(x1+1)(x2+1)/

�
2=−2x1 = 0 (Figure 9.3 (middle)).

(iii) If all variances are 1 and ρ⊕ = −ρ� = ρ, then the ML decision boundary

is given by (x1−1)2+ (x2−1)2−2ρ(x1−1)(x2−1)− (x1+1)2− (x2+1)2−2ρ(x1+
1)(x2+1) = −4x1−4x2−4ρx1x2−4ρ = 0, i.e., x1+ x2+ρx1x2+ρ = 0, which is a

hyperbole. Figure 9.3 (right) illustrates this for ρ = 0.7. Notice that the bottom

left of the instance space is a positive decision region, even though it contains no

training examples and it is closer to the negative mean than to the positive mean.

Notice the circles and ellipses in Figure 9.3, which provide a visual summary of the

covariance matrix. By projecting the shape for the positive class down to the x-axis we

270 9. Probabilistic models

obtain the interval [μ1
⊕−σ1

⊕,μ1
⊕+σ1

⊕] – i.e., one standard deviation around the mean

– and similar for the negative class and the y-axis. Three cases can be distinguished:

(i) both x and y standard deviations are equal and the correlation coefficient is zero,

in which case the shape is a circle; (ii) the standard deviations are different and the

correlation coefficient is zero, which means the shape is an ellipse parallel to the axis

with the largest standard deviation; (iii) the correlation coefficient is non-zero: the ori-

entation of the ellipse gives the sign of the correlation coefficient, and its width varies

with the magnitude of the correlation coefficient.3 Mathematically, these shapes are

defined by setting f (x) in 1
Ed

exp
(− 1

2 f (x)
)

to 1 and solving for x, in order to capture the

points that are one standard deviation away from the mean. For the bivariate case this

leads to (z2
1+z2

2−2ρz1z2)= 1−ρ2, which can be translated into an elliptic equation for

x1 and x2 by expanding the z-scores. Notice that for ρ = 0 this is a circle around the

origin, and when ρ→ 1 this approaches the line z2 = z1 (we can’t put ρ = 1 because this

leads to a singular covariance matrix).

In the general multivariate case the condition (x−μ)TΣ−1(x−μ)= 1 defines a hyper-

ellipse, because Σ−1 satisfies certain properties.4 For a standard normal distribution,

one-standard-deviation contours lie on a hyper-sphere (a circle in d dimensions) de-

fined by x · x = 1. A very useful geometric intuition is that, just as hyper-spheres can

be turned into arbitrary hyper-ellipses by scaling and rotation, any multivariate Gaus-

sian can be obtained from the standard Gaussian by scaling and rotation (to obtain the

desired covariance matrix) and translation (to obtain the desired mean). Conversely,

we can turn an arbitrary multivariate Gaussian into a standard normal distribution by

translation, rotation and scaling, as was already suggested in Background 1.2 on p.24.

This results in decorrelated and normalised features.

The general form of the likelihood ratio can be derived from Equation 9.2 on p.267

as

LR(x)=
√
|Σ�|
|Σ⊕| exp

(
−1

2

[
(x−μ⊕)T(Σ⊕)−1(x−μ⊕)− (x−μ�)T(Σ�)−1(x−μ�)

])

where μ⊕ and μ� are the class means, and Σ⊕ and Σ� are the covariance matrices for

each class. To understand this a bit better, assume that Σ⊕ =Σ� = I (i.e., in each class

the features are uncorrelated and have unit variance), then we have

LR(x)= exp

(
−1

2

[
(x−μ⊕)T(x−μ⊕)− (x−μ�)T(x−μ�)

])

= exp

(
−1

2

[||x−μ⊕||2−||x−μ�||2])

3A common mistake is to think that the angle of rotation of the ellipse depends on the correlation coeffi-

cient; in fact, it is solely determined by the relative magnitudes of the marginal standard deviations.
4Specifically, xTAx defines a hyper-ellipse if A is symmetric and positive definite. Both properties are

satisfied if A is the inverse of a non-singular covariance matrix.

9.1 The normal distribution and its geometric interpretations 271

It follows that LR(x)= 1 for any x equidistant from μ⊕ and μ�. But this means that the

ML decision boundary is a straight line at equal distances from the class means – in

which we recognise our old friend, the basic linear classifier! In other words, for un-

correlated, unit-variance Gaussian features, the basic linear classifier is Bayes-optimal.

This is a good example of how a probabilistic viewpoint can justify particular models.

More generally, as long as the per-class covariance matrices are equal, the ML deci-

sion boundary will be linear, intersecting μ⊕−μ� in the middle, but not at right angles

if the features are correlated. This means that the basic linear classifier is only Bayes-

optimal in this case if we first decorrelate and normalise the features. With non-equal

class covariances the decision boundary will be hyperbolic. So, the three cases in Fig-

ure 9.3 generalise to the multivariate case.

We have now seen several examples of how the normal distribution links the prob-

abilistic and geometric viewpoints. The multivariate normal distribution essentially

translates distances into probabilities. This becomes obvious when we plug the defini-

tion of �Mahalanobis distance (Equation 8.1 on p.237) into Equation 9.2:

P (x|μ,Σ)= 1

Ed
exp

(
−1

2

(
DisM (x,μ|Σ)

)2) (9.4)

Similarly, the standard normal distribution translates Euclidean distances into proba-

bilities:

P (x|0,I)= 1

(2π)d/2
exp

(
−1

2
(Dis2(x,0))2

)

Conversely, we see that the negative logarithm of the Gaussian likelihood can be inter-

preted as a squared distance:

− lnP (x|μ,Σ)= lnEd +
1

2

(
DisM (x,μ|Σ)

)2
The intuition is that the logarithm transforms the multiplicative probability scale into

an additive scale (which, in the case of Gaussian distributions, corresponds to a squared

distance). Since additive scales are often easier to handle, log-likelihoods are a com-

mon concept in statistics.

Another example of the link between the geometric and the probabilistic perspec-

tive occurs when we consider the question of estimating the parameters of a normal

distribution. For example, suppose we want to estimate the mean μ of a multivariate

Gaussian distribution with given covariance matrix Σ from a set of data points X . The

principle of maximum-likelihood estimation states that we should find the value of μ

that maximises the joint likelihood of X . Assuming that the elements of X were inde-

pendently sampled, the joint likelihood decomposes into a product over the individual

272 9. Probabilistic models

data points in X , and the maximum-likelihood estimate can be found as follows:

μ̂= argmax
μ

∏
x∈X

P (x|μ,Σ)

= argmax
μ

∏
x∈X

1

Ed
exp

(
−1

2

(
DisM (x,μ|Σ)

)2) using Equation 9.4

= argmin
μ

∑
x∈X

[
lnEd +

1

2

(
DisM (x,μ|Σ)

)2] taking negative logarithms

= argmin
μ

∑
x∈X

(
DisM (x,μ|Σ)

)2 dropping constant term and factor

We thus find that the maximum-likelihood estimate of the mean of a multivariate dis-

tribution is the point that minimises the total squared Mahalanobis distance to all

points in X . For the identity covariance matrix Σ= I we can replace Mahalanobis dis-

tance with Euclidean distance, and by Theorem 8.1 the point minimising total squared

Euclidean distance to all points in X is the arithmetic mean 1
|X |
∑

x∈X x.

As a final example of how geometric and probabilistic views of the same problem

can be strongly connected I will now demonstrate how the �least-squares solution to

a linear regression problem (Section 7.1) can be derived as a maximum-likelihood esti-

mate. For ease of notation we will look at the univariate case discussed in Example 7.1.

The starting point is the assumption that our training examples (hi , yi) are noisy mea-

surements of true function points (xi , f (xi)): i.e., yi = f (xi)+εi , where the εi are inde-

pendently and identically distributed errors. (Notice the slight change of notation as yi

is now no longer the true function value.) We want to derive the maximum-likelihood

estimates ŷi of f (xi). We can derive this if we assume a particular noise distribution,

for example Gaussian with variance σ2. It then follows that each yi is normally dis-

tributed with mean a+bxi and variance σ2, and thus

P (yi |a,b,σ2)= 1�
2πσ2

exp

(
−
(
yi − (a+bxi)

)2
2σ2

)

Since the noise terms εi are independent for different i , so are the yi and so the joint

probability over all i is simply the product of n of these Gaussians:

P (y1, . . . , yn |a,b,σ2)=
n∏

i=1

1�
2πσ2

exp

(
−
(
yi − (a+bxi)

)2
2σ2

)

=
(

1�
2πσ2

)n
exp

(
−
∑n

i=1

(
yi − (a+bxi)

)2
2σ2

)

For ease of algebraic manipulation we take the negative natural logarithm:

− lnP (y1, . . . , yn |a,b,σ2)= n

2
ln2π+ n

2
lnσ2+

∑n
i=1

(
yi − (a+bxi)

)2
2σ2

9.2 Probabilistic models for categorical data 273

Taking the partial derivatives with respect to a, b and σ2 and setting to zero in order to

maximise the negative log likelihood gives the following three equations:

n∑
i=1

yi − (a+bxi)= 0

n∑
i=1

(
yi − (a+bxi)

)
xi = 0

n

2

1

σ2 −
∑n

i=1

(
yi − (a+bxi)

)2
2(σ2)2 = 0

The first two equations are essentially the same as derived in Example 7.1 and give us

â = y − b̂x and b̂ = σx y /σxx , respectively. The third equation tells us that the sum of

squared residuals is equal to nσ2 and gives the maximum-likelihood estimate of the

noise variance as
(∑n

i=1

(
yi − (a+bxi)

)2)/n.

It is reassuring that the probabilistic viewpoint allows us to derive (ordinary) east-

squares regression from first principles. On the other hand, a full treatment would re-

quire noise on the x-values as well (total least squares), but this complicates the math-

ematics and does not necessarily have a unique solution. This illustrates that a good

probabilistic treatment of a machine learning problem achieves a balance between solid

theoretical foundations and the pragmatism required to obtain a workable solution.

9.2 Probabilistic models for categorical data

To kill time during long drives to some faraway holiday destination, my sisters and I

would often play games involving passing cars. For example, we would ask each other

to look out for cars that had a particular colour, were from a particular country or had

a particular letter on the numberplate. A binary question such as ‘is the car blue?’ is

called a Bernoulli trial by statisticians. They are modelled as a binary random variable

whose probability of success is fixed over each independent trial. We used a Bernoulli

distribution to model the event of an e-mail being ham in Example 9.1. On top of such

a random variable, other probability distributions can be built. For example, we may

want to guess how many of the next n cars are blue: this is governed by the binomial

distribution. Or the task may be to estimate how many cars we need to see until the

first Dutch one: this number follows a geometric definition. Background 9.2 will help

to refresh your memory regarding the main definitions.

Categorical variables or features (also called discrete or nominal) are ubiquitous

in machine learning. Perhaps the most common form of the Bernoulli distribution

models whether or not a word occurs in a document. That is, for the i -th word in our

vocabulary we have a random variable Xi governed by a Bernoulli distribution. The

joint distribution over the bit vector X = (X1, . . . , Xk) is called a multivariate Bernoulli

distribution. Variables with more than two outcomes are also common: for example,

274 9. Probabilistic models

The Bernoulli distribution, named after the Swiss seventeenth century mathematician Ja-

cob Bernoulli, concerns Boolean or binary events with two possible outcomes: success or

1, and failure or 0. A Bernoulli distribution has a single parameter θ which gives the prob-

ability of success: hence P (X = 1)= θ and P (X = 0)= 1−θ. The Bernoulli distribution has

expected value E [X]= θ and variance E
[
(X −E [X])2]= θ(1−θ).

The binomial distribution arises when counting the number of successes S in n indepen-

dent Bernoulli trials with the same parameter θ. It is described by

P (S = s)=
(

n

s

)
θs (1−θ)n−s for s ∈ {0, . . . ,n}

This distribution has expected value E [S]= nθ and variance E
[
(S−E [S])2]= nθ(1−θ).

The categorical distribution generalises the Bernoulli distribution to k ≥ 2 outcomes. The

parameter of the distribution is a k-vector θ = (θ1, . . . ,θk
)

such that
∑k

i=1 θi = 1.

Finally, the multinomial distribution tabulates the outcomes of n independent and iden-

tically distributed (i.i.d.) categorical trials. That is, X= (X1, . . . , Xk
)

is a k-vector of integer

counts, and

P (X= (x1, . . . , xk
)
)= n!

θ
x1
1

x1!
· · ·

θ
xk
k

xk !

with
∑k

i=1 xi = n. Notice that setting n = 1 gives us an alternative way of stating the cat-

egorical distribution as P (X = (x1, . . . , xk
)
) = θ

x1
1 · · ·θxk

k , with exactly one of the xi equal

to 1 and the rest set to 0. Furthermore, setting k = 2 gives an alternative expression for

the Bernoulli distribution as P (X = x)= θx (1−θ)1−x for x ∈ {0,1}. It is also useful to note

that if X follows a multinomial distribution, then each component Xi follows a binomial

distribution with parameter θi .

We can estimate the parameters of these distributions by counting in a straightforward

way. Suppose a b a c c b a a b c is a sequence of words. We might be interested in

individual words being a or not, and interpret the data as coming from 10 i.i.d. Bernoulli

trials, which would allow us to estimate θ̂a = 4/10 = 0.4. This same parameter generates

a binomial distribution of the number of occurrences of the word a in similar sequences.

Alternatively, we can estimate the parameters of the categorical (word occurrences) and

multinomial (word counts) distributions as θ̂ = (0.4,0.3,0.3).

It is almost always a good idea to smooth these distributions by including pseudo-counts.

Imagine our vocabulary includes the word d but we haven’t yet observed it, then a

maximum-likelihood estimate would set θ̂d = 0. We can smooth this by adding a virtual

occurrence of each word to our observations, leading to θ̂′ = (5/14,4/14,4/14,1/14). In

the case of a binomial this is the Laplace correction.

Background 9.2. Probability distributions for categorical data.

9.2 Probabilistic models for categorical data 275

every word position in an e-mail corresponds to a categorical variable with k out-

comes, where k is the size of the vocabulary. The multinomial distribution manifests

itself as a count vector: a histogram of the number of occurrences of all vocabulary

words in a document. This establishes an alternative way of modelling text documents

that allows the number of occurrences of a word to influence the classification of a

document.

Both these document models are in common use. Despite their differences, they

both assume independence between word occurrences, generally referred to as the

naive Bayes assumption. In the multinomial document model, this follows from the

very use of the multinomial distribution, which assumes that words at different word

positions are drawn independently from the same categorical distribution. In the mul-

tivariate Bernoulli model we assume that the bits in a bit vector are statistically inde-

pendent, which allows us to compute the joint probability of a particular bit vector

(x1, . . . , xk) as the product of the probabilities of each component P (Xi = xi). In prac-

tice, such word independence assumptions are often not true: if we know that an e-

mail contains the word ‘Viagra’, we can be quite sure that it will also contain the word

‘pill’. In any case, the experience is that, while the naive Bayes assumption almost cer-

tainly leads to poor probability estimates, it often doesn’t harm ranking performance.

This means that, provided the classification threshold is chosen with some care, we

can usually get good classification performance too.

Using a naive Bayes model for classification

Assume that we have chosen one of the possible distributions to model our data X .

In a classification context, we furthermore assume that the distribution depends on

the class, so that P (X |Y = spam) and P (X |Y = ham) are different distributions. The

more different these two distributions are, the more useful the features X are for clas-

sification. Thus, for a specific e-mail x we calculate both P (X = x|Y = spam) and

P (X = x|Y = ham), and apply one of several possible decision rules:

maximum likelihood (ML) – predict argmaxy P (X = x|Y = y);

maximum a posteriori (MAP) – predict argmaxy P (X = x|Y = y)P (Y = y);

recalibrated likelihood – predict argmaxy wy P (X = x|Y = y).

