
CHAPTER 1

The ingredients of machine learning

M
ACHINE LEARNING IS ALL ABOUT using the right features to build the right models that

achieve the right tasks – this is the slogan, visualised in Figure 3 on p.11, with which

we ended the Prologue. In essence, features define a ‘language’ in which we describe

the relevant objects in our domain, be they e-mails or complex organic molecules. We

should not normally have to go back to the domain objects themselves once we have

a suitable feature representation, which is why features play such an important role in

machine learning. We will take a closer look at them in Section 1.3. A task is an abstract

representation of a problem we want to solve regarding those domain objects: the most

common form of these is classifying them into two or more classes, but we shall en-

counter other tasks throughout the book. Many of these tasks can be represented as a

mapping from data points to outputs. This mapping or model is itself produced as the

output of a machine learning algorithm applied to training data; there is a wide variety

of models to choose from, as we shall see in Section 1.2.

We start this chapter by discussing tasks, the problems that can be solved with

machine learning. No matter what variety of machine learning models you may en-

counter, you will find that they are designed to solve one of only a small number of

tasks and use only a few different types of features. One could say that models lend the

machine learning field diversity, but tasks and features give it unity.
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14 1. The ingredients of machine learning

1.1 Tasks: the problems that can be solved with machine learning

Spam e-mail recognition was described in the Prologue. It constitutes a binary clas-

sification task, which is easily the most common task in machine learning which fig-

ures heavily throughout the book. One obvious variation is to consider classification

problems with more than two classes. For instance, we may want to distinguish differ-

ent kinds of ham e-mails, e.g., work-related e-mails and private messages. We could

approach this as a combination of two binary classification tasks: the first task is to

distinguish between spam and ham, and the second task is, among ham e-mails, to

distinguish between work-related and private ones. However, some potentially useful

information may get lost this way, as some spam e-mails tend to look like private rather

than work-related messages. For this reason, it is often beneficial to view multi-class

classification as a machine learning task in its own right. This may not seem a big deal:

after all, we still need to learn a model to connect the class to the features. However, in

this more general setting some concepts will need a bit of rethinking: for instance, the

notion of a decision boundary is less obvious when there are more than two classes.

Sometimes it is more natural to abandon the notion of discrete classes altogether

and instead predict a real number. Perhaps it might be useful to have an assessment of

an incoming e-mail’s urgency on a sliding scale. This task is called regression, and es-

sentially involves learning a real-valued function from training examples labelled with

true function values. For example, I might construct such a training set by randomly se-

lecting a number of e-mails from my inbox and labelling them with an urgency score on

a scale of 0 (ignore) to 10 (immediate action required). This typically works by choos-

ing a class of functions (e.g., functions in which the function value depends linearly

on some numerical features) and constructing a function which minimises the differ-

ence between the predicted and true function values. Notice that this is subtly different

from SpamAssassin learning a real-valued spam score, where the training data are la-

belled with classes rather than ‘true’ spam scores. This means that SpamAssassin has

less information to go on, but it also allows us to interpret SpamAssassin’s score as an

assessment of how far it thinks an e-mail is removed from the decision boundary, and

therefore as a measure of confidence in its own prediction. In a regression task the

notion of a decision boundary has no meaning, and so we have to find other ways to

express a models’s confidence in its real-valued predictions.

Both classification and regression assume the availability of a training set of exam-

ples labelled with true classes or function values. Providing the true labels for a data set

is often labour-intensive and expensive. Can we learn to distinguish spam from ham,

or work e-mails from private messages, without a labelled training set? The answer is:

yes, up to a point. The task of grouping data without prior information on the groups is

called clustering. Learning from unlabelled data is called unsupervised learning and is

quite distinct from supervised learning, which requires labelled training data. A typical
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clustering algorithm works by assessing the similarity between instances (the things

we’re trying to cluster, e.g., e-mails) and putting similar instances in the same cluster

and ‘dissimilar’ instances in different clusters.

Example 1.1 (Measuring similarity). If our e-mails are described by word-

occurrence features as in the text classification example, the similarity of e-mails

would be measured in terms of the words they have in common. For instance,

we could take the number of common words in two e-mails and divide it by the

number of words occurring in either e-mail (this measure is called the Jaccard

coefficient). Suppose that one e-mail contains 42 (different) words and another

contains 112 words, and the two e-mails have 23 words in common, then their

similarity would be 23
42+112−23 = 23

130 = 0.18. We can then cluster our e-mails into

groups, such that the average similarity of an e-mail to the other e-mails in its

group is much larger than the average similarity to e-mails from other groups.

While it wouldn’t be realistic to expect that this would result in two nicely sep-

arated clusters corresponding to spam and ham – there’s no magic here – the

clusters may reveal some interesting and useful structure in the data. It may be

possible to identify a particular kind of spam in this way, if that subgroup uses a

vocabulary, or language, not found in other messages.

There are many other patterns that can be learned from data in an unsupervised

way. Association rules are a kind of pattern that are popular in marketing applications,

and the result of such patterns can often be found on online shopping web sites. For in-

stance, when I looked up the book Kernel Methods for Pattern Analysis by John Shawe-

Taylor and Nello Cristianini onwww.amazon.co.uk, I was told that ‘Customers Who

Bought This Item Also Bought’ –

� An Introduction to Support Vector Machines and Other Kernel-based Learning

Methods by Nello Cristianini and John Shawe-Taylor;

� Pattern Recognition and Machine Learning by Christopher Bishop;

� The Elements of Statistical Learning: Data Mining, Inference and Prediction by

Trevor Hastie, Robert Tibshirani and Jerome Friedman;

� Pattern Classification by Richard Duda, Peter Hart and David Stork;

and 34 more suggestions. Such associations are found by data mining algorithms that

zoom in on items that frequently occur together. These algorithms typically work by
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only considering items that occur a minimum number of times (because you wouldn’t

want your suggestions to be based on a single customer that happened to buy these 39

books together!). More interesting associations could be found by considering multiple

items in your shopping basket. There exist many other types of associations that can

be learned and exploited, such as correlations between real-valued variables.

Looking for structure

Like all other machine learning models, patterns are a manifestation of underlying

structure in the data. Sometimes this structure takes the form of a single hidden or la-

tent variable, much like unobservable but nevertheless explanatory quantities in physics,

such as energy. Consider the following matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 2 2 2

0 0 0 1

1 2 3 2

1 0 1 1

0 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Imagine these represent ratings by six different people (in rows), on a scale of 0 to 3, of

four different films – say The Shawshank Redemption, The Usual Suspects, The Godfa-

ther, The Big Lebowski, (in columns, from left to right). The Godfather seems to be the

most popular of the four with an average rating of 1.5, and The Shawshank Redemption

is the least appreciated with an average rating of 0.5. Can you see any structure in this

matrix?

If you are inclined to say no, try to look for columns or rows that are combinations

of other columns or rows. For instance, the third column turns out to be the sum of the

first and second columns. Similarly, the fourth row is the sum of the first and second

rows. What this means is that the fourth person combines the ratings of the first and

second person. Similarly, The Godfather’s ratings are the sum of the ratings of the first

two films. This is made more explicit by writing the matrix as the following product:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 2 2 2

0 0 0 1

1 2 3 2

1 0 1 1

0 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎝

1 0 0

0 2 0

0 0 1

⎞
⎟⎠ ×

⎛
⎜⎝

1 0 1 0

0 1 1 1

0 0 0 1

⎞
⎟⎠

You might think I just made matters worse – instead of one matrix we now have three!