The relation between the first two decision rules is that ML classification is equivalent

to MAP classification with a uniform class distribution. The third decision rule gener-

alises the first two in that it replaces the class distribution with a set of weights learned

from the data: this makes it possible to correct for estimation errors in the likelihoods,

as we shall see later.

276 9. Probabilistic models

Example 9.4 (Prediction using a naive Bayes model). Suppose our vocabulary

contains three words a, b and c, and we use a multivariate Bernoulli model for

our e-mails, with parameters

θ⊕ = (0.5,0.67,0.33) θ� = (0.67,0.33,0.33)

This means, for example, that the presence of b is twice as likely in spam (+),

compared with ham.

The e-mail to be classified contains words a and b but not c, and hence is

described by the bit vector x= (1,1,0). We obtain likelihoods

P (x|⊕)= 0.5 ·0.67 · (1−0.33)= 0.222 P (x|�)= 0.67 ·0.33 · (1−0.33)= 0.148

The ML classification of x is thus spam. In the case of two classes it is often conve-

nient to work with likelihood ratios and odds. The likelihood ratio can be calcu-

lated as P (x|⊕)
P (x|�) = 0.5

0.67
0.67
0.33

1−0.33
1−0.33 = 3/2 > 1. This means that the MAP classification

of x is also spam if the prior odds are more than 2/3, but ham if they are less than

that. For example, with 33% spam and 67% ham the prior odds are P (⊕)
P (�) = 0.33

0.67 =
1/2, resulting in a posterior odds of P (⊕|x)

P (�|x) = P (x|⊕)
P (x|�)

P (⊕)
P (�) = 3/2 · 1/2 = 3/4 < 1. In

this case the likelihood ratio for x is not strong enough to push the decision away

from the prior.

Alternatively, we can employ a multinomial model. The parameters of a

multinomial establish a distribution over the words in the vocabulary, say

θ⊕ = (0.3,0.5,0.2) θ� = (0.6,0.2,0.2)

The e-mail to be classified contains three occurrences of word a, one single oc-

currence of word b and no occurrences of word c, and hence is described by the

count vector x = (3,1,0). The total number of vocabulary word occurrences is

n = 4. We obtain likelihoods

P (x|⊕)= 4!
0.33

3!

0.51

1!

0.20

0!
= 0.054 P (x|�)= 4!

0.63

3!

0.21

1!

0.20

0!
= 0.1728

The likelihood ratio is
(0.3

0.6

)3 (0.5
0.2

)1 (0.2
0.2

)0 = 5/16. The ML classification of x is thus

ham, the opposite of the multivariate Bernoulli model. This is mainly because of

the three occurrences of word a, which provide strong evidence for ham.

9.2 Probabilistic models for categorical data 277

Notice how the likelihood ratio for the multivariate Bernoulli model is a product of

factors θ⊕i /θ�i if xi = 1 in the bit vector to be classified, and (1−θ⊕i)/(1−θ�i) if xi = 0.

For the multinomial model the factors are
(
θ⊕i /θ�i

)xi . One consequence of this is that

the multinomial model only takes the presence of words into account, whereas in the

multivariate Bernoulli model absent words can make a difference. In the previous ex-

ample, not containing word b corresponds to a factor of (1− 0.67)/(1−0.33) = 1/2 in

the likelihood ratio. The other main difference between the two models is that multi-

ple occurrences of words are treated like duplicated features in the multinomial model,

through the exponential ‘weight’ xi . This becomes clearer by taking the logarithm of

the likelihood ratio, which is
∑

i xi (lnθ⊕i − lnθ�i): this expression is linear in lnθ⊕i and

lnθ�i with xi as weights. Notice that this does not mean that naive Bayes classifiers

are linear in the sense discussed in Chapter 7 unless we can demonstrate a linear rela-

tionship between lnθ and the corresponding feature value. But we can say that naive

Bayes models are linear in a particular space (the ‘log-odds’ space) obtained by apply-

ing a well-defined transformation to the features. We will return to this point when we

discuss �feature calibration in Section 10.2.

The fact that the joint likelihood ratio of a naive Bayes model factorises as a prod-

uct of likelihood ratios of individual words is a direct consequence of the naive Bayes

assumption. In other words, the learning task decomposes into univariate tasks, one

for each word in the vocabulary. We have encountered such a decomposition before

when we discussed �multivariate linear regression in Section 7.1. There, we saw an

example of how ignoring feature correlation could be harmful. Can we come up with

similar examples for naive Bayes classifiers? Consider the situation when a particular

word occurs twice in the vocabulary. In that case, we have the same factor occurring

twice in the product for the likelihood ratio, and are effectively giving the word in ques-

tion twice the weight of other words. While this is an extreme example, such double-

counting does have noticeable effects in practice. I previously gave the example that if

a spam e-mail contains the word ‘Viagra’, it is also expected to contain the word ‘pill’,

so seeing the two words together should not give much more evidence for spam than

seeing the first word on its own, and the likelihood ratio for the two words should not

be much higher than that of the first word. However, multiplying two likelihood ratios

larger than 1 will result in an even larger likelihood ratio. As a result, the probability

estimates of a naive Bayes classifier are often pushed too far towards 0 or 1.

This may not seem such a big deal if we are only interested in classification, and not

in the probability estimates as such. However, an often overlooked consequence of hav-

ing uncalibrated probability estimates such as those produced by naive Bayes is that both

the ML and MAP decision rules become inadequate. Unless we have evidence that the

model assumptions are satisfied, the only sensible thing to do in this case is to invoke

the recalibrated likelihood decision rule, which requires one to learn a weight vector

278 9. Probabilistic models

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

High acetyl cholinesterase inhibition

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Reversal of scopolamine-induced memory deficiency

Figure 9.4. (left) ROC curves produced by two naive Bayes classifiers (solid line: a variant of the

multivariate Bernoulli model; dashed line: a variant of the multinomial model). Both models

have similar ranking performance and yield almost the same – more or less optimal – MAP de-

cision threshold. (right) On a different data set from the same domain, the multinomial model’s

MAP threshold is slightly better, hinting at somewhat better calibrated probability estimates. But

since the slope of the accuracy isometrics indicates that there are about four positives for every

negative, the optimal decision rule is in fact to always predict positive.

over the classes, in order to correct for the estimation errors in the likelihoods. Specif-

ically, we want to find weights wi such that predicting argmaxy wy P (X = x|Y = y) re-

sults in the smallest possible loss – e.g., the number of misclassified examples – over

a test set. For two classes this can be solved by the same procedure we considered for

�turning rankers into classifiers in Section 2.2. To see this, notice that for two classes

the recalibrated likelihood decision rule can be rewritten as

� predict positive if w⊕P (X = x|Y = ⊕) > w�P (X = x|Y = �) and negative other-

wise; which is equivalent to

� predict positive if P (X = x|Y =⊕)/P (X = x|Y =�)>w�/w⊕ and negative other-

wise

This demonstrates that in the two-class case we really have just one degree of freedom,

as multiplying the weights by a constant does not affect the decisions. In other words,

what we are interested in is finding the best threshold t = w�/w⊕ on the likelihood

ratio, which is essentially the same problem as finding the best operating point on an

ROC curve. The solution is given by the point on the highest accuracy isometric. Figure

9.4 illustrates this on two real-life data sets: in the left figure we see that the MAP deci-

sion threshold is more or less optimal, whereas in the right figure the optimal point is

in the top right-hand corner.

9.2 Probabilistic models for categorical data 279

For more than two classes, finding a globally optimal weight vector is computation-

ally intractable, which means that we need to resort to a heuristic method. In Section

3.1 such a method was demonstrated for three classes. The idea is to fix the weights

one by one, using some ordering of the classes. That is, we use the two-class procedure

to optimally separate the i -th class from the previous i −1 classes.

Training a naive Bayes model

Training a probabilistic model usually involves estimating the parameters of the dis-

tributions used in the model. The parameter of a Bernoulli distribution can be es-

timated by counting the number of successes d in n trials and setting θ̂ = d/n. In

other words, we count, for each class, how many e-mails contain the word in ques-

tion. Such relative frequency estimates are usually smoothed by including pseudo-

counts, representing the outcome of virtual trials according to some fixed distributions.

In the case of a Bernoulli distribution the most common smoothing operation is the

Laplace correction, which involves two virtual trials, one of which results in success

and the other in failure. Consequently, the relative frequency estimate is changed to

(d +1)/(n+2). From a Bayesian perspective this amounts to adopting a uniform prior,

representing our initial belief that success and failure are equally likely. If appropriate,

we can strengthen the influence of the prior by including a larger number of virtual tri-

als, which means that more data is needed to move the estimate away from the prior.

For a categorical distribution smoothing adds one pseudo-count to each of the k cat-

egories, leading to the smoothed estimate (d +1)/(n+k). The m-estimate generalises

this further by making both the total number of pseudo-counts m and the way they

are distributed over the categories into parameters. The estimate for the i -th cate-

gory is defined as (d+pi m)/(n+m), where pi is a distribution over the categories (i.e.,∑k
i=1 pi = 1). Notice that smoothed relative frequency estimates – and hence products

of such estimates – can never attain the extreme values θ̂ = 0 or θ̂ = 1.

Example 9.5 (Training a naive Bayes model). We now show how the parameter

vectors in the previous example might have been obtained. Consider the follow-

ing e-mails consisting of five words a, b, c, d , e:

e1: b d e b b d e

e2: b c e b b d d e c c

e3: a d a d e a e e

e4: b a d b e d a b

e5: a b a b a b a e d

e6: a c a c a c a e d

e7: e a e d a e a

e8: d e d e d

We are told that the e-mails on the left are spam and those on the right are ham,

and so we use them as a small training set to train our Bayesian classifier. First,

280 9. Probabilistic models

E-mail #a #b #c Class

e1 0 3 0 +
e2 0 3 3 +
e3 3 0 0 +
e4 2 3 0 +
e5 4 3 0 −
e6 4 0 3 −
e7 3 0 0 −
e8 0 0 0 −

E-mail a? b? c? Class

e1 0 1 0 +
e2 0 1 1 +
e3 1 0 0 +
e4 1 1 0 +
e5 1 1 0 −
e6 1 0 1 −
e7 1 0 0 −
e8 0 0 0 −

Table 9.1. (left) A small e-mail data set described by count vectors. (right) The same data set

described by bit vectors.

we decide that d and e are so-called stop words that are too common to convey

class information. The remaining words, a, b and c, constitute our vocabulary.

For the multinomial model, we represent each e-mail as a count vector, as in

Table 9.1 (left). In order to estimate the parameters of the multinomial, we sum

up the count vectors for each class, which gives (5,9,3) for spam and (11,3,3)

for ham. To smooth these probability estimates we add one pseudo-count for

each vocabulary word, which brings the total number of occurrences of vo-

cabulary words to 20 for each class. The estimated parameter vectors are thus

θ̂⊕ = (6/20,10/20,4/20) = (0.3,0.5,0.2) for spam and θ̂� = (12/20,4/20,4/20) =
(0.6,0.2,0.2) for ham.

In the multivariate Bernoulli model e-mails are represented by bit vectors,

as in Table 9.1 (right). Adding the bit vectors for each class results in (2,3,1) for

spam and (3,1,1) for ham. Each count is to be divided by the number of docu-

ments in a class, in order to get an estimate of the probability of a document con-

taining a particular vocabulary word. Probability smoothing now means adding

two pseudo-documents, one containing each word and one containing none

of them. This results in the estimated parameter vectors θ̂⊕ = (3/6,4/6,2/6) =
(0.5,0.67,0.33) for spam and θ̂� = (4/6,2/6,2/6)= (0.67,0.33,0.33) for ham.

Many other variations of the naive Bayes classifier exist. In fact, what is normally

understood as ‘the’ naive Bayes classifier employs neither a multinomial nor a multi-

variate Bernoulli model, but rather a multivariate categorical model. This means that

features are categorical, and the probability of the i -th feature taking on its l-th value

for class c examples is given by θ(c)
i l , under the constraint that

∑ki
l=1θ

(c)
i l = 1, where ki

9.2 Probabilistic models for categorical data 281

is the number of values of the i -th feature. These parameters can be estimated by

smoothed relative frequencies in the training set, as in the multivariate Bernoulli case.

We again have that the joint probability of the feature vector is the product of the in-

dividual feature probabilities, and hence P (Fi ,F j |C) = P (Fi |C)P (F j |C) for all pairs of

features and for all classes.

Notice, by the way, that conditional independence is quite different from uncondi-

tional independence: neither implies the other. To see that conditional independence

does not imply unconditional independence, imagine two words that are very likely to

occur in spam, but they are independent (i.e., the probability of both of them occurring

in a spam e-mail is the product of the marginal probabilities). Imagine further that they

are very unlikely – but also independent – in ham. Suppose I tell you an unclassified

e-mail contains one of the words: you would probably guess that it is a spam e-mail,

from which you would further guess that it also contains the other word – demonstrat-

ing that the words are not unconditionally independent. To see that unconditional

independence does not imply conditional independence, consider two different inde-

pendent words, and let an e-mail be spam if it contains at least one of the words and

ham otherwise, then among spam e-mails the two words are dependent (since if I know

that a spam e-mail doesn’t contain one of the words, then it must contain the other).

Another extension of the naive Bayes model is required when some of the features

are real-valued. One option is to discretise the real-valued features in a pre-processing

stage: this will be discussed in Chapter 10. Another option is to assume that the feature

values are normally distributed within each class, as discussed in the previous section.

In this context it is worth noting that the naive Bayes assumption boils down to as-

suming a diagonal covariance matrix within each class, so that each feature can be

treated independently. A third option that is also used in practice is to model the class-

conditional likelihood of each feature by a non-parametric density estimator. These

three options are illustrated in Figure 9.5.

In summary, the naive Bayes model is a popular model for dealing with textual,

categorical and mixed categorical/real-valued data. Its main shortcoming as a proba-

bilistic model – poorly calibrated probability estimates – are outweighed by generally

good ranking performance. Another apparent paradox with naive Bayes is that it isn’t

particularly Bayesian at all! For one thing, we have seen that the poor probability es-

timates necessitate the use of reweighted likelihoods, which avoids using Bayes’ rule

altogether. Secondly, in training a naive Bayes model we use maximum-likelihood pa-

rameter estimation, whereas a fully fledged Bayesian approach would not commit to a

particular parameter value, but rather employ a full posterior distribution. Personally, I

think the essence of naive Bayes is the decomposition of joint likelihoods into marginal

likelihoods. This decomposition is evocatively visualised by the Scottish tartan pattern

in Figure 1.3 on p.31, which is why I like to call naive Bayes the ‘Scottish classifier’.

282 9. Probabilistic models

D
e
n
s
it
y

-2 -1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

D
e
n
s
it
y

-2 -1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 9.5. (left) Examples of three density estimators on 20 points sampled from a normal

distribution with zero mean and unit variance (dotted line)). A histogram is a simple non-

parametric method which employs a fixed number of equal-width intervals. A kernel density

estimator (in red) applies interpolation to obtain a smooth density function. The solid bell curve

(in blue) is obtained by estimating the sample mean and variance, assuming the true distribu-

tion is normal. (right) Here, the 20 points are sampled uniformly from [−2,2], and the non-

parametric methods generally do better.

9.3 Discriminative learning by optimising conditional likelihood

In the introduction to this chapter we distinguished between generative and discrim-

inative probabilistic models. Naive Bayes models are generative: after training they

can be used to generate data. In this section we look at one of the most commonly

used discriminative models: logistic regression.5 The easiest way to understand logis-

tic regression is as a linear classifier whose probability estimates have been logistically

calibrated using the method described in Section 7.4, but with one crucial difference:

calibration is an integral part of the training algorithm, rather than a post-processing

step. While in generative models the decision boundary is a by-product of modelling

the distributions of each class, logistic regression models the decision boundary di-

rectly. For example, if the classes are overlapping then logistic regression will tend to

locate the decision boundary in an area where classes are maximally overlapping, re-

gardless of the ‘shapes’ of the samples of each class. This results in decision boundaries

that are noticeably different from those learned by generative classifiers (Figure 9.6).

Equation 7.13 on p.222 expresses the likelihood ratio as exp
(
γ(d(x)−d0)

)
with

d(x) = w · x− t . Since we are learning the parameters all at once in discriminative

learning, we can absorb γ and d0 into w and t . So the logistic regression model is

5Notice that the term ‘regression’ is a bit of a misnomer here, since, even though a probability estimator

approximates an unknown function, the training labels are classes rather than true function values.

9.3 Discriminative learning by optimising conditional likelihood 283

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 9.6. (left) On this data set, logistic regression (in blue) outperforms the basic linear clas-

sifier (in red) and the least squares classifier (in orange) because the latter two are more sensitive

to the shape of the classes, while logistic regression concentrates on where the classes overlap.

(right) On this slightly different set of points, logistic regression is outperformed by the other

two methods because it concentrates too much on tracking the transition from mostly positive

to mostly negative.

simply given by

p̂(x)= exp(w ·x− t)

exp(w ·x− t)+1
= 1

1+exp(−(w ·x− t))

Assuming the class labels are y = 1 for positives and y = 0 for negatives, this defines a

Bernoulli distribution for each training example:

P (yi |xi)= p̂(xi)yi (1− p̂(xi))(1−yi)

It is important to note that the parameters of these Bernoulli distributions are linked

through w and t , and consequently there is one parameter for every feature dimension,

rather than for every training instance.

The likelihood function is

CL(w, t)=∏
i

P (yi |xi)=∏
i

p̂(xi)yi (1− p̂(xi))(1−yi)

This is called conditional likelihood to stress that it gives us the conditional probability

P (yi |xi) rather than P (xi) as in a generative model. Notice that our use of the prod-

uct requires the assumption that the y-values are independent given x; but this is an

entirely reasonable assumption and not nearly as strong as the naive Bayes assump-

tion of x being independent within each class. As usual, the logarithm of the likelihood

284 9. Probabilistic models

function is easier to work with:

LCL(w, t)=∑
i

yi ln p̂(xi)+ (1− yi) ln(1− p̂(xi))= ∑
x⊕∈Tr⊕

ln p̂(x⊕)+ ∑
x�∈Tr�

ln(1− p̂(x�))

We want to maximise the log-conditional likelihood with respect to these parame-

ters, which means that all partial derivatives must be zero:

∇wLCL(w, t)= 0

∂

∂t
LCL(w, t)= 0

Although these equations do not yield an analytic solution, they can be used to obtain

further insight into the nature of logistic regression. Concentrating on t , we first need

to do some algebraic groundwork.

ln p̂(x)= ln
exp(w ·x− t)

exp(w ·x− t)+1

=w ·x− t − ln(exp(w ·x− t)+1)

∂

∂t
ln p̂(x)=−1− ∂

∂t
ln(exp(w ·x− t)+1)

=−1− 1

exp(w ·x− t)+1
exp(w ·x− t) · (−1)

= p̂(x)−1

Similarly for the negatives:

ln(1− p̂(x))= ln
1

exp(w ·x− t)+1

=− ln(exp(w ·x− t)+1)

∂

∂t
ln(1− p̂(x))= ∂

∂t
− ln(exp(w ·x− t)+1)

= −1

exp(w ·x− t)+1
exp(w ·x− t) · (−1)

= p̂(x)

It follows that the partial derivative of LCL with respect to t has a simple form:

∂

∂t
LCL(w, t)= ∑

x⊕∈Tr⊕
(p̂(x)−1)+ ∑

x�∈Tr�
p̂(x�)

= ∑
xi∈Tr

(p̂(xi)− yi)

For the optimal solution this partial derivative is zero. What this means is that, on aver-

age, the predicted probability should be equal to the proportion of positives pos. This

is a satisfying result, as it is clearly a desirable global property of a calibrated classifier.

9.3 Discriminative learning by optimising conditional likelihood 285

Notice that grouping models such as probability estimating trees have this property by

construction, as they set the predicted probability equal to the empirical probability in

a segment.

A very similar derivation leads to the partial derivative of the log-conditional like-

lihood with respect to the j -th weight w j . The point to note here is that, whereas
∂
∂t (w ·x− t) = −1, we have ∂

∂w j
(w ·x− t) = ∂

∂w j

(∑
j w j x j − t

) = x j , the instance’s j -th

feature value. This then leads to

∂

∂w j
LCL(w, t)= ∑

xi∈Tr
(yi − p̂(xi))xi j (9.5)

Setting this partial derivative to zero expresses another, feature-wise calibration prop-

erty. For example, if the j -th feature is a sparse Boolean feature that is mostly zero,

then this calibration property only involves the instances xi for which xi j = 1: on av-

erage, those instances should have their predicted probability equal the proportion of

positives among them.

Example 9.6 (Univariate logistic regression). Consider the data in Figure 9.7

with 20 points in each class. Although both classes were generated from nor-

mal distributions, class overlap in this particular sample is less than what could

be expected on the basis of the class means. Logistic regression is able to take

advantage of this and gives a much steeper sigmoid than the basic linear classi-

fier with logistic calibration (explained in Example 7.7 on p.222), which is entirely

formulated in terms of class means and variance. Also shown are the probabil-

ity estimates obtained from the convex hull of the ROC curve (see Figure 7.13

on p.224); this calibration procedure is non-parametric and hence better able to

detect the limited class overlap.

In terms of statistics, logistic regression has better mean squared error (0.040)

than the logistically calibrated classifier (0.057). Isotonic calibration leads to the

lowest error (0.021), but note that no probability smoothing has been applied

to mitigate the risk of overfitting. The sum of predicted probabilities is 18.7 for

the logistically calibrated classifier and 20 for the other two – i.e., equal to the

number of examples, which is a necessary condition for full calibration. Finally,∑
xi∈Tr(yi − p̂(xi))xi is 2.6 for the logistically calibrated classifier, 4.7 for the ROC-

calibrated classifier, and 0 for logistic regression as expected from Equation 9.5.

In order to train a logistic regression model we need to find

w∗, t∗ = argmax
w,t

CL(w, t)= argmax
w,t

LCL(w, t)

286 9. Probabilistic models

−3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.7. Logistic regression (in red) compared with probability estimates obtained by logistic

calibration (in blue) and isotonic calibration (in green); the latter two are applied to the basic lin-

ear classifier (estimated class means are indicated by circles). The corresponding three decision

boundaries are shown as vertical dotted lines.

This can be shown to be a convex optimisation problem, which means that there is

only one maximum. A range of optimisation techniques can be applied. One simple

approach is inspired by the perceptron algorithm and iterates over examples, using the

following update rule:

w=w+η(yi − p̂i)xi

where η is the learning rate. Notice the relationship with the partial derivative in Equa-

tion 9.5. Essentially, we are using single examples to approximate the direction of

steepest ascent.

9.4 Probabilistic models with hidden variables

Suppose you are dealing with a four-class classification problem with classes A, B ,

C and D . If you have a sufficiently large and representative training sample of size

n, you can use the relative frequencies in the sample nA , . . . ,nD to estimate the class

prior p̂ A = nA/n, . . . , p̂D = nD /n, as we have done many times before.6 Conversely, if

you know the prior and want to know the most likely class distribution in a random

6Of course, if you’re not sure whether the sample is large enough it is better to smooth these relative

frequency estimates by, e.g., the �Laplace correction (Section 2.3).

9.4 Probabilistic models with hidden variables 287

sample of n instances, you would use the prior to calculate expected values E [nA] =
p A ·n, . . . ,E [nD]= pD ·n. So, complete knowledge of one allows us to estimate or infer

the other. However, sometimes we have a bit of knowledge about both. For example,

we may know that p A = 1/2 and that C is twice as likely as B , without knowing the

complete prior. And we may know that the sample we saw last week was evenly split

between A∪B and C ∪D , and that C and D were equally large, but we can’t remember

the size of A and B separately. What should we do?

Formalising what we know about the prior, we have p A = 1/2; pB = β, as yet un-

known; pC = 2β, since it is twice pB ; and pD = 1/2−3β, since the four cases need to

add up to 1. Furthermore: nA +nB = a + b = s, nC = c and nD = d , with s, c and d

known. We want to infer a, b and β: however, it seems we are stuck in a chicken-and-

egg problem. If we knew β we would have full knowledge about the prior and we could

use that to infer expected values for a and b:

E [a]

E [b]
= 1/2

β
E [a]+E [b]= s

from which we could derive

E [a]= 1

1+2β
s E [b]= 2β

1+2β
s (9.6)

So, for example, if s = 20 and β= 1/10, then E [a]= 16 2
3 and E [b]= 3 1

3 .

Conversely, if we knew a and b, then we could estimate β by maximum-likelihood

estimation, using a multinomial distribution for a, b, c and d :

P (a,b,c,d |β)=K (1/2)aβb(2β)c (1/2−3β)d

lnP (a,b,c,d |β)= lnK +a ln(1/2)+b lnβ+c ln(2β)+d ln(1/2−3β)

Here, K is a combinatorial constant that doesn’t affect the value of β which maximises

the likelihood. Taking the partial derivative with respect to β gives

∂

∂β
lnP (a,b,c,d |β)= b

β
+ 2c

2β
− 3d

1/2−3β

Setting to 0 and solving for β finally gives

β̂= b+c

6(b+c+d)
(9.7)

So, for example, if b = 5 and c = d = 10, then β̂= 1/10.

The way out of this chicken-and-egg problem is to iterate the following two steps:

(i) calculate an expected value of the missing frequencies a and b from an assumed or

previously estimated value of the parameterβ; and (ii) calculate a maximum-likelihood

estimate of the parameter β from assumed or expected values of the missing frequen-

cies a and b. These two steps are iterated until a stationary configuration is reached.

288 9. Probabilistic models

So, if we start with a = 15, b = 5 and c = d = 10, then we have just seen that β̂ = 1/10.

Plugging this value of β into Equation 9.6 gives us E [a]= 16 2
3 and E [b]= 3 1

3 . Plugging

these values back into Equation 9.7 yields β̂ = 2/21, which in turn gives E [a] = 16.8

and E [b] = 3.2, and so on. A stationary configuration with β = 0.0948, a = 16.813 and

b = 3.187 is reached in fewer than 10 iterations. In this simple case this is a global

optimum that is reached regardless of the starting point, essentially because the rela-

tionship between b and β is monotonic (E [b] increases with β according to Equation

9.6 and β̂ increases with b according to Equation 9.7). However, this is not normally

the case: we will return to this point later.

Expectation-Maximisation

The problem that we have just discussed is an example of a problem with missing data,

where the full data Y separates into observed variables X and hidden variables Z (also

called latent variables). In the example, the observed variables are c, d and s, and the

hidden variables are a and b. We also have model parameter(s) θ, which is β in the

example.7 Denote the estimate of θ in the t-th iteration as θt . We have two relevant

quantities:

� the expectation E
[

Z |X ,θt
]

of the hidden variables given the observed variables

and the current estimate of the parameters (so in Equation 9.6 the expectations

of a and b depend on s and β);

� the likelihood P (Y |θ), which is used to find the maximising value of θ.

In the likelihood function we need values for Y = X ∪Z . We obviously use the observed

values for X , but we need to use previously calculated expectations for Z . This means

that we really want to maximise P (X ∪ E
[

Z |X ,θt
] |θ), or equivalently, the logarithm

of that function. We now make the assumption that the logarithm of the likelihood

function is linear in Y : notice that this assumption is valid in the example above. For

any linear function f , f (E [Z])= E
[

f (Z)
]

and thus we can bring the expectation outside

in our objective function:

lnP (X ∪E
[

Z |X ,θt]|θ)= E
[
lnP (X ∪Z |θ)|X ,θt]= E

[
lnP (Y |θ)|X ,θt] (9.8)

This last expression is usually denoted as Q(θ|θt), as it essentially tells us how to calcu-

late the next value of θ from the current one:

θt+1 = argmax
θ

Q(θ|θt)= argmax
θ

E
[
lnP (Y |θ)|X ,θt] (9.9)

7Model parameters are also ‘hidden’ in a sense, but they are different from hidden variables in that you

would never expect to observe the value of a parameter (e.g., a class mean), whereas a hidden variable could

be observed in principle but happens to be unobserved in the case at hand.

9.4 Probabilistic models with hidden variables 289

This, then, is the general form of the celebrated Expectation-Maximisation (EM)

algorithm, which is a powerful approach to probabilistic modelling with hidden vari-

ables or missing data. Similar to the example above, we iterate over assigning an ex-

pected value to the hidden variables given our current estimates of the parameters,

and re-estimating the parameters from these updated expectations, until a stationary

configuration is reached. We can start the iteration by initialising either the parameters

or the hidden variables in some way. The algorithm bears a striking resemblance to the

�K -means algorithm (Algorithm 8.1 on p.248), which also iterates over assigning data

points to current cluster means, and re-estimating the cluster means from the new as-

signments. This resemblance is not accidental, as we shall see in a moment. Like the

K -means algorithm, EM can be proved to always converge to a stationary configura-

tion for a wide class of probabilistic models. However, EM can get trapped in a local

optimum that is dependent on the initial configuration.

Gaussian mixture models

A common application of Expectation-Maximisation is to estimate the parameters of a

Gaussian mixture model from data. In such a model the data points are generated by K

normal distributions, each with their own mean μ j and covariance matrix Σ j , and the

proportion of points coming from each Gaussian is governed by a prior τ = (τ1, . . . ,τK).

If each data point in a sample were labelled with the index of the Gaussian it came from

this would be a straightforward classification problem, which could be solved easily

by estimating each Gaussian’s μ j and Σ j separately from the data points belonging

to class j . However, we are now considering the much harder predictive clustering

problem in which the class labels are hidden and need to be reconstructed from the

observed feature values.

A convenient way to model this is to have for each data point xi a Boolean vector

zi = (zi 1, . . . , zi K) such that exactly one bit zi j is set to 1 and the rest set to 0, signalling

that the i -th data point comes from the j -th Gaussian. Using this notation we can

adapt the expression for the�multivariate normal distribution (Equation 9.2 on p.267)

to obtain a general expression for a Gaussian mixture model:

P (xi ,zi |θ)=
K∑

j=1
zi jτ j

1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −μ j)TΣ−1

j (xi −μ j)

)
(9.10)

Here, θ collects all the parameters τ, μ1, . . . ,μK and Σ1, . . . ,ΣK . The interpretation as a

generative model is as follows: we first randomly select a Gaussian using the prior τ ,

and then we invoke the corresponding Gaussian using the indicator variables zi j .

290 9. Probabilistic models

In order to apply Expectation-Maximisation we form the Q function:

Q(θ|θt)= E
[

lnP (X∪Z|θ)|X,θt]
= E

[
ln

n∏
i=1

P (xi ∪zi |θ)

∣∣∣∣∣X,θt

]

= E

[
n∑

i=1
lnP (xi ∪zi |θ)

∣∣∣∣∣X,θt

]

= E

[
n∑

i=1
ln

K∑
j=1

zi jτ j
1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −μ j)TΣ−1

j (xi −μ j)

)∣∣∣∣∣X,θt

]

= E

[
n∑

i=1

K∑
j=1

zi j ln

(
τ j

1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −μ j)TΣ−1

j (xi −μ j)

))∣∣∣∣∣X,θt

]
(*)

= E

[
n∑

i=1

K∑
j=1

zi j

(
lnτ j − d

2
ln(2π)− 1

2
ln |Σ j |− 1

2
(xi −μ j)TΣ−1

j (xi −μ j)

)∣∣∣∣∣X,θt

]

=
n∑

i=1

K∑
j=1

E
[

zi j
∣∣X,θt](lnτ j − d

2
ln(2π)− 1

2
ln |Σ j |− 1

2
(xi −μ j)TΣ−1

j (xi −μ j)

)

(9.11)

The step marked (*) is possible because for a given i only one zi j is switched on, hence

we can bring the indicator variables outside the logarithm. The last line shows the Q

function in the desired form, involving on the one hand expectations over the hidden

variables conditioned on the observable data X and the previously estimated parame-

ters θt , and on the other hand expressions in θ that allow us to find θt+1 by maximisa-

tion.