However, notice that the first and third matrix on the right-hand side are now Boolean,
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and the middle one is diagonal (all off-diagonal entries are zero). Moreover, these ma-

trices have a very natural interpretation in terms of film genres. The right-most matrix

associates films (in columns) with genres (in rows): The Shawshank Redemption and

The Usual Suspects belong to two different genres, say drama and crime, The Godfather

belongs to both, and The Big Lebowski is a crime film and also introduces a new genre

(say comedy). The tall, 6-by-3 matrix then expresses people’s preferences in terms of

genres: the first, fourth and fifth person like drama, the second, fourth and fifth person

like crime films, and the third, fifth and sixth person like comedies. Finally, the mid-

dle matrix states that the crime genre is twice as important as the other two genres in

terms of determining people’s preferences.

Methods for discovering hidden variables such as film genres really come into their

own when the number of values of the hidden variable (here: the number of genres)

is much smaller than the number of rows and columns of the original matrix. For in-

stance, at the time of writing www.imdb.com lists about 630 000 rated films with 4

million people voting, but only 27 film categories (including the ones above). While it

would be naive to assume that film ratings can be completely broken down by genres –

genre boundaries are often diffuse, and someone may only like comedies made by the

Coen brothers – this kind of �matrix decomposition can often reveal useful hidden

structure. It will be further examined in Chapter 10.

This is a good moment to summarise some terminology that we will be using. We

have already seen the distinction between supervised learning from labelled data and

unsupervised learning from unlabelled data. We can similarly draw a distinction be-

tween whether the model output involves the target variable or not: we call it a pre-

dictive model if it does, and a descriptive model if it does not. This leads to the four

different machine learning settings summarised in Table 1.1.

� The most common setting is supervised learning of predictive models – in fact,

this is what people commonly mean when they refer to supervised learning. Typ-

ical tasks are classification and regression.

� It is also possible to use labelled training data to build a descriptive model that

is not primarily intended to predict the target variable, but instead identifies,

say, subsets of the data that behave differently with respect to the target variable.

This example of supervised learning of a descriptive model is called �subgroup

discovery; we will take a closer look at it in Section 6.3.

� Descriptive models can naturally be learned in an unsupervised setting, and we

have just seen a few examples of that (clustering, association rule discovery and

matrix decomposition). This is often the implied setting when people talk about

unsupervised learning.

� A typical example of unsupervised learning of a predictive model occurs when
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Predictive model Descriptive model

Supervised learning classification, regression subgroup discovery

Unsupervised learning predictive clustering descriptive clustering,

association rule discovery

Table 1.1. An overview of different machine learning settings. The rows refer to whether the

training data is labelled with a target variable, while the columns indicate whether the models

learned are used to predict a target variable or rather describe the given data.

we cluster data with the intention of using the clusters to assign class labels to

new data. We will call this predictive clustering to distinguish it from the previ-

ous, descriptive form of clustering.

Although we will not cover it in this book, it is worth pointing out a fifth setting of semi-

supervised learning of predictive models. In many problem domains data is cheap,

but labelled data is expensive. For example, in web page classification you have the

whole world-wide web at your disposal, but constructing a labelled training set is a

painstaking process. One possible approach in semi-supervised learning is to use a

small labelled training set to build an initial model, which is then refined using the

unlabelled data. For example, we could use the initial model to make predictions on

the unlabelled data, and use the most confident predictions as new training data, after

which we retrain the model on this enlarged training set.

Evaluating performance on a task

An important thing to keep in mind with all these machine learning problems is that

they don’t have a ‘correct’ answer. This is different from many other problems in com-

puter science that you might be familiar with. For instance, if you sort the entries in

your address book alphabetically on last name, there is only one correct result (unless

two people have the same last name, in which case you can use some other field as

tie-breaker, such as first name or age). This is not to say that there is only one way of

achieving that result – on the contrary, there is a wide range of sorting algorithms avail-

able: insertion sort, bubblesort, quicksort, to name but a few. If we were to compare

the performance of these algorithms, it would be in terms of how fast they are, and

how much data they could handle: e.g., we could test this experimentally on real data,

or analyse it using computational complexity theory. However, what we wouldn’t do is

compare different algorithms with respect to the correctness of the result, because an

algorithm that isn’t guaranteed to produce a sorted list every time is useless as a sorting

algorithm.

Things are different in machine learning (and not just in machine learning: see



1.1 Tasks: the problems that can be solved with machine learning 19

Background 1.1). We can safely assume that the perfect spam e-mail filter doesn’t exist

– if it did, spammers would immediately ‘reverse engineer’ it to find out ways to trick

the spam filter into thinking a spam e-mail is actually ham. In many cases the data is

‘noisy’ – examples may be mislabelled, or features may contain errors – in which case it

would be detrimental to try too hard to find a model that correctly classifies the training

data, because it would lead to overfitting, and hence wouldn’t generalise to new data.

In some cases the features used to describe the data only give an indication of what

their class might be, but don’t contain enough ‘signal’ to predict the class perfectly. For

these and other reasons, machine learners take performance evaluation of learning

algorithms very seriously, which is why it will play a prominent role in this book. We

need to have some idea of how well an algorithm is expected to perform on new data,

not in terms of runtime or memory usage – although this can be an issue too – but in

terms of classification performance (if our task is a classification task).

Suppose we want to find out how well our newly trained spam filter does. One thing

we can do is count the number of correctly classified e-mails, both spam and ham, and

divide that by the total number of examples to get a proportion which is called the ac-

curacy of the classifier. However, this doesn’t indicate whether overfitting is occurring.

A better idea would be to use only 90% (say) of the data for training, and the remaining

10% as a test set. If overfitting occurs, the test set performance will be considerably

lower than the training set performance. However, even if we select the test instances

randomly from the data, every once in a while we may get lucky, if most of the test in-

stances are similar to training instances – or unlucky, if the test instances happen to be

very non-typical or noisy. In practice this train–test split is therefore repeated in a pro-

cess called �cross-validation, further discussed in Chapter 12. This works as follows:

we randomly divide the data in ten parts of equal size, and use nine parts for training

and one part for testing. We do this ten times, using each part once for testing. At the

end, we compute the average test set performance (and usually also its standard devi-

ation, which is useful to determine whether small differences in average performance

of different learning algorithms are meaningful). Cross-validation can also be applied

to other supervised learning problems, but unsupervised learning methods typically

need to be evaluated differently.

In Chapters 2 and 3 we will take a much closer look at the various tasks that can be

approached using machine learning methods. In each case we will define the task and

look at different variants. We will pay particular attention to evaluating performance of

models learned to solve those tasks, because this will give us considerable additional

insight into the nature of the tasks.
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Long before machine learning came into existence, philosophers knew that gen-

eralising from particular cases to general rules is not a well-posed problem with

well-defined solutions. Such inference by generalisation is called induction and

is to be contrasted with deduction, which is the kind of reasoning that applies to

problems with well-defined correct solutions. There are many versions of this so-

called problem of induction. One version is due to the eighteenth-century Scot-

tish philosopher David Hume, who claimed that the only justification for induc-

tion is itself inductive: since it appears to work for certain inductive problems, it

is expected to work for all inductive problems. This doesn’t just say that induc-

tion cannot be deductively justified but that its justification is circular, which is

much worse.