The Expectation step of the EM algorithm is thus the calculation of the expected

values of the indicator variables E
[

zi j
∣∣X,θt

]
. Notice that expectations of Boolean vari-

ables take values on the entire interval [0,1], under the constraint that
∑K

j=1 zi j = 1 for

all i . In effect, the hard cluster assignment of K -means is changed into a soft assign-

ment – one of the ways in which Gaussian mixture models generalise K -means. Now,

suppose that K = 2 and we expect both clusters to be of equal size and with equal co-

variances. If a given data point xi is equidistant from the two cluster means (or rather,

our current estimates of these), then clearly E
[

zi 1|X,θt
] = E

[
zi 2|X,θt

] = 1/2. In the

general case these expectations are apportioned proportionally to the probability mass

assigned to the point by each Gaussian:

E
[

zi j
∣∣X,θt]= τt

j f (xi |μt
j ,Σt

j)∑K
k=1τ

t
k f (xi |μt

k ,Σt
k)

(9.12)

where f (x|μ,Σ) stands for the multivariate Gaussian density function.

For the Maximisation step we optimise the parameters in Equation 9.11. Notice

there is no interaction between the terms containing τ j and the terms containing the

9.4 Probabilistic models with hidden variables 291

other parameters, and so the prior distribution τ can be optimised separately:

τ t+1 = argmax
τ

n∑
i=1

K∑
j=1

E
[

zi j
∣∣X,θt] lnτ j

= argmax
τ

K∑
j=1

E j lnτ j under the constraint
K∑

j=1
τ j = 1

where I have written E j for
∑n

i=1E
[

zi j
∣∣X,θt

]
, which is the total (partial) membership

of the j -th cluster – notice that
∑K

j=1 E j = n. For simplicity we assume K = 2, so that

τ2 = 1−τ1: then

τt+1
1 = argmax

τ1

E1 lnτ1+E2 ln(1−τ1)

Setting the derivative with respect to τ1 to zero and solving for τ1, it can be easily ver-

ified that τt+1
1 = E1/(E1 +E2) = E1/n and thus τt+1

2 = E2/n. In the general case of K

clusters we have analogously

τt+1
j = E j∑K

k=1 Ek
= 1

n

n∑
i=1

E
[

zi j
∣∣X,θt] (9.13)

The means and covariance matrices can be optimised for each cluster separately:

μt+1
j ,Σt+1

j = argmax
μ j ,Σ j

n∑
i=1

E
[

zi j
∣∣X,θt](−1

2
ln |Σ j |− 1

2
(xi −μ j)TΣ−1

j (xi −μ j)

)

= argmin
μ j ,Σ j

n∑
i=1

E
[

zi j
∣∣X,θt](1

2
ln |Σ j |+ 1

2
(xi −μ j)TΣ−1

j (xi −μ j)

)

Notice that the term between brackets is a squared-distance term with the expectations

functioning as instance weights on each instance. This describes a generalised version

of the problem of finding the point that �minimises the sum of squared Euclidean dis-

tances to a set of points (Theorem 8.1 on p.238). While that problem is solved by the

arithmetic mean, here we simply take the weighted average over all the points:

μt+1
j = 1

E j

n∑
i=1

E
[

zi j
∣∣X,θt]xi =

∑n
i=1E
[

zi j
∣∣X,θt

]
xi∑n

i=1E
[

zi j
∣∣X,θt

] (9.14)

Similarly, the covariance matrix is computed as a weighted average of covariance ma-

trices obtained from each data point, taking into account the newly estimated mean:

Σt+1
j = 1

E j

n∑
i=1

E
[

zi j
∣∣X,θt] (xi −μt+1

j)(xi −μt+1
j)T

=
∑n

i=1E
[

zi j
∣∣X,θt

]
(xi −μt+1

j)(xi −μt+1
j)T

∑n
i=1E
[

zi j
∣∣X,θt

] (9.15)

Equations 9.12–9.15, then, constitute the EM solution to learning a Gaussian mix-

ture model from an unlabelled sample. I have presented it here in its most general

292 9. Probabilistic models

40 45 50 55 60 65 70 75 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

40 45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 9.8. (left) The blue line shows the true Gaussian mixture model from which the 10 points

on the x-axis were sampled; the colour of the points indicates whether they came from the left

or the right Gaussian. The other lines show convergence of Expectation-Maximisation to a sta-

tionary configuration from a random initialisation. (right) This plot shows four stationary con-

figurations for the same set of points. The EM algorithm was run for 20 iterations; the thickness

of one of the lines demonstrates that this configuration takes longer to converge.

form, explicitly modelling unequal cluster sizes and covariance matrices. The latter is

important as it allows for clusters of different shapes, unlike the K -means algorithm

which assumes that all clusters have the same spherical shape. Consequently, the

boundaries between clusters will not be linear, as they are in the clusterings learned

by K -means. Figure 9.8 demonstrates the convergence of EM on a simple univariate

data set, as well as the existence of multiple stationary configurations.

In conclusion, Expectation-Maximisation is a versatile and powerful method to

deal with missing variables in a principled way. As we have seen in detail for the Gaus-

sian mixture model, the main ingredient is an expression for the parametric likelihood

function P (X ∪Z |θ), from which the update equations can be derived by means of the

Q function. A word of caution is also in order, since – except in the simplest cases –

there will be more than one stationary configuration. Like with K -means, the optimi-

sation should therefore be run multiple times with different starting configurations.

9.5 Compression-based models

We end this chapter with a brief discussion of an approach to machine learning that

is both closely related to and quite distinct from the probabilistic approach. Consider

the maximum a posteriori decision rule again:

yMAP = argmax
y

P (X = x|Y = y)P (Y = y)

9.5 Compression-based models 293

Y P (Viagra= 1|Y) IC (Viagra= 1|Y) P (Viagra= 0|Y) IC (Viagra= 0|Y)

spam 0.40 1.32 bits 0.60 0.74 bits

ham 0.12 3.06 bits 0.88 0.18 bits

Table 9.2. Example marginal likelihoods.

Taking negative logarithms, we can turn this into an equivalent minimisation:

yMAP = argmin
y

− logP (X = x|Y = y)− logP (Y = y) (9.16)

This follows because for any two probabilities 0 < p < p ′ < 1 we have ∞ > − log p >
− log p ′ > 0. If an event has probability p of happening, the negative logarithm of p

quantifies the information content of the message that the event has indeed happened.

This makes intuitive sense, as the less expected an event is, the more information an

announcement of the event contains. The unit of information depends on the base of

the logarithm: it is customary to take logarithms to the base 2, in which case informa-

tion is measured in bits. For example, if you toss a fair coin once and tell me it came

up heads, this contains − log2 1/2 = 1 bit of information; if you roll a fair die once and

let me know it came up six, the information content of your message is − log2 1/6= 2.6

bits. Equation 9.16 tells us that the MAP decision rule chooses the least surprising or

the most expected class for an instance x given particular prior distributions and like-

lihoods. We write IC(X |Y)=− log2 P (X |Y) and IC(Y)=− log2 P (Y).

Example 9.7 (Information-based classification). Table 9.2 reproduces the left

table in Table 1.3 on p.29 together with the relevant information content quanti-

ties. If Y is uniformly distributed then IC(Y = spam)= 1 bit and IC(Y = ham)= 1

bit. It follows that

argmin
y

(
IC(Viagra= 1|Y = y)+ IC(Y = y)

)= spam

argmin
y

(
IC(Viagra= 0|Y = y)+ IC(Y = y)

)= ham

If ham is four times as likely as spam then IC(Y = spam) = 2.32 bit and IC(Y =
ham)= 0.32 bit, and argminy

(
IC(Viagra= 1|Y = y)+ IC(Y = y)

)= ham.

Clearly, for a uniform distribution over k outcomes, each outcome has the same infor-

mation content − log2 1/k = log2 k. For a non-uniform distribution these information

294 9. Probabilistic models

contents differ, and hence it makes sense to compute the average information con-

tent or entropy
∑k

i=1−pi log2 pi . We have encountered entropy before as an �impurity

measure in Section 5.1.

So far I have not really told you anything new, other than that there is a one-to-one

relationship between probability and information content. What really kicks things

off in compression-based learning is a fundamental result from information theory

proved by Claude Shannon in 1948. Shannon’s result says – loosely speaking – that we

cannot transmit information at a rate that surpasses entropy, but we can get arbitrarily

close to the optimal rate by designing clever binary codes. Some well-known codes

include the Shannon–Fanon code and the Huffman code, which are worth looking up

as they employ a simple tree structure to build the code from empirical probabilities.

Even more efficient codes, such as arithmetic coding, combine multiple messages into

a single code word.

Assuming the availability of a near-optimal code, we can now turn the tables and

use information content – or ‘description length’ as it is more commonly called – as

a proxy for probability. One simplified version of the minimum description length

(MDL) principle runs as follows.

Definition 9.1 (Minimum description length principle). Let L(m) denote the length

in bits of a description of model m, and let L(D|m) denote the length in bits of a de-

scription of data D given model m. According to the minimum description length

principle, the preferred model is the one minimising the description length of model

and data given model:

mMDL = argmin
m∈M

(L(m)+L(D|m)) (9.17)

�

In a predictive learning context, ‘description of data given model’ refers to whatever

information we need, in addition to the model and the feature values of the data, to

infer the target labels. If the model is 100% accurate no further information is needed,

so this term essentially quantifies the extent to which the model is incorrect. For ex-

ample, in a uniform two-class setting we need one bit for every data point incorrectly

classified by the model. The term L(m) quantifies the complexity of the model. For

instance, if we are fitting a polynomial to the data we need to encode the degree of the

polynomial as well as its roots, up to a certain resolution. MDL learning thus trades off

accuracy and complexity of a model: the complexity term serves to avoid overfitting

in a similar way to the �regularisation term in ridge regression in Section 7.1 and the

�slack variable term in soft-margin SVMs in Section 7.3.

What encoding to use in order to determine the model complexity L(m) is often

not straightforward and to some extent subjective. This is similar to the Bayesian

9.6 Probabilistic models: Summary and further reading 295

perspective, where we need to define a prior distribution on models. The MDL view-

point offers a concrete way of defining model priors by means of codes.

9.6 Probabilistic models: Summary and further reading

In this chapter we covered a range of machine learning models that are all based on the

idea that features and target variables can be modelled as random variables, giving the

opportunity to explicitly represent and manipulate the level of certainty we have about

those variables. Such models are usually predictive in that they result in a conditional

distribution P (Y |X) with which Y can be predicted from X . Generative models esti-

mate the joint distribution P (Y , X) – often through the likelihood P (X |Y) and the prior

P (Y) – from which the posterior P (Y |X) can be obtained, while conditional models

learn the posterior P (Y |X) directly without spending resources on learning P (X). The

‘Bayesian’ approach to machine learning is characterised by concentrating on the full

posterior distribution wherever this is feasible, rather than just deriving a maximising

value.

� In Section 9.1 we saw that the normal or Gaussian distribution supports many

useful geometric intuitions, essentially because the negative logarithm of the

Gaussian likelihood can be interpreted as a squared distance. Straight decision

boundaries result from having the same per-class covariance matrices, which

means that models resulting in such linear boundaries, including linear classi-

fiers, linear regression and K -means clustering, can be interpreted from a prob-

abilistic viewpoint that makes their inherent assumptions explicit. Two exam-

ples of this are that the basic linear classifier is Bayes-optimal for uncorrelated,

unit-variance Gaussian features; and least-squares regression is optimal for lin-

ear functions contaminated by Gaussian noise on the target variable.

� Section 9.2 was devoted to different versions of the naive Bayes classifier, which

makes the simplifying assumption that features are independent within each

class. Lewis (1998) gives an overview and history. This model is widely used

in information retrieval and text classification as it is often a good ranker if not a

good probability estimator. While the model that is usually understood as naive

Bayes treats features as categorical or Bernoulli random variables, variants em-

ploying a multinomial model tend to better model the number of occurrences

of words in a document (McCallum and Nigam, 1998). Real-valued features can

be taken into account by either modelling them as normally distributed within

each class, or by non-parametric density estimation – John and Langley (1995)

suggest that the latter gives better empirical results. Webb, Boughton and Wang

(2005) discuss ways of relaxing the strong independence assumptions made by

296 9. Probabilistic models

naive Bayes. Probability smoothing by means of the m-estimate was introduced

by Cestnik (1990).

� Perhaps paradoxically, I don’t think there is anything particularly ‘Bayesian’ about

the naive Bayes classifier. While it is a generative probabilistic model estimating

the posterior P (Y |X) through the joint P (Y , X), in practice the posterior is very

poorly calibrated owing to the unrealistic independence assumptions. The rea-

son naive Bayes is often successful is because of the quality of argmaxY P (Y |X)

rather than the quality of the posterior as such, as analysed by Domingos and

Pazzani (1997). Furthermore, even the use of Bayes’ rule in determining the max-

imising Y can be avoided, as it only serves to transform uncalibrated likelihoods

into uncalibrated posteriors. So my recommendation is to use naive Bayes like-

lihoods as scores on an unknown scale whose decision threshold needs to be

calibrated by means of ROC analysis, as has been discussed several times before.

� In Section 9.3 we looked at the widely used logistic regression model. The ba-

sic idea is to combine a linear decision boundary with logistic calibration, but to

train this in a discriminative fashion by optimising conditional likelihood. So,

rather than modelling the classes as clouds of points and deriving a decision

boundary from those clouds, logistic regression concentrates on areas of class

overlap. It is an instance of the larger class of generalised linear models (Nelder

and Wedderburn, 1972). Jebara (2004) discusses the advantages of discrimina-

tive learning in comparison with generative models. Discriminative learning can

also be applied to sequential data in the form of conditional random fields (Laf-

ferty et al., 2001)

� Section 9.4 presented the Expectation-Maximisation algorithm as a general way

of learning models involving unobserved variables. This general form of EM was

proposed by Dempster, Laird and Rubin (1977) based on a variety of earlier work.

We have seen how it can be applied to Gaussian mixture models to obtain a more

general version of K -means predictive clustering, which is also able to estimate

cluster shapes and sizes. However, this increases the number of parameters of

the model and thus the risk of getting stuck in a non-optimal stationary config-

uration. (Little and Rubin, 1987) is a standard reference for dealing with missing

data.

� Finally, in Section 9.5 we briefly discussed some ideas related to learning as com-

pression. The link with probabilistic modelling is that both seek to model and ex-

ploit the non-random aspects of the data. In a simplified setting, the minimum

description length principle can be derived from Bayes’ rule by taking the nega-

tive logarithm, and states that models minimising the description length of the

9.6 Probabilistic models: Summary and further reading 297

model and of the data given the model should be preferred. The first term quan-

tifies the complexity of the model, and the second term quantifies its accuracy

(as only the model’s errors need to be encoded explicitly). The advantage of the

MDL principle is that encoding schemes are often more tangible and easier to

define than prior distributions. However, not just any encoding will do: as with

their probabilistic counterparts, these schemes need to be justified in the do-

main being modelled. Pioneering work in this area has been done by Solomonoff

(1964a,b); Wallace and Boulton (1968); Rissanen (1978), among others. An excel-

lent introduction and overview is provided by Grünwald (2007).

�

CHAPTER 10

Features

P
REVIOUSLY I REFERRED to features as ‘the workhorses of machine learning’ – it is there-

fore high time to consider them in more detail. Features, also called attributes, are

defined as mappings fi : X →Fi from the instance space X to the feature domain Fi .