A related problem is stated by the no free lunch theorem, which states that no

learning algorithm can outperform another when evaluated over all possible

classification problems, and thus the performance of any learning algorithm,

over the set of all possible learning problems, is no better than random guess-

ing. Consider, for example, the ‘guess the next number’ questions popular in

psychological tests: what comes after 1, 2, 4, 8, ...? If all number sequences are

equally likely, then there is no hope that we can improve – on average – on ran-

dom guessing (I personally always answer ‘42’ to such questions). Of course,

some sequences are very much more likely than others, at least in the world of

psychological tests. Likewise, the distribution of learning problems in the real

world is highly non-uniform. The way to escape the curse of the no free lunch

theorem is to find out more about this distribution and exploit this knowledge in

our choice of learning algorithm.

Background 1.1. Problems of induction and free lunches.

1.2 Models: the output of machine learning

Models form the central concept in machine learning as they are what is being learned

from the data, in order to solve a given task. There is a considerable – not to say be-

wildering – range of machine learning models to choose from. One reason for this is

the ubiquity of the tasks that machine learning aims to solve: classification, regres-

sion, clustering, association discovery, to name but a few. Examples of each of these

tasks can be found in virtually every branch of science and engineering. Mathemati-

cians, engineers, psychologists, computer scientists and many others have discovered

– and sometimes rediscovered – ways to solve these tasks. They have all brought their



1.2 Models: the output of machine learning 21

specific background to bear, and consequently the principles underlying these mod-

els are also diverse. My personal view is that this diversity is a good thing as it helps

to make machine learning the powerful and exciting discipline it is. It doesn’t, how-

ever, make the task of writing a machine learning book any easier! Luckily, a few com-

mon themes can be observed, which allow me to discuss machine learning models

in a somewhat more systematic way. I will discuss three groups of models: geometric

models, probabilistic models, and logical models. These groupings are not meant to be

mutually exclusive, and sometimes a particular kind of model has, for instance, both a

geometric and a probabilistic interpretation. Nevertheless, it provides a good starting

point for our purposes.

Geometric models

The instance space is the set of all possible or describable instances, whether they are

present in our data set or not. Usually this set has some geometric structure. For in-

stance, if all features are numerical, then we can use each feature as a coordinate in

a Cartesian coordinate system. A geometric model is constructed directly in instance

space, using geometric concepts such as lines, planes and distances. For instance, the

linear classifier depicted in Figure 1 on p.5 is a geometric classifier. One main advan-

tage of geometric classifiers is that they are easy to visualise, as long as we keep to

two or three dimensions. It is important to keep in mind, though, that a Cartesian

instance space has as many coordinates as there are features, which can be tens, hun-

dreds, thousands, or even more. Such high-dimensional spaces are hard to imagine but

are nevertheless very common in machine learning. Geometric concepts that poten-

tially apply to high-dimensional spaces are usually prefixed with ‘hyper-’: for instance,

a decision boundary in an unspecified number of dimensions is called a hyperplane.

If there exists a linear decision boundary separating the two classes, we say that the

data is linearly separable. As we have seen, a linear decision boundary is defined by the

equation w ·x= t , where w is a vector perpendicular to the decision boundary, x points

to an arbitrary point on the decision boundary, and t is the decision threshold. A good

way to think of the vector w is as pointing from the ‘centre of mass’ of the negative

examples, n, to the centre of mass of the positives p. In other words, w is proportional

(or equal) to p−n. One way to calculate these centres of mass is by averaging. For

instance, if P is a set of n positive examples, then we can define p = 1
n

∑
x∈P x, and

similarly for n. By setting the decision threshold appropriately, we can intersect the line

from n to p half-way (Figure 1.1). We will call this the basic linear classifier in this book.1

It has the advantage of simplicity, being defined in terms of addition, subtraction and

rescaling of examples only (in other words, w is a linear combination of the examples).

Indeed, under certain additional assumptions about the data it is the best thing we

1It is a simplified version of linear discriminants.
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Figure 1.1. The basic linear classifier constructs a decision boundary by half-way intersecting

the line between the positive and negative centres of mass. It is described by the equation w ·x=
t , with w= p−n; the decision threshold can be found by noting that (p+n)/2 is on the decision

boundary, and hence t = (p−n) · (p+n)/2 = (||p||2 − ||n||2)/2, where ||x|| denotes the length of

vector x.

can hope to do, as we shall see later. However, if those assumptions do not hold, the

basic linear classifier can perform poorly – for instance, note that it may not perfectly

separate the positives from the negatives, even if the data is linearly separable.

Because data is usually noisy, linear separability doesn’t occur very often in prac-

tice, unless the data is very sparse, as in text classification. Recall that we used a large

vocabulary, say 10 000 words, each word corresponding to a Boolean feature indicat-

ing whether or not that word occurs in the document. This means that the instance

space has 10 000 dimensions, but for any one document no more than a small per-

centage of the features will be non-zero. As a result there is much ‘empty space’ be-

tween instances, which increases the possibility of linear separability. However, be-

cause linearly separable data doesn’t uniquely define a decision boundary, we are now

faced with a problem: which of the infinitely many decision boundaries should we

choose? One natural option is to prefer large margin classifiers, where the margin of a

linear classifier is the distance between the decision boundary and the closest instance.

�Support vector machines, discussed in Chapter 7, are a powerful kind of linear clas-

sifier that find a decision boundary whose margin is as large as possible (Figure 1.2).

Geometric concepts, in particular linear transformations, can be very helpful to un-

derstand the similarities and differences between machine learning methods

(Background 1.2). For instance, we would expect most if not all learning algorithms
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Figure 1.2. The decision boundary learned by a support vector machine from the linearly sep-

arable data from Figure 1. The decision boundary maximises the margin, which is indicated by

the dotted lines. The circled data points are the support vectors.

to be translation-invariant, i.e., insensitive to where we put the origin of our coordi-

nate system. Some algorithms may also be rotation-invariant, e.g., linear classifiers or

support vector machines; but many others aren’t, including Bayesian classifiers. Simi-

larly, some algorithms may be sensitive to non-uniform scaling.

A very useful geometric concept in machine learning is the notion of distance. If

the distance between two instances is small then the instances are similar in terms of

their feature values, and so nearby instances would be expected to receive the same

classification or belong to the same cluster. In a Cartesian coordinate system, distance

can be measured by Euclidean distance, which is the square root of the sum of the

squared distances along each coordinate:2
√∑d

i=1(xi − yi )2. A very simple distance-

based classifier works as follows: to classify a new instance, we retrieve from memory

the most similar training instance (i.e., the training instance with smallest Euclidean

distance from the instance to be classified), and simply assign that training instance’s

class. This classifier is known as the nearest-neighbour classifier. Endless variations

on this simple yet powerful theme exist: we can retrieve the k most similar training

instances and take a vote (k-nearest neighbour); we can weight each neighbour’s vote

inversely to its distance; we can apply the same idea to regression tasks by averaging

the training instances’ function value; and so on. What they all have in common is that

predictions are local in the sense that they are based on only a few training instances,

2This can be expressed in vector notation as ||x − y|| = √(x−y) · (x−y) = √x ·x−2x ·y+y ·y =√
||x||2−2||x||||y||cosθ+||y||2, where θ is the angle between x and y.
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Transformations in d-dimensional Cartesian coordinate systems can be conve-

niently represented by means of matrix notation. Let x be a d-vector represent-

ing a data point, then x+ t is the resulting point after translating over t (another

d-vector). Translating a set of points over t can be equivalently understood as

translating the origin over −t. Using homogeneous coordinates – the addition of

an extra dimension set to 1 – translations can be expressed by matrix multiplica-

tion: e.g., in two dimensions we have

x◦ =

⎛
⎜⎝

1

x1

x2

⎞
⎟⎠ T=

⎛
⎜⎝

1 0 0

t1 1 0

t2 0 1

⎞
⎟⎠ Tx◦ =

⎛
⎜⎝

1

x1+ t1

x2+ t2

⎞
⎟⎠

A rotation is defined by any d-by-d matrix D whose transpose is its inverse (which

means it is orthogonal) and whose determinant is 1. In two dimensions a rotation

matrix can be written as R=
(

cosθ sinθ

−sinθ cosθ

)
, representing a clockwise rotation

over angle θ about the origin. For instance,

(
0 1

−1 0

)
is a 90 degrees clockwise

rotation.

A scaling is defined by a diagonal matrix; in two dimensions S =
(

s1 0

0 s2

)
. A

uniform scaling applies the same scaling factor s in all dimensions and can be

written as sI, where I is the identity matrix. Notice that a uniform scaling with

scaling factor −1 is a rotation (over 180 degrees in the two-dimensional case).

A common scenario which utilises all these transformations is the following.

Given an n-by-d matrix X representing n data points in d-dimensional space,

we first calculate the centre of mass or mean vector μ by averaging each column.

We then zero-centre the data set by subtracting −μ from each row, which corre-

sponds to a translation. Next, we rotate the data such that as much variance (a

measure of the data’s ‘spread’ in a certain direction) as possible is aligned with

our coordinate axes; this can be achieved by a matrix transformation known as

�principal component analysis, about which you will learn more in Chapter 10.

Finally, we scale the data to unit variance along each coordinate.

Background 1.2. Linear transformations.

rather than being derived from a global model built from the entire data set.

There is a nice relationship between Euclidean distance and the mean of a set of
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points: there is no other point which has smaller total squared Euclidean distance to

the given points (see Theorem 8.1 on p.238 for a proof of this). Consequently, we can

use the mean of a set of nearby points as a representative exemplar for those points.

Suppose we want to cluster our data into K clusters, and we have an initial guess of

how the data should be clustered. We then calculate the means of each initial clus-

ter, and reassign each point to the nearest cluster mean. Unless our initial guess was

a lucky one, this will have changed some of the clusters, so we repeat these two steps

(calculating the cluster means and reassigning points to clusters) until no change oc-

curs. This clustering algorithm, which is called �K -means and is further discussed

in Chapter 8, is very widely used to solve a range of clustering tasks. It remains to be

decided how we construct our initial guess. This is usually done randomly: either by

randomly partitioning the data set into K ‘clusters’ or by randomly guessing K ‘cluster

centres’. The fact that these initial ‘clusters’ or ‘cluster centres’ will bear little resem-

blance to the actual data is not a problem, as this will quickly be rectified by running

the algorithm for a number of iterations.

To summarise, geometric notions such as planes, translations and rotations, and

distance are very useful in machine learning as they allow us to understand many key

concepts in intuitive ways. Geometric models exploit these intuitions and are simple,

powerful and allow many variations with little effort. For instance, instead of using

Euclidean distance, which can be sensitive to outliers, other distances can be used such

as Manhattan distance, which sums the distances along each coordinate:
∑d

i=1 |xi−yi |.

Probabilistic models

The second type of models are probabilistic in nature, like the Bayesian classifier we

considered earlier. Many of these models are based around the following idea. Let X

denote the variables we know about, e.g., our instance’s feature values; and let Y de-

note the target variables we’re interested in, e.g., the instance’s class. The key question

in machine learning is how to model the relationship between X and Y . The statisti-

cian’s approach is to assume that there is some underlying random process that gen-

erates the values for these variables, according to a well-defined but unknown prob-

ability distribution. We want to use the data to find out more about this distribution.

Before we look into that, let’s consider how we could use that distribution once we have

learned it.

Since X is known for a particular instance but Y may not be, we are particularly in-

terested in the conditional probabilities P (Y |X ). For instance, Y could indicate whether

the e-mail is spam, and X could indicate whether the e-mail contains the words ‘Via-

gra’ and ‘lottery’. The probability of interest is then P (Y |Viagra, lottery), with Viagra

and lottery two Boolean variables which together constitute the feature vector X . For

a particular e-mail we know the feature values and so we might write P (Y |Viagra =
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Viagra lottery P (Y = spam|Viagra, lottery) P (Y = ham|Viagra, lottery)

0 0 0.31 0.69

0 1 0.65 0.35

1 0 0.80 0.20

1 1 0.40 0.60

Table 1.2. An example posterior distribution. ‘Viagra’ and ‘lottery’ are two Boolean features; Y

is the class variable, with values ‘spam’ and ‘ham’. In each row the most likely class is indicated

in bold.

1, lottery = 0) if the e-mail contains the word ‘Viagra’ but not the word ‘lottery’. This is

called a posterior probability because it is used after the features X are observed.

Table 1.2 shows an example of how these probabilities might be distributed. From

this distribution you can conclude that, if an e-mail doesn’t contain the word ‘Viagra’,

then observing the word ‘lottery’ increases the probability of the e-mail being spam

from 0.31 to 0.65; but if the e-mail does contain the word ‘Viagra’, then observing the

word ‘lottery’ as well decreases the spam probability from 0.80 to 0.40. Even though

this example table is small, it will grow unfeasibly large very quickly (with n Boolean

variables 2n cases have to be distinguished). We therefore don’t normally have access

to the full joint distribution and have to approximate it using additional assumptions,

as we will see below.

Assuming that X and Y are the only variables we know and care about, the poste-

rior distribution P (Y |X ) helps us to answer many questions of interest. For instance, to

classify a new e-mail we determine whether the words ‘Viagra’ and ‘lottery’ occur in it,

look up the corresponding probability P (Y = spam|Viagra, lottery), and predict spam if

this probability exceeds 0.5 and ham otherwise. Such a recipe to predict a value of Y

on the basis of the values of X and the posterior distribution P (Y |X ) is called a decision

rule. We can do this even without knowing all the values of X , as the following example

shows.

Example 1.2 (Missing values). Suppose we skimmed an e-mail and noticed that

it contains the word ‘lottery’ but we haven’t looked closely enough to determine

whether it uses the word ‘Viagra’. This means that we don’t know whether to use

the second or the fourth row in Table 1.2 to make a prediction. This is a problem,

as we would predict spam if the e-mail contained the word ‘Viagra’ (second row)

and ham if it didn’t (fourth row).

The solution is to average these two rows, using the probability of ‘Viagra’
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occurring in any e-mail (spam or not):

P (Y |lottery)=P (Y |Viagra= 0, lottery)P (Viagra= 0)

+P (Y |Viagra= 1, lottery)P (Viagra= 1)

For instance, suppose for the sake of argument that one in ten e-mails contain

the word ‘Viagra’, then P (Viagra = 1) = 0.10 and P (Viagra = 0) = 0.90. Using the

above formula, we obtain P (Y = spam|lottery= 1)= 0.65 ·0.90+0.40 ·0.10= 0.625

and P (Y = ham|lottery = 1) = 0.35 ·0.90+0.60 ·0.10 = 0.375. Because the occur-

rence of ‘Viagra’ in any e-mail is relatively rare, the resulting distribution deviates

only a little from the second row in Table 1.2.