We can distinguish features by their domain: common feature domains include real

and integer numbers, but also discrete sets such as colours, the Booleans, and so on.

We can also distinguish features by the range of permissible operations. For example,

we can calculate a group of people’s average age but not their average blood type, so

taking the average value is an operation that is permissible on some features but not

on others. We will take a closer look at different kinds of feature in Section 10.1.

Although many data sets come with pre-defined features, they can be manipulated

in many ways. For example, we can change the domain of a feature by rescaling or

discretisation; we can select the best features from a larger set and only work with the

selected ones; or we can combine two or more features into a new feature. In fact, a

model itself is a way of constructing a new feature that solves the task at hand. Feature

transformations will be investigated in Section 10.2, while feature construction and

selection is the topic of Section 10.3

298

10.1 Kinds of feature 299

10.1 Kinds of feature

Consider two features, one describing a person’s age and the other their house num-

ber. Both features map into the integers, but the way we use those features can be quite

different. Calculating the average age of a group of people is meaningful, but an aver-

age house number is probably not very useful! In other words, what matters is not just

the domain of a feature, but also the range of permissible operations. These, in turn,

depend on whether the feature values are expressed on a meaningful scale. Despite

appearances, house numbers are not really integers but ordinals: we can use them to

determine that number 10’s neighbours are number 8 and number 12, but we cannot

assume that the distance between 8 and 10 is the same as the distance between 10

and 12. Because of the absence of a linear scale it is not meaningful to add or subtract

house numbers, which precludes operations such as averaging.

Calculations on features

Let’s take a closer look at the range of possible calculations on features, often referred

to as aggregates or statistics. Three main categories are statistics of central tendency,

statistics of dispersion and shape statistics. Each of these can be interpreted either as a

theoretical property of an unknown population or a concrete property of a given sam-

ple – here we will concentrate on sample statistics.

Starting with statistics of central tendency, the most important ones are

� the mean or average value;

� the median, which is the middle value if we order the instances from lowest to

highest feature value; and

� the mode, which is the majority value or values.

Of these statistics, the mode is the one we can calculate whatever the domain of the

feature: so, for example, we can say that the most frequent blood type in a group of

people is O+. In order to calculate the median, we need to have an ordering on the

feature values: so we can calculate both the mode and the median house number in

a set of addresses.1 In order to calculate the mean, we need a feature expressed on

some scale: most often this will be a linear scale for which we calculate the familiar

arithmetic mean, but Background 10.1 discusses means for some other scales. It is

often suggested that the median tends to lie between the mode and the mean, but there

are plenty of exceptions to this ‘rule’. The famous statistician Karl Pearson suggested a

1If our sample contains an even number of instances, there are two middle values. If the feature has a

scale it is customary to take the mean of those two values as the median; if the feature doesn’t have a scale,

or if it is important that we select a value actually occurring in the sample, we can either select both as the

lower and upper median, or we can make a random choice.

300 10. Features

Imagine a swimmer who swims the same distance d on two different days, taking a sec-

onds one day and b seconds the next. On average, it took her therefore c = (a+b)/2 sec-

onds, with an average speed of d/c = 2d/(a+b). Notice how this average speed is not cal-

culated as the normal or arithmetic mean of the speeds, which would yield (d/a+d/b)/2:

to calculate average speed over a fixed distance we use a different mean called the har-

monic mean. Given two numbers x and y (in our swimming example these are the speeds

on either day, d/a and d/b), the harmonic mean h is defined as

h(x, y)= 2

1/x+1/y
= 2x y

x+ y

Since 1/h(x, y)= (1/x+1/y)/2, we observe that calculating the harmonic mean on a scale

with unit u corresponds to calculating the arithmetic mean on the reciprocal scale with

unit 1/u. In the example, speed with fixed distance is expressed on a scale reciprocal to

the time scale, and since we use the arithmetic mean to average time, we use the harmonic

mean to average speed. (If we average speed over a fixed time interval this is expressed on

the same scale as distance and thus we would use the arithmetic mean.)

A good example of where the harmonic mean is used in machine learning arises when we

average precision and recall of a classifier. Remember that precision is the proportion of

positive predictions that is correct (prec = TP/(TP+FP)), and recall is the proportion of

positives that is correctly predicted (rec = TP/(TP+FN)). Suppose we first calculate the

number of mistakes averaged over the classes: this is the arithmetic mean Fm = (FP+
FN)/2. We can then derive

TP

TP+Fm
= TP

TP+ (FP+FN)/2
= 2TP

(TP+FP)+ (TP+FN)
= 2

1/prec+1/rec

We recognise the last term as the harmonic mean of precision and recall. Since the enu-

merator of both precision and recall is fixed, taking the arithmetic mean of the denomina-

tors corresponds to taking the harmonic mean of the ratios. In information retrieval this

harmonic mean of precision and recall is very often used and called the F-measure.

Yet other means exist for other scales. In music, going from one note to a note one oc-

tave higher corresponds to doubling the frequency. So frequencies f and 4 f are two oc-

taves apart, and it makes sense to take the octave in between with frequency 2 f as their

mean. This is achieved by the geometric mean, which is defined as g (x, y) = �x y . Since

log
�

x y = (log x y)/2 = (log x+ log y)/2 it follows that the geometric mean corresponds to

the arithmetic mean on a logarithmic scale. All these means have in common that the

mean of two values is an intermediate value, and that they can easily be extended to more

than two values.

Background 10.1. On scales and means.

10.1 Kinds of feature 301

more specific rule of thumb (with therefore even more exceptions): the median tends

to fall one-third of the way from mean to mode.

The second kind of calculation on features are statistics of dispersion or ‘spread’.

Two well-known statistics of dispersion are the variance or average squared deviation

from the (arithmetic) mean, and its square root, the standard deviation. Variance and

standard deviation essentially measure the same thing, but the latter has the advantage

that it is expressed on the same scale as the feature itself. For example, the variance

of the body weight in kilograms of a group of people is measured in kg2 (kilograms-

squared), whereas the standard deviation is measured in kilograms. The absolute dif-

ference between the mean and the median is never larger than the standard deviation

– this is a consequence of Chebyshev’s inequality, which states that at most 1/k2 of the

values are more than k standard deviations away from the mean.

A simpler dispersion statistic is the difference between maximum and minimum

value, which is called the range. A natural statistic of central tendency to be used

with the range is the midrange point, which is the mean of the two extreme values.

These definitions assume a linear scale but can be adapted to other scales using suit-

able transformations. For example, for a feature expressed on a logarithmic scale, such

as frequency, we would take the ratio of the highest and lowest frequency as the range,

and the harmonic mean of these two extremes as the midrange point.

Other statistics of dispersion include percentiles. The p-th percentile is the value

such that p per cent of the instances fall below it. If we have 100 instances, the 80th per-

centile is the value of the 81st instance in a list of increasing values.2 If p is a multiple of

25 the percentiles are also called quartiles, and if it is a multiple of 10 the percentiles are

also called deciles. Note that the 50th percentile, the 5th decile and the second quartile

are all the same as the median. Percentiles, deciles and quartiles are special cases of

quantiles. Once we have quantiles we can measure dispersion as the distance between

different quantiles. For instance, the interquartile range is the difference between the

third and first quartile (i.e., the 75th and 25th percentile).

Example 10.1 (Percentile plot). Suppose you are learning a model over an in-

stance space of countries, and one of the features you are considering is the gross

domestic product (GDP) per capita. Figure 10.1 shows a so-called percentile plot

of this feature. In order to obtain the p-th percentile, you intersect the line y = p

with the dotted curve and read off the corresponding percentile on the x-axis. In-

dicated in the figure are the 25th, 50th and 75th percentile. Also indicated is the

2Similar to the median there are issues with non-integer ranks, and they can be dealt with in different

ways; however, significant differences do not arise unless the sample size is very small.

302 10. Features

0

25

50

75

100

$0 $17,000 $34,000 $51,000 $68,000 $85,000 $102,000

Figure 10.1. Percentile plot of GDP per capita for 231 countries (data obtained from www.

wolframalpha.com by means of the query ‘GDP per capita’).The vertical dotted lines in-

dicate, from left to right: the first quartile ($900); the median ($3600); the mean ($11 284);

andthe third quartile ($14 750). The interquartile range is $13 850, while the standard deviation

is $16 189.

mean (which has to be calculated from the raw data). As you can see, the mean

is considerably higher than the median; this is mainly because of a few countries

with very high GDP per capita. In other words, the mean is more sensitive to out-

liers than the median, which is why the median is often preferred to the mean for

skewed distributions like this one.

You might think that the way I drew the percentile plot is the wrong way around:

surely it would make more sense to have p on the x-axis and the percentiles on the

y-axis? One advantage of drawing the plot this way is that, by interpreting the y-axis

as probabilities, the plot can be read as a cumulative probability distribution: a plot of

P (X ≤ x) against x for a random variable X . For example, the plot shows that P (X ≤μ)

is approximately 0.70, where μ = $11284 is the mean GDP per capita. In other words,

if you choose a random country the probability that its GDP per capita is less than the

average is about 0.70.

Since GDP per capita is a real-valued feature, it doesn’t necessarily make sense to

talk about its mode, since if you measure the feature precisely enough every country

will have a different value. We can get around this by means of a histogram, which

counts the number of feature values in a particular interval or bin.

10.1 Kinds of feature 303

0

10

20

30

40

50

60

70

80

90

$2,000 $22,000 $42,000 $62,000 $82,000 $102,000

Figure 10.2. Histogram of the data from Figure 10.1, with bins of $2000 wide.

Example 10.2 (Histogram). A histogram of the data from Example 10.1 is shown

in Figure 10.2. The left-most bin is the mode, with well over a third of the coun-

tries having a GDP per capita of not more than $2000. This demonstrates that

the distribution is extremely right-skewed (i.e., has a long right tail), resulting in

a mean that is considerably higher than the median.

The skew and ‘peakedness’ of a distribution can be measured by shape statistics

such as skewness and kurtosis. The main idea is to calculate the third and fourth cen-

tral moment of the sample. In general, the k-th central moment of a sample {xi , . . . , xn}

is defined as mk = 1
n

∑n
i=1(xi −μ)k , where μ is the sample mean. Clearly, the first cen-

tral moment is the average deviation from the mean – this is always zero, as the posi-

tive and negative deviations cancel each other out – and the second central moment is

the average squared deviation from the mean, otherwise known as the variance. The

third central moment m3 can again be positive or negative. Skewness is then defined as

m3/σ3, where σ is the sample’s standard deviation. A positive value of skewness means

that the distribution is right-skewed, which means that the right tail is longer than the

left tail. Negative skewness indicates the opposite, left-skewed case. Kurtosis is defined

as m4/σ4. As it can be shown that a normal distribution has kurtosis 3, people often

use excess kurtosis m4/σ4−3 as the statistic of interest. Briefly, positive excess kurtosis

means that the distribution is more sharply peaked than the normal distribution.

304 10. Features

Kind Order Scale Tendency Dispersion Shape

Categorical × × mode n/a n/a

Ordinal
� × median quantiles n/a

Quantitative
� �

mean range, interquartile range,

variance, standard deviation

skewness,

kurtosis

Table 10.1. Kinds of feature, their properties and allowable statistics. Each kind inherits the

statistics from the kinds above it in the table. For instance, the mode is a statistic of central

tendency that can be computed for any kind of feature.

Example 10.3 (Skewness and kurtosis). In the GDP per capita example we can

calculate skewness as 2.12 and excess kurtosis as 2.53. This confirms that the dis-

tribution is heavily right-skewed, and also more sharply peaked than the normal

distribution.

Categorical, ordinal and quantitative features

Given these various statistics we can distinguish three main kinds of feature: those

with a meaningful numerical scale, those without a scale but with an ordering, and

those without either. We will call features of the first type quantitative; they most often

involve a mapping into the reals (another term in common use is ‘continuous’). Even

if a feature maps into a subset of the reals, such as age expressed in years, the various

statistics such as mean or standard deviation still require the full scale of the reals.

Features with an ordering but without scale are called ordinal features. The domain

of an ordinal feature is some totally ordered set, such as the set of characters or strings.

Even if the domain of a feature is the set of integers, denoting the feature as ordinal

means that we have to dispense with the scale, as we did with house numbers. Another

common example are features that express a rank order: first, second, third, and so

on. Ordinal features allow the mode and median as central tendency statistics, and

quantiles as dispersion statistics.

Features without ordering or scale are called categorical features (or sometimes

‘nominal’ features). They do not allow any statistical summary except the mode. One

subspecies of the categorical features is the Boolean feature, which maps into the truth

values true and false. The situation is summarised in Table 10.1.

Models treat these different kinds of feature in distinct ways. First, consider

tree models such as decision trees. A split on a categorical feature will have as many

10.1 Kinds of feature 305

children as there are feature values. Ordinal and quantitative features, on the other

hand, give rise to a binary split, by selecting a value v0 such that all instances with a

feature value less than or equal to v0 go to one child, and the remaining instances to

the other child. It follows that tree models are insensitive to the scale of quantitative

features. For example, whether a temperature feature is measured on the Celsius scale

or on the Fahrenheit scale will not affect the learned tree. Neither will switching from

a linear scale to a logarithmic scale have any effect: the split threshold will simply be

log v0 instead of v0. In general, tree models are insensitive to monotonic transforma-

tions on the scale of a feature, which are those transformations that do not affect the

relative order of the feature values. In effect, tree models ignore the scale of quantitative

features, treating them as ordinal. The same holds for rule models.

Now let’s consider the naive Bayes classifier. We have seen that this model works by

estimating a likelihood function P (X |Y) for each feature X given the class Y . For cate-

gorical and ordinal features with k values this involves estimating P (X = v1|Y), . . . ,P (X =
vk |Y). In effect, ordinal features are treated as categorical ones, ignoring the order.

Quantitative features cannot be handled at all, unless they are discretised into a finite

number of bins and thus converted to categoricals. Alternatively, we could assume a

parametric form for P (X |Y), for instance a normal distribution. We will return to this

later in this chapter when we discuss feature calibration.

While naive Bayes only really handles categorical features, many geometric models

go in the other direction: they can only handle quantitative features. Linear models

are a case in point: the very notion of linearity assumes a Euclidean instance space in

which features act as Cartesian coordinates, and thus need to be quantitative. Distance-

based models such as k-nearest neighbour and K -means require quantitative features

if their distance metric is Euclidean distance, but we can adapt the distance metric to

incorporate categorical features by setting the distance to 0 for equal values and 1 for

unequal values (the �Hamming distance as defined in Section 8.1). In a similar vein,

for ordinal features we can count the number of values between two feature values (if

we encode the ordinal feature by means of integers, this would simply be their differ-

ence). This means that distance-based methods can accommodate all feature types

by using an appropriate distance metric. Similar techniques can be used to extend

support vector machines and other kernel-based methods to categorical and ordinal

features.

Structured features

It is usually tacitly assumed that an instance is a vector of feature values. In other

words, the instance space is a Cartesian product of d feature domains: X =F1× . . .×
Fd . This means that there is no other information available about an instance apart

from the information conveyed by its feature values. Identifying an instance with its

306 10. Features

vector of feature values is what computer scientists call an abstraction, which is the

result of filtering out unnecessary information. Representing an e-mail as a vector of

word frequencies is an example of an abstraction.

However, sometimes it is necessary to avoid such abstractions, and to keep more

information about an instance than can be captured by a finite vector of feature values.

For example, we could represent an e-mail as a long string; or as a sequence of words

and punctuation marks; or as a tree that captures the HTML mark-up; and so on. Fea-

tures that operate on such structured instance spaces are called structured features.

Example 10.4 (Structured features). Suppose an e-mail is represented as a se-

quence of words. This allows us to define, apart from the usual word frequency

features, a host of other features, including:

� whether the phrase ‘machine learning’ – or any other set of consecutive

words – occurs in the e-mail;

� whether the e-mail contains at least eight consecutive words in a language

other than English;

� whether the e-mail is palindromic, as in ‘Degas, are we not drawn onward,

we freer few, drawn onward to new eras aged?’

Furthermore, we could go beyond properties of single e-mails and express rela-

tions such as whether one e-mail is quoted in another e-mail, or whether two

e-mails have one or more passages in common.

Structured features are not unlike queries in a database query language such as

SQL or a declarative programming language such as Prolog. In fact, we have already

seen examples of structured features in Section 6.4 when we looked at learning Prolog

clauses such as the following:

fish(X):-bodyPart(X,Y).

fish(X):-bodyPart(X,pairOf(Z)).

The first clause has a single structured feature in the body which tests for the existence

of some unspecified body part, while the second clause has another structured feature

testing for the existence of a pair of unspecified body parts. The defining characteristic

of structured features is that they involve local variables that refer to objects other than

the instance itself. In a logical language such as Prolog it is natural to interpret local

variables as existentially quantified, as we just did. However, it is equally possible to

use other forms of aggregation over local variables: e.g., we can count the number of

body parts (or pairs of body parts) an instance has.

10.2 Feature transformations 307

↓ to, from→ Quantitative Ordinal Categorical Boolean

Quantitative normalisation calibration calibration calibration

Ordinal discretisation ordering ordering ordering

Categorical discretisation unordering grouping

Boolean thresholding thresholding binarisation

Table 10.2. An overview of possible feature transformations. Normalisation and calibration

adapt the scale of quantitative features, or add a scale to features that don’t have one. Ordering

adds or adapts the order of feature values without reference to a scale. The other operations

abstract away from unnecessary detail, either in a deductive way (unordering, binarisation) or

by introducing new information (thresholding, discretisation).

Structured features can be constructed either prior to learning a model, or simul-

taneously with it. The first scenario is often called propositionalisation because the

features can be seen as a translation from first-order logic to propositional logic with-

out local variables. The main challenge with propositionalisation approaches is how

to deal with combinatorial explosion of the number of potential features. Notice that

features can be logically related: e.g., the second clause above covers a subset of the

instances covered by the first one. It is possible to exploit this if structured feature con-

struction is integrated with model building, as in inductive logic programming.

10.2 Feature transformations

Feature transformations aim at improving the utility of a feature by removing, chang-

ing or adding information. We could order feature types by the amount of detail they

convey: quantitative features are more detailed than ordinal ones, followed by categor-

ical features, and finally Boolean features. The best-known feature transformations are

those that turn a feature of one type into another of the next type down this list. But

there are also transformations that change the scale of quantitative features, or add a

scale (or order) to ordinal, categorical and Boolean features. Table 10.2 introduces the

terminology we will be using.

The simplest feature transformations are entirely deductive, in the sense that they

achieve a well-defined result that doesn’t require making any choices. Binarisation

transforms a categorical feature into a set of Boolean features, one for each value of

the categorical feature. This loses information since the values of a single categorical

feature are mutually exclusive, but is sometimes needed if a model cannot handle more

than two feature values. Unordering trivially turns an ordinal feature into a categorical

one by discarding the ordering of the feature values. This is often required since most

learning models cannot handle ordinal features directly. An interesting alternative that

308 10. Features

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

Figure 10.3. (left) Coverage curve obtained by ranking countries on decreasing GDP per capita,

using 23 Euro countries as the positive class. The orange split sets the threshold equal to the

mean, selecting 19 Euro countries and 49 non-Euro countries. The green split sets the threshold

equal to the median, selecting 21 Euro countries and 94 non-Euro countries. The red points are

on the convex hull of the coverage curve and indicate potentially optimal splits when the class

label is taken into account. (right) Coverage curve of the same feature, using 50 countries in

the Americas as the positive class. The red splits indicate potentially optimal thresholds with

relatively many positives above the threshold, while the green splits indicate potentially optimal

thresholds with relatively many positives below the threshold.

we will explore below is to add a scale to the feature by means of calibration.

In the remainder of this section we consider feature transformations that add in-

formation, the most important of which are discretisation and calibration.

Thresholding and discretisation

Thresholding transforms a quantitative or an ordinal feature into a Boolean feature by

finding a feature value to split on. I briefly alluded to this in Chapter 5 as a way to split

on quantitative features in decision trees. Concretely, let f : X → R be a quantitative

feature and let t ∈ R be a threshold, then ft : X → {true, false} is a Boolean feature

defined by ft (x) = true if f (x) ≥ t and ft (x) = false if f (x) < t . We can choose such

thresholds in an unsupervised or a supervised way.

Example 10.5 (Unsupervised and supervised thresholding). Consider the GDP

per capita feature plotted in Figure 10.1 again. Without knowing how this feature

is to be used in a model, the most sensible thresholds are the statistics of central

tendency such as the mean and the median. This is referred to as unsupervised

thresholding.

10.2 Feature transformations 309

In a supervised learning setting we can do more. For example, suppose we

want to use the GDP per capita as a feature in a decision tree to predict whether a

country is one of the 23 countries that use the Euro as their official currency (or as

one of their currencies). Using the feature as a ranker, we can construct a cover-

age curve (Figure 10.3 (left)). We see that for this feature the mean is not the most

obvious threshold, as it splits right in the middle of a run of negatives. A better

split is obtained at the start of that run of negatives, or at the end of the follow-

ing run of positives, indicated by the red points at either end of the mean split.

More generally, any point on the convex hull of the coverage curve represents a

candidate threshold; which one to choose is informed by whether we put more

value on picking out positives or negatives. As it happens in this example, the

median threshold is on the convex hull, but this cannot be guaranteed in gen-

eral as, by definition, unsupervised thresholding methods select the threshold

independently from the target.

Figure 10.3 (right) shows the same feature with a different target: whether a

country is in the Americas. We see that part of the curve is below the ascending

diagonal, indicating that, in comparison with the whole data set, the initial seg-

ment of the ranking contains a smaller proportion of American countries. This

means that potentially useful thresholds can also be found on the lower convex

hull.

In summary, unsupervised thresholding typically involves calculating some statistic

over the data, whereas supervised thresholding requires sorting the data on the fea-

ture value and traversing down this ordering to optimise a particular objective func-

tion such as information gain. Non-optimal split points could be filtered out by means

of constructing the upper and lower convex hull, but in practice this is unlikely to be

more efficient computationally than a straightforward sweep over the sorted instances.

If we generalise thresholding to multiple thresholds we arrive at one of the most

commonly used non-deductive feature transformations. Discretisation transforms a

quantitative feature into an ordinal feature. Each ordinal value is referred to as a bin

and corresponds to an interval of the original quantitative feature. Again, we can dis-

tinguish between supervised and unsupervised approaches. Unsupervised discretisa-

tion methods typically require one to decide the number of bins beforehand. A simple

method that often works reasonably well is to choose the bins so that each bin has ap-

proximately the same number of instances: this is referred to as equal-frequency dis-

cretisation. If we choose two bins then this method coincides with thresholding on the

median. More generally, the bin boundaries are quantiles: for instance, with 10 bins

the bin boundaries of equal-width discretisation are deciles. Another unsupervised

310 10. Features

discretisation method is equal-width discretisation, which chooses the bin boundaries

so that each interval has the same width. The interval width can be established by

dividing the feature range by the number of bins if the feature has upper and lower

limits; alternatively, we can take the bin boundaries at an integer number of standard

deviations above and below the mean. An interesting alternative is to treat feature dis-

cretisation as a univariate clustering problem. For example, in order to generate K bins

we can uniformly sample K initial bin centres and run K -means until convergence. We

can alternatively use any of the other clustering methods discussed in Chapter 8: K -

medoids, partitioning around medoids and hierarchical agglomerative clustering.

Switching now to supervised discretisation methods, we can distinguish between

top–down or divisive discretisation methods on the one hand, and bottom–up or ag-

glomerative discretisation methods on the other. Divisive methods work by progres-

sively splitting bins, whereas agglomerative methods proceed by initially assigning each

instance to its own bin and successively merging bins. In either case an important role

is played by the stopping criterion, which decides whether a further split or merge is

worthwhile. We give an example of each strategy. A natural generalisation of thresh-

olding leads to a top–down recursive partitioning algorithm (Algorithm 10.1). This dis-

cretisation algorithm finds the best threshold according to some scoring function Q,

and proceeds to recursively split the left and right bins. One scoring function that is

often used is information gain.

Example 10.6 (Recursive partitioning using information gain). Consider the

following feature values, which are ordered on increasing value for convenience.

Instance Value Class

e1 −5.0 �
e2 −3.1 ⊕
e3 −2.7 �
e4 0.0 �
e5 7.0 �
e6 7.1 ⊕
e7 8.5 ⊕
e8 9.0 �
e9 9.0 ⊕
e10 13.7 �
e11 15.1 �
e12 20.1 �

This feature gives rise to the following ranking: �⊕���⊕⊕[�⊕]���, where the

square brackets indicate a tie between instances e8 and e9. The corresponding

10.2 Feature transformations 311

0
1

2
3

4

0 1 2 3 4 5 6 7 8

0
1

2
3

4

0 1 2 3 4 5 6 7 8

0
1

2
3

4

0 1 2 3 4 5 6 7 8

Figure 10.4. (left) A coverage curve visualising the ranking of four positive and eight negative

examples by a feature to be discretised. The curved lines are information gain isometrics through

possible split points; the solid isometric indicates the best split [4+,5−][0+,3−] according to

information gain. (middle) Recursive partitioning proceeds to split the segment [4+,5−] into

[1+,4−][3+,1−]. (right) If we stop here, the blue curve visualises the discretised (but still ordinal)

feature.

coverage curve is depicted in Figure 10.4. Tracing information gain isometrics

through each possible split, we see that the best split is �⊕���⊕⊕[�⊕]|���.

Repeating the process once more gives the discretisation �⊕���|⊕⊕[�⊕]|���.

Clearly, we can stop the recursive partitioning algorithm when the empirical prob-

abilities are the same across the ranking; this has pure bins and bins with a constant

feature value as special cases. With this stopping criterion, the algorithm will success-

fully identify all straight line segments in the ranking. In fact, it is not hard to see

that this holds true even if we change the scoring function – the split points may be

found in a different order, but the end result will be the same. In practice more aggres-

sive stopping criteria are used, which does mean that the end result depends on the

Algorithm 10.1: RecPart(S, f ,Q) – supervised discretisation by means of recursive

partitioning.

Input : set of labelled instances S ranked on feature values f (x); scoring

function Q.

Output : sequence of thresholds t1, . . . , tk−1.

1 if stopping criterion applies then return ∅;

2 Split S into Sl and Sr using threshold t that optimises Q ;

3 Tl = RecPart(Sl , f ,Q);

4 Tr = RecPart(Sr , f ,Q);

5 return Tl ∪ {t }∪Tr ;

312 10. Features

Algorithm 10.2: AggloMerge(S, f ,Q) – supervised discretisation by means of ag-

glomerative merging.

Input : set of labelled instances S ranked on feature values f (x); scoring

function Q.

Output : sequence of thresholds.

1 initialise bins to data points with the same scores;

2 merge consecutive pure bins ; // optional optimisation

3 repeat

4 evaluate Q on consecutive bin pairs;

5 merge the pairs with best Q (unless they invoke the stopping criterion);

6 until no further merges are possible;

7 return thresholds between bins;

scoring function. For example, in Figure 10.4 we see that the split �|[⊕�]⊕⊕���⊕⊕
has the second-highest information gain but ends up not being chosen at all, while

with a different scoring function it might have been chosen in the first round. One of

the most popular stopping criteria applies a minimum description length argument to

decide whether a given bin should be split further.

It should be noted that the data set in Example 10.6 is probably so small that the

stopping criterion will kick in straight away and recursive partitioning will be unable

to go beyond a single bin. More generally, this kind of discretisation tends to be fairly

conservative. For example, on the Euro data in Figure 10.3 (left) recursive partitioning

produces two bins, selecting 20 Euro countries and 53 non-Euro countries (the red

point in between the mean and median splits). On the American countries data in

Figure 10.3 (right) we again obtain two bins, corresponding to the third red point from

the right.

An algorithm for bottom–up agglomerative merging is given in Algorithm 10.2. Again

the algorithm can take various choices for the scoring function and the stopping crite-

rion: a popular choice is to use the χ2 statistic for both.

Example 10.7 (Agglomerative merging using χ2). We continue Example 10.6.

Algorithm 10.2 initialises the bins to �|⊕|���|⊕⊕|[�⊕]|���. We illustrate the

calculation of the χ2 statistic for the last two bins. We construct the following

contingency table:

10.2 Feature transformations 313

Left bin Right bin

⊕ 1 0 1

� 1 3 4

2 3 5

At the basis of the χ2 statistic lies a comparison of these observed frequencies

with expected frequencies obtained from the row and column marginals. For

example, the marginals say that the top row contains 20% of the total mass and

the left column 40%; so if rows and columns were statistically independent we

would expect 8% of the mass – or 0.4 of the five instances – in the top-left cell.

Following a clockwise direction, the expected frequencies for the other cells are

0.6, 2.4 and 1.6. If the observed frequencies are close to the expected ones, this

suggests that these two bins are candidates for merging since the split appears to

have no bearing on the class distribution.

The χ2 statistic sums the squared differences between the observed and ex-

pected frequencies, each term normalised by the expected frequency:

χ2 = (1−0.4)2

0.4
+ (0−0.6)2

0.6
+ (3−2.4)2

2.4
+ (1−1.6)2

1.6
= 1.88

Going left-to-right through the other pairs of consecutive bins, the χ2 values are

2, 4, 5 and 1.33 (there’s an easy way to calculate the χ2 value for two pure bins,

which I’ll leave you to discover). This tells us that the fourth and fifth bin are first

to be merged, leading to �|⊕|���|⊕⊕[�⊕]|���. We then recompute the χ2 val-

ues (in fact, only those involving the newly merged bin need to be re-computed),

yielding 2, 4, 3.94 and 3.94. We now merge the first two bins, giving the partition

�⊕|���|⊕⊕[�⊕]|���. This changes the first χ2 value to 1.88, so we again merge

the first two bins, arriving at �⊕���|⊕⊕[�⊕]|��� (the same three bins as in Ex-

ample 10.6).

In agglomerative discretisation the stopping criterion usually takes the form of a

simple threshold on the scoring function. In the case of the χ2 statistic, the thresh-

old can be derived from the p-value associated with the χ2 distribution, which is the

probability of observing a χ2 value above the threshold if the two variables are actually

independent. For two classes (i.e., one degree of freedom) and a p-value of 0.10 the χ2

threshold is 2.71, which in our example means that we stop at the above three bins. For

a lower p-value of 0.05 the χ2 threshold is 3.84, which means that we eventually merge

all the bins.

314 10. Features

Notice that both top–down and bottom–up supervised discretisation bear some

resemblance to algorithms we have seen previously: recursive partitioning shares the

divide-and-conquer nature of the �decision tree training algorithm (Algorithm 5.1 on

p.132), and agglomerative discretisation by merging consecutive bins is related to

�hierarchical agglomerative clustering (Algorithm 8.4 on p.255). It is also worth men-

tioning that, although our examples were predominantly drawn from binary classifi-

cation, most methods can handle more than two classes without complication.

Normalisation and calibration

Thresholding and discretisation are feature transformations that remove the scale of a

quantitative feature. We now turn our attention to adapting the scale of a quantitative

feature, or adding a scale to an ordinal or categorical feature. If this is done in an un-

supervised fashion it is usually called normalisation, whereas calibration refers to su-

pervised approaches taking in the (usually binary) class labels. Feature normalisation

is often required to neutralise the effect of different quantitative features being mea-

sured on different scales. If the features are approximately normally distributed, we

can convert them into �z-scores (Background 9.1 on p.267) by centring on the mean

and dividing by the standard deviation. In certain cases it is mathematically more con-

venient to divide by the variance instead, as we have seen in Section 7.1. If we don’t

want to assume normality we can centre on the median and divide by the interquartile

range.