As a matter of fact, statisticians work very often with different conditional prob-

abilities, given by the likelihood function P (X |Y ).3 This seems counter-intuitive at

first: why would we be interested in the probability of an event we know has occurred

(X ), conditioned on something we don’t know anything about (Y )? I like to think of

these as thought experiments: if somebody were to send me a spam e-mail, how likely

would it be that it contains exactly the words of the e-mail I’m looking at? And how

likely if it were a ham e-mail instead? ‘Not very likely at all in either case’, you might

think, and you would be right: with so many words to choose from, the probability

of any particular combination of words would be very small indeed. What really mat-

ters is not the magnitude of these likelihoods, but their ratio: how much more likely

is it to observe this combination of words in a spam e-mail than it is in a non-spam

e-mail. For instance, suppose that for a particular e-mail described by X we have

P (X |Y = spam)= 3.5 ·10−5 and P (X |Y = ham)= 7.4 ·10−6, then observing X in a spam

e-mail is nearly five times more likely than it is in a ham e-mail. This suggests the

following decision rule: predict spam if the likelihood ratio is larger than 1 and ham

otherwise.

So which one should we use: posterior probabilities or likelihoods? As it turns out,

we can easily transform one into the other using Bayes’ rule, a simple property of con-

ditional probabilities which states that

P (Y |X )= P (X |Y )P (Y )

P (X )

Here, P (Y ) is the prior probability, which in the case of classification tells me how likely

each of the classes is a priori, i.e., before I have observed the data X . P (X ) is the prob-

3It is called the likelihood function rather than the ‘likelihood distribution’ because, for fixed X , P (X |Y )

is a mapping from Y to probabilities, but these don’t sum to 1 and therefore don’t establish a probability

distribution over Y .
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ability of the data, which is independent of Y and in most cases can be ignored (or

inferred in a normalisation step, as it is equal to
∑

Y P (X |Y )P (Y )). The first decision

rule above suggested that we predict the class with maximum posterior probability,

which using Bayes’ rule can be written in terms of the likelihood function:

yMAP = argmax
Y

P (Y |X )= argmax
Y

P (X |Y )P (Y )

P (X )
= argmax

Y
P (X |Y )P (Y )

This is usually called the maximum a posteriori (MAP) decision rule. Now, if we assume

a uniform prior distribution (i.e., P (Y ) the same for every value of Y ) this reduces to

the maximum likelihood (ML) decision rule:

yML = argmax
Y

P (X |Y )

A useful rule of thumb is: use likelihoods if you want to ignore the prior distribution or

assume it uniform, and posterior probabilities otherwise.

If we have only two classes it is convenient to work with ratios of posterior proba-

bilities or likelihood ratios. If we want to know how much the data favours one of two

classes, we can calculate the posterior odds: e.g.,

P (Y = spam|X )

P (Y = ham|X )
= P (X |Y = spam)

P (X |Y = ham)

P (Y = spam)

P (Y = ham)

In words: the posterior odds are the product of the likelihood ratio and the prior odds.

If the odds are larger than 1 we conclude that the class in the enumerator is the more

likely of the two; if it is smaller than 1 we take the class in the denominator instead. In

very many cases the prior odds is a simple constant factor that can be manually set,

estimated from the data, or optimised to maximise performance on a test set.

Example 1.3 (Posterior odds). Using the data from Table 1.2, and assuming a

uniform prior distribution, we arrive at the following posterior odds:

P (Y = spam|Viagra= 0, lottery= 0)

P (Y = ham|Viagra= 0, lottery= 0)
= 0.31

0.69
= 0.45

P (Y = spam|Viagra= 1, lottery= 1)

P (Y = ham|Viagra= 1, lottery= 1)
= 0.40

0.60
= 0.67

P (Y = spam|Viagra= 0, lottery= 1)

P (Y = ham|Viagra= 0, lottery= 1)
= 0.65

0.35
= 1.9

P (Y = spam|Viagra= 1, lottery= 0)

P (Y = ham|Viagra= 1, lottery= 0)
= 0.80

0.20
= 4.0

Using a MAP decision rule (which in this case is the same as the ML decision rule,

since we assumed a uniform prior) we predict ham in the top two cases and spam
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Y P (Viagra= 1|Y ) P (Viagra= 0|Y )

spam 0.40 0.60

ham 0.12 0.88

Y P (lottery= 1|Y ) P (lottery= 0|Y )

spam 0.21 0.79

ham 0.13 0.87

Table 1.3. Example marginal likelihoods.

in the bottom two. Given that the full posterior distribution is all there is to know

about the domain in a statistical sense, these predictions are the best we can do:

they are Bayes-optimal.

It is clear from the above analysis that the likelihood function plays an important

role in statistical machine learning. It establishes what is called a generative model: a

probabilistic model from which we can sample values of all variables involved. Imag-

ine a box with two buttons labelled ‘ham’ and ‘spam’. Pressing the ‘ham’ button gener-

ates a random e-mail according to P (X |Y = ham); pressing the ‘spam’ button generates

a random e-mail according to P (X |Y = spam). The question now is what we put inside

the box. Let’s try a model that is so simplistic it’s almost laughable. Assuming a vo-

cabulary of 10 000 words, you have two bags with 10 000 coins each, one for each word

in the vocabulary. In order to generate a random e-mail, you take the appropriate bag

depending on which button was pressed, and toss each of the 10 000 coins in that bag

to decide which words should go in the e-mail (say heads is in and tails is out).

In statistical terms, each coin – which isn’t necessarily fair – represents a parameter

of the model, so we have 20 000 parameters. If ‘Viagra’ is a word in the vocabulary,

then the coin labelled ‘Viagra’ in the bag labelled ‘spam’ represents P (Viagra|Y = spam)

and the coin labelled ‘Viagra’ in the bag labelled ‘ham’ represents P (Viagra|Y = ham).

Together, these two coins represent the left table in Table 1.3. Notice that by using

different coins for each word we have tacitly assumed that likelihoods of individual

words are independent within the same class, which – if true – allows us to decompose

the joint likelihood into a product of marginal likelihoods:

P (Viagra, lottery|Y )= P (Viagra|Y )P (lottery|Y )

Effectively, this independence assumption means that knowing whether one word oc-

curs in the e-mail doesn’t tell you anything about the likelihood of other words. The

probabilities on the right are called marginal likelihoods because they are obtained

by ‘marginalising’ some of the variables in the joint distribution: e.g., P (Viagra|Y ) =∑
lottery P (Viagra, lottery|Y ).
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Example 1.4 (Using marginal likelihoods). Assuming these estimates come out

as in Table 1.3, we can then calculate likelihood ratios (the previously calculated

odds from the full posterior distribution are shown in brackets):

P (Viagra= 0|Y = spam)

P (Viagra= 0|Y = ham)

P (lottery= 0|Y = spam)

P (lottery= 0|Y = ham)
= 0.60

0.88

0.79

0.87
= 0.62 (0.45)

P (Viagra= 0|Y = spam)

P (Viagra= 0|Y = ham)

P (lottery= 1|Y = spam)

P (lottery= 1|Y = ham)
= 0.60

0.88

0.21

0.13
= 1.1 (1.9)

P (Viagra= 1|Y = spam)

P (Viagra= 1|Y = ham)

P (lottery= 0|Y = spam)

P (lottery= 0|Y = ham)
= 0.40

0.12

0.79

0.87
= 3.0 (4.0)

P (Viagra= 1|Y = spam)

P (Viagra= 1|Y = ham)

P (lottery= 1|Y = spam)

P (lottery= 1|Y = ham)
= 0.40

0.12

0.21

0.13
= 5.4 (0.67)

We see that, using a maximum likelihood decision rule, our very simple model ar-

rives at the Bayes-optimal prediction in the first three cases, but not in the fourth

(‘Viagra’ and ‘lottery’ both present), where the marginal likelihoods are actually

very misleading. A possible explanation is that these terms are very unlikely to

occur together in any e-mail, but slightly more likely in ham than spam – for in-

stance, I might be making exactly this point in an e-mail!

One might call the independence assumption that allows us to decompose joint

likelihoods into a product of marginal likelihoods ‘naive’ – which is exactly what ma-

chine learners do when they refer to this simplified Bayesian classifier as naive Bayes.

This shouldn’t be taken as a derogatory term – on the contrary, it illustrates a very im-

portant guideline in machine learning: everything should be made as simple as possible,

but not simpler.4 In our statistical context, this rule boils down to using the simplest

generative model that solves our task. For instance, we may decide to stick to naive

Bayes on the grounds that the cases in which the marginal probabilities are misleading

are very unlikely to occur in reality and therefore will be difficult to learn from data.

We now have some idea what a probabilistic model looks like, but how do we learn

such a model? In many cases this will be a matter of estimating the model parameters

from data, which is usually achieved by straightforward counting. For example, in the

coin toss model of spam recognition we had two coins for every word wi in our vocab-

4This formulation is often attributed to Einstein, although the source is unclear. Other rules in the same

spirit include ‘Entities should not be multiplied unnecessarily’ (called Occam’s razor, after William of Ock-

ham); ‘We are to admit no more causes of natural things than such as are both true and sufficient to explain

their appearances’ (Isaac Newton); and ‘Scientists must use the simplest means of arriving at their results

and exclude everything not perceived by the senses’ (Ernst Mach). Whether any of these rules are more than

methodological rules of thumbs and point to some fundamental property of nature is heavily debated.
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Figure 1.3. (top) Visualisation of two marginal likelihoods as estimated from a small data set.

The colours indicate whether the likelihood points to spam or ham. (bottom) Combining the

two marginal likelihoods gives a pattern not unlike that of a Scottish tartan. The colour of a

particular cell is a result of the colours in the corresponding row and column.

ulary, one of which is to be tossed if we are generating a spam e-mail and the other for

ham e-mails. Let’s say that the spam coin comes up heads with probability θ⊕i and the

ham coin with probability θ�i , then these parameters characterise all the likelihoods:

P (wi = 1|Y = spam)= θ⊕i P (wi = 0|Y = spam)= 1−θ⊕i
P (wi = 1|Y = ham)= θ�i P (wi = 0|Y = ham)= 1−θ�i

In order to estimate the parameters θ±i we need a training set of e-mails labelled spam

or ham. We take the spam e-mails and count how many of them wi occurs in: dividing

by the total number of spam e-mails gives us an estimate of θ⊕i . Repeating this for the

ham e-mails results in an estimate of θ�i . And that’s all there is to it!5

5Sometimes we need to slightly adapt the raw counts for very frequent or very infrequent words, as we

shall see in Section 2.3.
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Figure 1.4. (left) A feature tree combining two Boolean features. Each internal node or split is

labelled with a feature, and each edge emanating from a split is labelled with a feature value.

Each leaf therefore corresponds to a unique combination of feature values. Also indicated in

each leaf is the class distribution derived from the training set. (right) A feature tree partitions

the instance space into rectangular regions, one for each leaf. We can clearly see that the majority

of ham lives in the lower left-hand corner.

Figure 1.3 visualises this for a variant of the naive Bayes classifier discussed above.

In this variant, we record the number of times a particular word occurs in an e-mail,

rather than just whether it occurs or not. We thus need a parameter pi j± for each likeli-

hood P (wi = j |Y =±), where j = 0,1,2, . . .. For example, we see that there are two spam

e-mails in which ‘lottery’ occurs twice, and one ham e-mail in which ‘Peter’ occurs five

times. Combining the two sets of marginal likelihoods, we get the tartan-like pattern of

Figure 1.3 (bottom), which is why I like to call naive Bayes the ‘Scottish classifier’. This

is a visual reminder of the fact that a multivariate naive Bayes model decomposes into

a bunch of univariate ones. We will return to this issue of decomposition several times

in the book.

Logical models

The third type of model we distinguish is more algorithmic in nature, drawing inspira-

tion from computer science and engineering. I call this type ‘logical’ because models

of this type can be easily translated into rules that are understandable by humans, such

as ·if Viagra= 1 then Class=Y= spam·. Such rules are easily organised in a tree struc-

ture, such as the one in Figure 1.4, which I will call a feature tree. The idea of such

a tree is that features are used to iteratively partition the instance space. The leaves

of the tree therefore correspond to rectangular areas in the instance space (or hyper-

rectangles, more generally) which we will call instance space segments, or segments for

short. Depending on the task we are solving, we can then label the leaves with a class, a
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Figure 1.5. (left) A complete feature tree built from two Boolean features. (right) The corre-

sponding instance space partition is the finest partition that can be achieved with those two

features.

probability, a real value, and so on. Feature trees whose leaves are labelled with classes

are commonly called decision trees.

Example 1.5 (Labelling a feature tree). The leaves of the tree in Figure 1.4 could

be labelled, from left to right, as ham – spam – spam, employing a simple decision

rule called majority class. Alternatively, we could label them with the proportion

of spam e-mail occurring in each leaf: from left to right, 1/3, 2/3, and 4/5. Or, if

our task was a regression task, we could label the leaves with predicted real values

or even linear functions of some other, real-valued features.

Feature trees are very versatile and will play a major role in this book. Even models

that do not appear tree-based at first sight can be understood as being built on a fea-

ture tree. Consider, for instance, the naive Bayes classifier discussed previously. Since

it employs marginal likelihoods such as the ones in Table 1.3 on p.29, it partitions the

instance space in as many regions as there are combinations of feature values. This

means that it can be thought of as employing a complete feature tree, which contains

all features, one at each level of the tree (Figure 1.5). Incidentally, notice that the right-

most leaf is the one where naive Bayes made a wrong prediction. Since this leaf covers

only a single example, there is a danger that this tree is overfitting the data and that

the previous tree is a better model. Decision tree learners often employ pruning tech-

niques which delete splits such as these.

A feature list is a binary feature tree which always branches in the same direction,

either left or right. The tree in Figure 1.4 is a left-branching feature list. Such feature
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lists can be written as nested if–then–else statements that will be familiar to anyone

with a bit of programming experience. For instance, if we were to label the leaves in

Figure 1.4 by majority class we obtain the following decision list:

·if Viagra= 1 then Class=Y= spam·
·else if lottery= 1 then Class=Y= spam·
·else Class=Y= ham·

Logical models often have different, equivalent formulations. For instance, two alter-

native formulations for this model are

·if Viagra= 1 ∨ lottery= 1 then Class=Y= spam·
·else Class=Y= ham·

·if Viagra= 0 ∧ lottery= 0 then Class=Y= ham·
·else Class=Y= spam·

The first of these alternative formulations combines the two rules in the original de-

cision list by means of disjunction (‘or’), denoted by ∨ . This selects a single non-

rectangular area in instance space. The second model formulates a conjunctive condi-

tion (‘and’, denoted by ∧ ) for the opposite class (ham) and declares everything else as

spam.