Sometimes feature normalisation is understood in the stricter sense of expressing

the feature on a [0,1] scale. This can be achieved in various ways. If we know the fea-

ture’s highest and lowest values h and l , then we can simply apply the linear scaling

f �→ (f − l)/(h− l). We sometimes have to guess the value of h or l , and truncate any

value outside [l ,h]. For example, if the feature measures age in years, we may take

l = 0 and h = 100, and truncate any f > h to 1. If we can assume a particular dis-

tribution for the feature, then we can work out a transformation such that almost all

feature values fall in a certain range. For instance, we know that more than 99% of the

probability mass of a normal distribution falls within ±3σ of the mean, where σ is the

standard deviation, so the linear scaling f �→ (f −μ)/6σ+1/2 virtually removes the need

for truncation.

Feature calibration is understood as a supervised feature transformation adding a

meaningful scale carrying class information to arbitrary features. This has a number

of important advantages. For instance, it allows models that require scale, such as lin-

ear classifiers, to handle categorical and ordinal features. It also allows the learning

algorithm to choose whether to treat a feature as categorical, ordinal or quantitative.

We will assume a binary classification context, and so a natural choice for the cali-

brated feature’s scale is the posterior probability of the positive class, conditioned on

10.2 Feature transformations 315

the feature’s value. This has the additional advantage that models that are based on

such probabilities, such as naive Bayes, do not require any additional training once

the features are calibrated, as we shall see. The problem of feature calibration can

thus be stated as follows: given a feature F : X → F , construct a calibrated feature

F c : X → [0,1] such that F c(x) estimates the probability F c(x)= P (⊕|v), where v = F (x)

is the value of the original feature for x.

For categorical features this is as straightforward as collecting relative frequencies

from a training set.

Example 10.8 (Calibration of categorical features). Suppose we want to pre-

dict whether or not someone has diabetes from categorical features including

whether the person is obese or not, whether he or she smokes, and so on.

We collect some statistics which tell us that 1 in every 18 obese persons has

diabetes while among non-obese people this is 1 in 55 (data obtained from

www.wolframalpha.com with the query ‘diabetes’). If F (x) = 1 for person

x who is obese and F (y) = 0 for person y who isn’t, then the calibrated feature

values are F c(x)= 1/18= 0.055 and F c(y)= 1/55= 0.018.

In fact, it would be better to compensate for the non-uniform class distribution, in

order to avoid over-emphasising the class prior, which is better taken into account in

the decision rule. This can be achieved as follows. If m of n obese people have diabetes,

then this corresponds to a posterior odds of m/(n−m) or a likelihood ratio of m/c(n−
m), where c is the prior odds of having diabetes (since posterior odds is likelihood

ratio times prior odds). Working with the likelihood ratio is equivalent to assuming a

uniform class distribution. Converting the likelihood ratio into a probability gives

F c(x)=
m

c(n−m)
m

c(n−m) +1
= m

m+c(n−m)

In our example, if the prior odds of having diabetes is c = 1/48, then F c(x) = 1/(1+
17/48) = 48/(48+ 17) = 0.74. The extent to which this probability is more than 1/2

quantifies the extent to which obese people are more likely than average to have dia-

betes. For non-obese people the probability is 1/(1+ 54/48) = 48/(48+54) = 0.47, so

they are slightly less likely than average to have diabetes. Keep in mind also that it is

usually a good idea to smooth these probability estimates by means of the Laplace cor-

rection, which adds 1 to m and 2 to n. This leads to the final expression for calibrating

a categorical feature:

F c(x)= m+1

m+1+c(n−m+1)

316 10. Features

Ordinal and quantitative features can be discretised and then calibrated as cate-

gorical features. In the remainder of this section we look at calibration methods that

maintain the ordering of the feature. For example, suppose we want to use body weight

as an indicator for diabetes. A calibrated weight feature attaches a probability to every

weight, such that these probabilities are non-decreasing with weight. This is related to

our discussion of �calibrating classifier scores in Section 7.4, as those calibrated prob-

abilities should likewise takes the ranking of the classifier’s predictions into account. In

fact, the two approaches to classifier calibration – by employing the logistic function

and by constructing the ROC convex hull – are directly applicable to feature calibration,

since a quantitative feature can simply be treated as a univariate scoring classifier.

We briefly reiterate the main points of logistic calibration, but with a slight change

in notation. Let F : X → R be a quantitative feature with class means μ⊕ and μ� and

variance σ2. Assuming the feature is normally distributed within each class with the

same variance, we can express the likelihood ratio of a feature value v as

LR(v)= P (v |⊕)

P (v |�)
= exp

(−(v −μ⊕)2+ (v −μ�)2

2σ2

)

= exp

(
μ⊕−μ�

σ

v − (μ⊕+μ�)/2

σ

)
= exp

(
d ′z
)

where d ′ = (μ⊕ −μ�)/σ is the difference between the means in proportion to the stan-

dard deviation, which is known as d-prime in signal detection theory; and z = (v−μ)/σ

is the z-score associated with v (notice we take the mean as μ = (μ⊕ +μ�)/2 to simu-

late an equal class distribution). Again we work directly with the likelihood ratio to

neutralise the effect of a non-uniform class distribution, and we obtain the calibrated

feature value as

F c(x)= LR(F (x))

1+LR(F (x))
= exp

(
d ′z(x)

)
1+exp(d ′z(x))

You may recognise the logistic function we discussed in Chapter 7 (see Figure 7.11 on

p.222).

In essence, logistic feature calibration performs the following steps.

1. Estimate the class means μ⊕ and μ� and the standard deviation σ.

2. Transform F (x) into z-scores z(x), making sure to use μ = (μ⊕ +μ�))/2 as the

feature mean.

3. Rescale the z-scores to F d(x)= d ′z(x) with d ′ = (μ⊕−μ�)/σ.

4. Apply a sigmoidal transformation to F d(x) to give calibrated probabilities

F c(x)= exp
(
F d(x)

)
1+exp(F d(x)) .

Sometimes it is preferred to work directly with F d(x), as it is expressed on a scale lin-

early related to the original feature’s scale, and the Gaussian assumption implies that

10.2 Feature transformations 317

0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

7

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10.5. (left) Two-class Gaussian data. The middle line is the decision boundary learned

by the basic linear classifier; the other two are parallel lines through the class means. (middle)

Logistic calibration to log-odds space is a linear transformation; assuming unit standard devia-

tions, the basic linear classifier is now the fixed line F d
1 (x)+F d

2 (x) = 0. (right) Logistic calibra-

tion to probability space is a non-linear transformation that pushes data away from the decision

boundary.

we expect that scale to be additive. For example, distance-based models expect addi-

tive features in order to calculate Euclidean distance. In contrast, the scale of F c is mul-

tiplicative. Notice that the two are interdefinable as F d(x)= ln F c(x)
1−F c(x) = lnF c(x)−ln(1−

F c(x)). I will call the feature space spanned by F d log-odds space, since exp
(
F d(x)

) =
LR(x) and the likelihood ratio is equal to the odds if we’re assuming a uniform class

prior. Calibrated features F c live in probability space.

Example 10.9 (Logistic calibration of two features). Logistic feature calibra-

tion is illustrated in Figure 10.5. I generated two sets of 50 points by sampling

bivariate Gaussians with identity covariance matrix, centred at (2,2) and (4,4).

I then constructed the basic linear classifier as well as two parallel decision

boundaries through the class means. Tracing these three lines in calibrated

space will help us understand feature calibration.

In the middle figure we see the transformed data in log-odds space, which

is clearly a linear rescaling of the axes. The basic linear classifier is now the line

F d
1 (x)+F d

2 (x)= 0 through the origin. In other words, for this simple classifier fea-

ture calibration has removed the need for further training: instead of fitting a de-

cision boundary to the data, we have fitted the data to a fixed decision boundary!

(I should add that I cheated very slightly here, as I fixed σ = 1 in the calibration

process – had I estimated each feature’s standard deviation from the data, the

decision boundary would most likely have had a slightly different slope.)

On the right we see the transformed data in probability space, which clearly

has a non-linear relationship with the other two feature spaces. The basic linear

318 10. Features

classifier is still linear in this space, but actually this is no longer true for more

than two features. To see this, note that F c
1 (x)+F c

2 (x)= 1 can be rewritten as

exp
(
F d

1 (x)
)

1+exp
(
F d

1 (x)
) + exp

(
F d

2 (x)
)

1+exp
(
F d

2 (x)
) = 1

which can be simplified to exp
(
F d

1 (x)
)

exp
(
F d

2 (x)
) = 1 and hence to F d

1 (x) +
F d

2 (x) = 0. However, if we add a third feature not all cross-terms cancel and we

obtain a non-linear boundary .

The log-odds representation does hold an interest in another respect. An arbitrary

linear decision boundary in log-odds space is represented by
∑

i wi F d
i (x) = t . Taking

natural logarithms this can be rewritten as

exp

(∑
i

wi F d
i (x)

)
=∏

i
exp
(
wi F d

i (x)
)
=∏

i

(
exp
(
F d

i (x)
))wi =∏

i
LRi (x)wi = exp(t)= t ′

This exposes a connection with the naive Bayes models discussed in Section 9.2, whose

decision boundaries are also defined as products of likelihood ratios for individual fea-

tures. The basic naive Bayes model has wi = 1 for all i and t ′ = 1, which means that

fitting data to a fixed linear decision boundary in log-odds space by means of feature

calibration can be understood as training a naive Bayes model. Changing the slope of

the decision boundary corresponds to introducing non-unit feature weights, which is

similar to the way feature weights arose in the multinomial naive Bayes model.

It is instructive to investigate the distribution of the calibrated feature a bit more

(I will omit the technical details). Assuming the uncalibrated distributions were two

Gaussian bumps, what do the calibrated distributions look like? We have already seen

that calibrated data points are pulled away from the decision boundary, so we would

expect the peaks of the calibrated distributions to be closer to their extreme values.

How much closer depends solely on d ′; Figure 10.6 depicts the calibrated distributions

for various values of d ′.
We move on to isotonic calibration, a method that requires order but ignores scale

and can be applied to both ordinal and quantitative features. We essentially use the

feature as a univariate ranker, and construct its ROC curve and convex hull to obtain a

piecewise-constant calibration map. Suppose we have an ROC curve, and suppose the

i -th segment of the curve involves ni training examples, out of which mi are positives.

The corresponding ROC segment has slope li = mi /(c(ni −mi)), where c is the prior

odds. Suppose first the ROC curve is convex: i.e., i < j implies li ≥ l j . In that case,

we can use the same formula as for categorical features to obtain a calibrated feature

10.2 Feature transformations 319

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

Calibrated feature value

Probability

distribution

function

Figure 10.6. Per-class distributions of a logistically calibrated feature for different values of d ′,
the distance between the uncalibrated class means in proportion to the feature’s standard de-

viation. The red and blue curves depict the distributions for the positive and negative class

for a feature whose means are one standard deviation apart (d ′ = 1). The other curves are for

d ′ ∈ {0.5,1.4,1.8}.

value:

vc
i =

mi +1

mi +1+c(ni −mi +1)
(10.1)

As before, this achieves both probability smoothing through Laplace correction and

compensation for non-uniform class distributions. If the ROC curve is not convex,

there exist i < j such that li < l j . Assuming we want to maintain the original feature

ordering, we first construct the convex hull of the ROC curve. The effect of this is that

we join adjacent segments in the ROC curve that are part of a concavity, until no con-

cavities remain. We recalculate the segments and assign calibrated feature values as in

Equation 10.1.

Example 10.10 (Isotonic feature calibration). The following table gives sample

values of a weight feature in relation to a diabetes classification problem. Figure

10.7 shows the ROC curve and convex hull of the feature and the calibration map

obtained by isotonic calibration.

320 10. Features

Weight

C
a

lib
ra

te
d

 w
e

ig
h

t

56 64 73 79 85 96 103 111 127

0
0

.3
3

0
.5

0
.6

7
1

Figure 10.7. (left) ROC curve and convex hull of an uncalibrated feature. Calibrated feature

values are obtained from the proportion of positives in each segment of the ROC convex hull.

(right) The corresponding piecewise-constant calibration map, which maps the uncalibrated

feature values on the x-axis to the calibrated feature values on the y-axis.

Weight Diabetes? Calibrated weight Weight Diabetes? Calibrated weight

130 ⊕ 0.83 81 � 0.43
127 ⊕ 0.83 80 ⊕ 0.43
111 ⊕ 0.83 79 � 0.43
106 ⊕ 0.83 77 ⊕ 0.43
103 � 0.60 73 � 0.40
96 ⊕ 0.60 68 � 0.40
90 ⊕ 0.60 67 ⊕ 0.40
86 � 0.50 64 � 0.20
85 ⊕ 0.50 61 � 0.20
82 � 0.43 56 � 0.20

For example, a weight of 80 kilograms is calibrated to 0.43, meaning that three out

of seven people in that weight interval have diabetes (after Laplace correction).

Example 10.11 gives a bivariate illustration. As is clearly visible, for quantitative

features the process amounts to supervised discretisation of the feature values, which

means that many points are mapped to the same point in calibrated space. This is

different from logistic calibration, which is invertible.

Example 10.11 (Isotonic calibration of two features). Figure 10.8 shows the re-

sult of isotonic calibration on the same data as in Example 10.9, both in log-odds

10.2 Feature transformations 321

0.12 2.30 2.85 3.70 4.47

1.53

2.10

2.48

3.39

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10.8. (left) The data from Figure 10.5, with grid lines indicating the discretisation ob-

tained by isotonic feature calibration. (middle) Isotonically calibrated data in log-odds space.

(right) Isotonically calibrated data in probability space.

space and in probability space. Because of the discrete nature of isotonic cali-

bration, even the transformation to log-odds space is no longer linear: the basic

linear classifier becomes a series of axis-parallel line segments. This is also true

in the opposite direction: if we imagine a linear decision boundary in log-odds

space or in probability space, this maps to a decision boundary following the dot-

ted lines in the original feature space. Effectively, isotonic feature calibration has

changed the linear grading model into a grouping model.

In summary, isotonic feature calibration performs the following steps.

1. Sort the training instances on feature value and construct the ROC curve. The

sort order is chosen such that the ROC curve has AUC≥ 1/2.

2. Construct the convex hull of this curve, and count the number of positives mi

and the total number of instances ni in each segment of the convex hull.

3. Discretise the feature according to the convex hull segments, and associate a cal-

ibrated feature value vc
i =

mi+1
mi+1+c(ni−mi+1) with each segment.

4. If an additive scale is required, use vd
i = ln

vc
i

1−vc
i
= ln vc

i − ln(1− vc
i).

Incomplete features

At the end of this section on feature transformations we briefly consider what to do if

we don’t know a feature’s value for some of the instances. We encountered this situa-

tion in Example 1.2 on p.26, where we discussed how to classify an e-mail if we didn’t

know whether it contained one of the vocabulary words or not. Probabilistic models

322 10. Features

handle this rather gracefully by taking a weighted average over all possible values of

the feature:

P (Y |X)=∑
z

P (Y , Z = z|X)=∑
z

P (Y |X , Z = z)P (Z = z)

Here, Y is the target variable as usual, X stands for the features that are observed for the

instance to be classified, while Z are the features that are unobserved at classification

time. The distribution P (Z) can be obtained from the trained model, at least for a

generative model – if our model is discriminative we need to estimate P (Z) separately.