We can also represent the same model as un-nested rules:

·if Viagra= 1 then Class=Y= spam·
·if Viagra= 0 ∧ lottery= 1 then Class=Y= spam·
·if Viagra= 0 ∧ lottery= 0 then Class=Y= ham·

Here, every path from root to a leaf is translated into a rule. As a result, although rules

from the same sub-tree share conditions (such as Viagra= 0), every pair of rules will

have at least some mutually exclusive conditions (such as lottery= 1 in the second rule

and lottery= 0 in the third). However, this is not always the case: rules can have a

certain overlap.

Example 1.6 (Overlapping rules). Consider the following rules:

·if lottery= 1 then Class=Y= spam·
·if Peter= 1 then Class=Y= ham·

As can be seen in Figure 1.6, these rules overlap for lottery= 1 ∧ Peter= 1, for

which they make contradictory predictions. Furthermore, they fail to make any

predictions for lottery= 0 ∧ Peter= 0.
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Figure 1.6. The effect of overlapping rules in instance space. The two rules make contradictory

predictions in the top right-hand corner, and no prediction at all in the bottom left-hand corner.

A logician would say that rules such as these are both inconsistent and incomplete.

To address incompleteness, we could add a default rule to predict, e.g., the majority

class for instances not covered by any rule. There are a number of options to deal with

overlapping rules, which will be further considered in Chapter 6.

Tree-learning algorithms typically work in a top–down fashion. The first task is to

find a good feature to split on at the top of the tree. The aim here is to find splits that

result in improved purity of the nodes on the next level, where the purity of a node

refers to the degree in which the training examples belonging to that node are of the

same class. Once the algorithm has found such a feature, the training set is partitioned

into subsets, one for each node resulting from the split. For each of these subsets, we

again find a good feature to split on, and so on. An algorithm that works by repeatedly

splitting a problem into small sub-problems is what computer scientists call a divide-

and-conquer algorithm. We stop splitting a node when all training examples belonging

to that node are of the same class. Most rule learning algorithms also work in a top–

down fashion. We learn a single rule by repeatedly adding conditions to the rule until

the rule only covers examples of a single class. We then remove the covered examples

of that class, and repeat the process. This is sometimes called a separate-and-conquer

approach.

An interesting aspect of logical models, which sets them aside from most geomet-

ric and probabilistic models, is that they can, to some extent, provide explanations

for their predictions. For example, a prediction assigned by a decision tree could be

explained by reading off the conditions that led to the prediction from root to leaf.

The model itself can also easily be inspected by humans, which is why they are some-

times called declarative. Declarative models do not need to be restricted to the simple

rules that we have considered so far. The logical rule learning system Progol found the
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following set of conditions to predict whether a molecular compound is carcinogenic

(causes cancer):

1. it tests positive in the Salmonella assay; or

2. it tests positive for sex-linked recessive lethal mutation in Drosophila; or

3. it tests negative for chromosome aberration; or

4. it has a carbon in a six-membered aromatic ring with a partial charge of −0.13;

or

5. it has a primary amine group and no secondary or tertiary amines; or

6. it has an aromatic (or resonant) hydrogen with partial charge ≥ 0.168; or

7. it has a hydroxy oxygen with a partial charge ≥−0.616 and an aromatic (or reso-

nant) hydrogen; or

8. it has a bromine; or

9. it has a tetrahedral carbon with a partial charge ≤ −0.144 and tests positive on

Progol’s mutagenicity rules.6

The first three conditions concerned certain tests that were carried out for all molecules

and whose results were recorded in the data as Boolean features. In contrast, the re-

maining six rules all refer to the structure of the molecule and were constructed entirely

by Progol. For instance, rule 4 predicts that a molecule is carcinogenic if it contains a

carbon atom with certain properties. This condition is different from the first three in

that it is not a pre-recorded feature in the data, but a new feature that is constructed by

Progol during the learning process because it helps to explain the data.

Grouping and grading

We have looked at three general types of models: geometric models, probabilistic mod-

els and logical models. As I indicated, although there are some underlying principles

pertaining to each of these groups of models, the main reason for dividing things up

along this dimension is one of convenience. Before I move on to the third main ingre-

dient of machine learning, features, I want to briefly introduce another important but

somewhat more abstract dimension that is in some sense orthogonal to the geometric–

probabilistic–logical dimension. This is the distinction between grouping models and

grading models. The key difference between these models is the way they handle the

instance space.

Grouping models do this by breaking up the instance space into groups or seg-

ments, the number of which is determined at training time. One could say that group-

ing models have a fixed and finite ‘resolution’ and cannot distinguish between individ-

ual instances beyond this resolution. What grouping models do at this finest resolution

6Mutagenic molecules cause mutations in DNA and are often carcinogenic. This last rule refers to a set of

rules that was learned earlier by Progol to predict mutagenicity.
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Figure 1.7. A ‘map’ of some of the models that will be considered in this book. Models that share

characteristics are plotted closer together: logical models to the right, geometric models on the

top left and probabilistic models on the bottom left. The horizontal dimension roughly ranges

from grading models on the left to grouping models on the right.

is often something very simple, such as assigning the majority class to all instances that

fall into the segment. The main emphasis of training a grouping model is then on de-

termining the right segments so that we can get away with this very simple labelling at

the local segment level. Grading models, on the other hand, do not employ such a no-

tion of segment. Rather than applying very simple, local models, they form one global

model over the instance space. Consequently, grading models are (usually) able to dis-

tinguish between arbitrary instances, no matter how similar they are. Their resolution

is, in theory, infinite, particularly when working in a Cartesian instance space.

A good example of grouping models are the tree-based models we have just con-

sidered. They work by repeatedly splitting the instance space into smaller subsets. Be-

cause trees are usually of limited depth and don’t contain all the available features, the

subsets at the leaves of the tree partition the instance space with some finite resolu-

tion. Instances filtered into the same leaf of the tree are treated the same, regardless of

any features not in the tree that might be able to distinguish them. Support vector ma-

chines and other geometric classifiers are examples of grading models. Because they

work in a Cartesian instance space, they are able to represent and exploit the minutest

differences between instances. As a consequence, it is always possible to come up with

a new test instance that receives a score that has not been given to any previous test

instance.

The distinction between grouping and grading models is relative rather than
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Figure 1.8. A taxonomy describing machine learning methods in terms of the extent to which

they are grading or grouping models, logical, geometric or a combination, and supervised or un-

supervised. The colours indicate the type of model, from left to right: logical (red), probabilistic

(orange) and geometric (purple).

absolute, and some models combine both features. For instance, even though linear

classifiers are a prime example of a grading model, it is easy to think of instances that

a linear model can’t distinguish, namely instances on a line or plane parallel to the

decision boundary. The point is not so much that there aren’t any segments, but that

there are infinitely many. On the other end of the spectrum, regression trees combine

grouping and grading features, as we shall see a little later. The overall picture is thus

somewhat like what is depicted in Figure 1.7. A taxonomy of eight different models

discussed in the book is given in Figure 1.8.7 These models will be discussed in detail

in Chapters 4–9.