Missing feature values at training time are trickier to handle. First of all, the very

fact that a feature value is missing may be correlated with the target variable. For ex-

ample, the range of medical tests carried out on a patient is likely to depend on their

medical history. For such features it may be best to have a designated ‘missing’ value

so that, for instance, a tree model can split on it. However, this would not work for,

say, a linear model. In such cases we can complete the feature by ‘filling in’ the miss-

ing values, a process known as imputation. For instance, in a classification problem

we can calculate the per-class means, medians or modes over the observed values of

the feature and use this to impute the missing values. A somewhat more sophisticated

method takes feature correlation into account by building a predictive model for each

incomplete feature and uses that model to ‘predict’ the missing value. It is also possible

to invoke the �Expectation-Maximisation algorithm (Section 9.4), which goes roughly

as follows: assuming a multivariate model over all features, use the observed values for

maximum-likelihood estimation of the model parameters, then derive expectations for

the unobserved feature values and iterate.

10.3 Feature construction and selection

The previous section on feature transformation makes it clear that there is a lot of scope

in machine learning to play around with the original features given in the data. We can

take this one step further by constructing new features from several original features.

A simple example of this can be used to improve the �naive Bayes classifier discussed

in Section 9.2. Remember that in text classification applications we have a feature for

every word in the vocabulary, which disregards not only the order of words but also

their adjacency. This means that sentences such as ‘they write about machine learn-

ing’ and ‘they are learning to write about a machine’ will be virtually indistinguishable,

even though the former is about machine learning and the latter is not. It may there-

fore sometimes be necessary to include phrases consisting of multiple words in the

dictionary and treat them as single features. In the information retrieval literature, a

multi-word phrase is referred to as an n-gram (unigram, bigram, trigram and so on).

Taking this idea one step further, we can construct a new feature from two Boolean

or categorical features by forming their Cartesian product. For example, if we have

10.3 Feature construction and selection 323

one feature Shape with values Circle, Triangle and Square, and another feature Colour

with values Red, Green and Blue, then their Cartesian product would be the feature

(Shape,Colour) with values (Circle,Red), (Circle,Green), (Circle,Blue), (Triangle,Red),

and so on. The effect that this would have depends on the model being trained. Con-

structing Cartesian product features for a naive Bayes classifier means that the two

original features are no longer treated as independent, and so this reduces the strong

bias that naive Bayes models have. This is not the case for tree models, which can al-

ready distinguish between all possible pairs of feature values. On the other hand, a

newly introduced Cartesian product feature may incur a high information gain, so it

can possibly affect the model learned.

There are many other ways of combining features. For instance, we can take arith-

metic or polynomial combinations of quantitative features (we saw examples of this in

the use of a �kernel in Example 1.9 on p.43 and Section 7.5). One attractive possibility

is to first apply concept learning or subgroup discovery, and then use these concepts

or subgroups as new Boolean features. For instance, in the dolphin domain we could

first learn subgroups such as Length= [3,5] ∧ Gills= no and use these as Boolean fea-

tures in a subsequent tree model. Notice that this expands the expressive power of tree

models through the use of negation: e.g., (Length= [3,5] ∧ Gills= no)= false is equiva-

lent to the disjunction Length
= [3,5] ∨ Gills= yes, which is not directly expressible by

a feature tree.

Once we have constructed new features it is often a good idea to select a suitable

subset of them prior to learning. Not only will this speed up learning as fewer candi-

date features need to be considered, it also helps to guard against overfitting. There are

two main approaches to feature selection. The filter approach scores features on a par-

ticular metric and the top-scoring features are selected. Many of the metrics we have

seen so far can be used for feature scoring, including information gain, the χ2 statistic,

the correlation coefficient, to name just a few. An interesting variation is provided by

the Relief feature selection method, which repeatedly samples a random instance x

and finds its nearest hit h (instance of the same class) as well as its nearest miss m (in-

stance of opposite class). The i -th feature’s score is then decreased by Dis(xi ,hi)2 and

increased by Dis(xi ,mi)2, where Dis is some distance measure (e.g., Euclidean distance

for quantitative features, Hamming distance for categorical features). The intuition is

that we want to move closer to the nearest hit while differentiating from the nearest

miss.

One drawback of a simple filter approach is that no account is taken of redundancy

between features. Imagine, for the sake of the argument, duplicating a promising fea-

ture in the data set: both copies score equally high and will be selected, whereas the

second one provides no added value in the context of the first one. Secondly, feature fil-

ters do not detect dependencies between features as they are solely based on marginal

324 10. Features

distributions. For example, consider two Boolean features such that half the positives

have the value true for both features and the other half have the value false for both,

whereas all negatives have opposite values (again distributed half-half over the two

possibilities). It follows that each feature in isolation has zero information gain and

hence is unlikely to be selected by a feature filter, despite their combination being a

perfect classifier. One could say that feature filters are good at picking out possible

root features for a decision tree, but not necessarily good at selecting features that are

useful further down the tree.

To detect features that are useful in the context of other features we need to evaluate

sets of features; this usually goes under the name of wrapper approaches. The idea is

that feature selection is ‘wrapped’ in a search procedure that usually involves training

and evaluating a model with a candidate set of features. Forward selection methods

start with an empty set of features and add features to the set one at a time, as long as

they improve the performance of the model. Backward elimination starts with the full

set of features and aims at improving performance by removing features one at a time.

Since there are an exponential number of subsets of features it is usually not feasible

to search all possible subsets, and most approaches apply a ‘greedy’ search algorithm

that never reconsiders the choices it makes.

Matrix transformations and decompositions

We can also view feature construction and selection from a geometric perspective, as-

suming quantitative features. To this end we represent our data set as a matrix X with

n data points in rows and d features in columns, which we want to transform into a

new matrix W with n rows and r columns by means of matrix operations. To sim-

plify matters a bit, we assume that X is zero-centred and that W= XT for some d-by-r

transformation matrix T. For example, feature scaling corresponds to T being a d-by-d

diagonal matrix; this can be combined with feature selection by removing some of T’s

columns. A rotation is achieved by T being orthogonal, i.e., TTT = I. Clearly, several

such transformations can be combined (see also Background 1.2 on p.24).

One of the best-known algebraic feature construction methods is principal com-

ponent analysis (PCA). Principal components are new features constructed as linear

combinations of the given features. The first principal component is given by the di-

rection of maximum variance in the data; the second principal component is the direc-

tion of maximum variance orthogonal to the first component, and so on. PCA can be

explained in a number of different ways: here, we will derive it by means of the singular

value decomposition (SVD). Any n-by-d matrix can be uniquely written as a product of

three matrices with special properties:

X=UΣVT (10.2)

10.3 Feature construction and selection 325

Here, U is an n-by-r matrix, Σ is an r -by-r matrix and V is an d-by-r matrix (for the

moment we will assume r = d < n). Furthermore, U and V are orthogonal (hence ro-

tations) and Σ is diagonal (hence a scaling). The columns of U and V are known as the

left and right singular vectors, respectively; and the values on the diagonal of Σ are the

corresponding singular values. It is customary to order the columns of V and U so that

the singular values are decreasing from top-left to bottom-right.

Now, consider the n-by-r matrix W =UΣ, and notice that XV =UΣVTV =UΣ =W

by the orthogonality of V. In other words, we can construct W from X by means of the

transformation V: this is the reformulation of X in terms of its principal components.

The newly constructed features are found in UΣ: the first row is the first principal com-

ponent, the second row is the second principal component, and so on. These principal

components have a geometric interpretation as the directions in which X has largest,

second-largest, . . . variance. Assuming the data is zero-centred, these directions can

be brought out by a combination of rotation and scaling, which is exactly what PCA

does.

We can also use SVD to rewrite the scatter matrix in a standard form:

S=XTX= (UΣVT)T (UΣVT)= (VΣUT)(UΣVT)=VΣ2VT

This is known as the eigendecomposition of the matrix S: the columns of V are the

eigenvectors of S, and the elements on the diagonal of Σ2 – which is itself a diago-

nal matrix – are the eigenvalues. The right singular vectors of the data matrix X are the

eigenvectors of the scatter matrix S = XTX, and the singular values of X are the square

root of the eigenvalues of S. We can derive a similar expression for the Gram matrix

G=XXT =UΣ2UT, from which we see that the eigenvectors of the Gram matrix are the

left singular vectors of X. This demonstrates that in order to perform principal compo-

nents analysis it is sufficient to perform an eigendecomposition of the scatter or Gram

matrices, rather than a full singular value decomposition.

We have seen something resembling SVD in Section 1.1, where we considered the

following matrix product:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 2 2 2

0 0 0 1

1 2 3 2

1 0 1 1

0 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎝

1 0 0

0 2 0

0 0 1

⎞
⎟⎠ ×

⎛
⎜⎝

1 0 1 0

0 1 1 1

0 0 0 1

⎞
⎟⎠

The matrix on the left expresses people’s preferences for films (in columns). The right-

hand side decomposes or factorises this into film genres: the first matrix quantifies

people’s appreciation of genres; the last matrix associates films with genres; and the

middle matrix tells us the weight of each genre in determining preferences. This is

326 10. Features

not actually the decomposition computed by SVD, because the left and right matrices

in the product are not orthogonal. However, one could argue that this factorisation

better captures the data, because the person-by-genre and the film-by-genre matrices

are Boolean and sparse, which they won’t be in the SVD. The downside is that adding

integer or Boolean constraints makes the decomposition problem non-convex (there

are local optima) and computationally harder. Matrix decomposition with additional

constraints is a very active research area.

These matrix decomposition techniques are often used for dimensionality reduc-

tion. The rank of an n-by-d matrix is d (assuming d < n and no columns are linear

combinations of other columns). The above decompositions are full-rank because

r = d , and hence the data matrix is reconstructed exactly. A low-rank approximation of

a matrix is a factorisation where r is chosen as small as possible while still sufficiently

approximating the original matrix. The reconstruction error is usually measured as

the sum of the squared differences of the entries in X and the corresponding entries in

UΣVT. It can be shown that a truncated singular value decomposition with r < d re-

sults in the lowest reconstruction error in this sense among all decompositions of rank

up to r . Truncated SVD and PCA are popular ways to combine feature construction

and feature selection for quantitative features.

One interesting aspect of matrix decompositions such as SVD is that they expose

a previously hidden variable in the data. This can be seen as follows. Consider a de-

composition or approximation UΣVT with diagonal Σ but not necessarily orthogonal

U and V, and denote the i -the column of U and V as U·i (an n-vector) and V·i (a d-

vector). Then U·iσi (V·i)T is an outer product that produces an n-by-d matrix with rank

1 (σi denotes the i -th diagonal value of Σ). A rank-1 matrix is such that every column

is obtained from a single basis vector multiplied by a scalar (and the same for rows).

Assuming U and V have rank r these basis vectors are independent and so summing

up these rank-1 matrices for all i produces the original matrix:

UΣVT =
r∑

i=1
U·iσi (V·i)T

For example, the film rating matrix can be written as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 2 2 2

0 0 0 1

1 2 3 2

1 0 1 1

0 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 0 0 0

0 0 0 0

1 0 1 0

1 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 2 2 2

0 0 0 0

0 2 2 2

0 0 0 0

0 2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrices on the right can be interpreted as rating models conditioned on genre.

Exposing hidden variables in the data is one of the main applications of matrix de-

composition methods. For example, in information retrieval PCA is known under the

10.4 Features: Summary and further reading 327

name latent semantic indexing (LSA) (‘latent’ is synonymous with ‘hidden’). Instead

of film genres, LSA uncovers document topics by decomposing matrices containing

word counts per document, under the assumption that the word counts per topic are

independent and can thus simply be added up.3 The other main application of ma-

trix factorisation is completion of missing entries in a matrix, the idea being that if we

approximate the observed entries in the matrix as closely as possible using a low-rank

decomposition, this allows us to infer the missing entries.

10.4 Features: Summary and further reading

In this chapter we have given features some long-overdue attention. Features are the

telescopes through which we observe the data universe and therefore an important

unifying force in machine learning. Features are related to measurements in science,

but there is no widespread consensus on how to formalise and categorise different

measurements – I have taken inspiration from Stevens’ scales of measurements (Stevens,

1946), but otherwise aimed to stay close to current practice in machine learning.

� The main kinds of feature distinguished in Section 10.1 are categorical, ordinal

and quantitative features. The latter are expressed on a quantitative scale and

admit the calculation of the widest range of statistics of tendency (mean, me-

dian, mode; see (von Hippel, 2005) for a discussion of rules of thumb regarding

these), dispersion (variance and standard deviation, range, interquartile range)

and shape (skewness and kurtosis). In machine learning quantitative features

are often referred to as continuous features, but I think this term is inappropri-

ate as it wrongly suggests that their defining feature is somehow an unlimited

precision. It is important to realise that quantitative features do not necessarily

have an additive scale: e.g., quantitative features expressing a probability are ex-

pressed on a multiplicative scale, and the use of Euclidean distance, say, would

be inappropriate for non-additive features. Ordinal features have order but not

scale; and categorical features (also called nominal or discrete) have neither or-

der nor scale.

� Structured features are first-order logical statements that refer to parts of objects

by means of local variables and use some kind of aggregation, such as existential

quantification or counting, to extract a property of the main object. Constructing

first-order features prior to learning is often referred to as propositionalisation;

3Other models are possible: e.g., in Boolean matrix decomposition the matrix product is changed to a

Boolean product in which integer addition is replaced by Boolean disjunction (so that 1+ 1 = 1), with the

effect that additional topics do not provide additional explanatory power for the occurrence of a word in a

document.

328 10. Features

Kramer et al. (2000) and Lachiche (2010) give surveys, and an experimental com-

parison of different approaches is carried out by Krogel et al. (2003).

� In Section 10.2 we looked at a number of feature transformations. Discretisa-

tion and thresholding are the best-known of these, turning a quantitative fea-

ture into a categorical or a Boolean one. One of the most effective discretisation

methods is the recursive partitioning algorithm using information gain to find

the thresholds and a stopping criterion derived from the minimum description

length principle proposed by Fayyad and Irani (1993). Other overviews and pro-

posals are given by Boullé (2004, 2006). The agglomerative merging approach

using χ2 was proposed by Kerber (1992).

� We have seen that in a two-class setting, supervised discretisation can be vi-

sualised by means of coverage curves. This then naturally leads to the idea of

using these coverage curves and their convex hull to calibrate rather than just

discretise the features. After all, ordinal and quantitative features are univari-

ate rankers and scoring classifiers and thus the same classifier calibration meth-

ods can be applied, in particular logistic and isotonic calibration as discussed

in Section 7.4. The calibrated features live in probability space, but we might

prefer to work with log-odds space instead as this is additive rather than multi-

plicative. Fitting data to a fixed linear decision boundary in calibrated log-odds

space is closely related to training a naive Bayes model. Isotonic calibration leads

to piecewise axis-parallel decision boundaries; owing to the discretising nature

of isotonic calibration this can be understood as the constructing of a grouping

model, even if the original model in the uncalibrated space was a grading model.

� Section 10.3 was devoted to feature construction and selection. Early approaches

to feature construction and constructive induction were proposed by Ragavan

and Rendell (1993); Donoho and Rendell (1995). The instance-based Relief fea-

ture selection method is due to Kira and Rendell (1992) and extended by Robnik-

Sikonja and Kononenko (2003). The distinction between filter approaches to fea-

ture selection – which evaluate features on their individual merits – and wrapper

approaches, which evaluate sets of features, is originally due to Kohavi and John

(1997). Hall (1999) proposes a filter approach called correlation-based feature

selection that aims at combining the best of both worlds. Guyon and Elisseeff

(2003) give an excellent introduction to feature selection.

� Finally, we looked at feature construction and selection from a linear algebra per-

spective. Matrix decomposition and factorisation is an actively researched tech-

nique that was instrumental in winning a recent film recommendation challenge

worth $1 million (Koren et al., 2009). Decomposition techniques employing ad-

ditional constraints include non-negative matrix decomposition (Lee et al., 1999).