1.3 Features: the workhorses of machine learning

Now that we have seen some more examples of machine learning tasks and models, we

turn to the third and final main ingredient. Features determine much of the success of

a machine learning application, because a model is only as good as its features. A fea-

7The figures have been generated from data explained in Example 1.7 below.
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Model geom stats logic group grad disc real sup unsup multi

Trees 1 0 3 3 0 3 2 3 2 3

Rules 0 0 3 3 1 3 2 3 0 2

naive Bayes 1 3 1 3 1 3 1 3 0 3

kNN 3 1 0 2 2 1 3 3 0 3

Linear Classifier 3 0 0 0 3 1 3 3 0 0

Linear Regression 3 1 0 0 3 0 3 3 0 1

Logistic Regression 3 2 0 0 3 1 3 3 0 0

SVM 2 2 0 0 3 2 3 3 0 0

Kmeans 3 2 0 1 2 1 3 0 3 1

GMM 1 3 0 0 3 1 3 0 3 1

Associations 0 0 3 3 0 3 1 0 3 1

Table 1.4. The MLM data set describing properties of machine learning models. Both Figure 1.7

and Figure 1.8 were generated from this data.

ture can be thought of as a kind of measurement that can be easily performed on any

instance. Mathematically, they are functions that map from the instance space to some

set of feature values called the domain of the feature. Since measurements are often

numerical, the most common feature domain is the set of real numbers. Other typi-

cal feature domains include the set of integers, for instance when the feature counts

something, such as the number of occurrences of a particular word; the Booleans, if

our feature is a statement that can be true or false for a particular instance, such as ‘this

e-mail is addressed to Peter Flach’; and arbitrary finite sets, such as a set of colours, or

a set of shapes.

Example 1.7 (The MLM data set). Suppose we have a number of learning mod-

els that we want to describe in terms of a number of properties:

� the extent to which the models are geometric, probabilistic or logical;

� whether they are grouping or grading models;

� the extent to which they can handle discrete and/or real-valued features;

� whether they are used in supervised or unsupervised learning; and

� the extent to which they can handle multi-class problems.

The first two properties could be expressed by discrete features with three and

two values, respectively; or if the distinctions are more gradual, each aspect could

be rated on some numerical scale. A simple approach would be to measure each

property on an integer scale from 0 to 3, as in Table 1.4. This table establishes

a data set in which each row represents an instance and each column a fea-

ture. For example, according to this (highly simplified) data some models are
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purely grouping models (Trees, Associations) or purely grading models (the Lin-

ear models, Logistic Regression and GMM), whereas others are more mixed. We

can also see that Trees and Rules have very similar values for most of the features,

whereas GMM and Associations have mostly different values.

This small data set will be used in several examples throughout the book.

In fact, the taxonomy in Figure 1.8 was adapted by hand from a decision tree

learned from this small data set, using the models as classes. And the plot in

Figure 1.7 was constructed using a dimensionality reduction technique which

preserves pairwise distances as much as possible.

Two uses of features

It is worth noting that features and models are intimately connected, not just because

models are defined in terms of features, but because a single feature can be turned into

what is sometimes called a univariate model. We can therefore distinguish two uses

of features that echo the distinction between grouping and grading models. A very

common use of features, particularly in logical models, is to zoom in on a particular

area of the instance space. Let f be a feature counting the number of occurrences of the

word ‘Viagra’ in an e-mail, and let x stand for an arbitrary e-mail, then the condition

f (x)= 0 selects e-mails that don’t contain the word ‘Viagra’, f (x) 
= 0 or f (x)> 0 selects

e-mails that do, f (x)≥ 2 selects e-mails that contain the word at least twice, and so on.

Such conditions are called binary splits, because they divide the instance space into

two groups: those that satisfy the condition, and those that don’t. Non-binary splits

are also possible: for instance, if g is a feature that has the value ‘tweet’ for e-mails with

up to 20 words, ‘short’ for e-mails with 21 to 50 words, ‘medium’ for e-mails with 51 to

200 words, and ‘long’ for e-mails with more than 200 words, then the expression g (x)

represents a four-way split of the instance space. As we have already seen, such splits

can be combined in a feature tree, from which a model can be built.

A second use of features arises particularly in supervised learning. Recall that a

linear classifier employs a decision rule of the form
∑n

i=1 wi xi > t , where xi is a nu-

merical feature.8 The linearity of this decision rule means that each feature makes an

independent contribution to the score of an instance. This contribution depends on

the weight wi : if this is large and positive, a positive xi increases the score; if wi � 0, a

positive xi decreases the score; if wi ≈ 0, xi ’s influence is negligible. Thus, the feature

8Notice we employ two different notations for features: sometimes we write f (x) if it is more convenient

to view a feature as a function applied to instance x, and sometimes we write xi if it is more convenient to

view an instance as a vector of feature values.
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Figure 1.9. (left) A regression tree combining a one-split feature tree with linear regression mod-

els in the leaves. Notice how x is used as both a splitting feature and a regression variable. (right)

The function y = cosπx on the interval −1 ≤ x ≤ 1, and the piecewise linear approximation

achieved by the regression tree.

makes a precise and measurable contribution to the final prediction. Also note that

that individual features are not ‘thresholded’, but their full ‘resolution’ is used in com-

puting an instance’s score. These two uses of features – ‘features as splits’ and ‘features

as predictors’ – are sometimes combined in a single model.

Example 1.8 (Two uses of features). Suppose we want to approximate y =
cosπx on the interval −1 ≤ x ≤ 1. A linear approximation is not much use here,

since the best fit would be y = 0. However, if we split the x-axis in two intervals

−1 ≤ x < 0 and 0 ≤ x ≤ 1, we could find reasonable linear approximations on

each interval. We can achieve this by using x both as a splitting feature and as a

regression variable (Figure 1.9).

Feature construction and transformation

There is a lot of scope in machine learning for playing around with features. In the

spam filter example, and text classification more generally, the messages or documents

don’t come with built-in features; rather, they need to be constructed by the developer

of the machine learning application. This feature construction process is absolutely

crucial for the success of a machine learning application. Indexing an e-mail by the

words that occur in it (called a bag of words representation as it disregards the order

of the words in the e-mail) is a carefully engineered representation that manages to

amplify the ‘signal’ and attenuate the ‘noise’ in spam e-mail filtering and related clas-

sification tasks. However, it is easy to conceive of problems where this would be exactly
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Figure 1.10. (left) Artificial data depicting a histogram of body weight measurements of people

with (blue) and without (red) diabetes, with eleven fixed intervals of 10 kilograms width each.

(right) By joining the first and second, third and fourth, fifth and sixth, and the eighth, ninth and

tenth intervals, we obtain a discretisation such that the proportion of diabetes cases increases

from left to right. This discretisation makes the feature more useful in predicting diabetes.

the wrong thing to do: for instance if we aim to train a classifier to distinguish between

grammatical and ungrammatical sentences, word order is clearly signal rather than

noise, and a different representation is called for.

It is often natural to build a model in terms of the given features. However, we are

free to change the features as we see fit, or even to introduce new features. For instance,

real-valued features often contain unnecessary detail that can be removed by discreti-

sation. Imagine you want to analyse the body weight of a relatively small group of, say,

100 people, by drawing a histogram. If you measure everybody’s weight in kilograms

with one position after the decimal point (i.e., your precision is 100 grams), then your

histogram will be sparse and spiky. It is hard to draw any general conclusions from

such a histogram. It would be much more useful to discretise the body weight mea-

surements into intervals of 10 kilograms. If we are in a classification context, say we’re

trying to relate body weight to diabetes, we could then associate each bar of the his-

togram with the proportion of people having diabetes among the people whose weight

falls in that interval. In fact, as we shall see in Chapter 10, we can even choose the

intervals such that this proportion is monotonically increasing (Figure 1.10).

The previous example gives another illustration of how, for a particular task such as

classification, we can improve the signal-to-noise ratio of a feature. In more extreme

cases of feature construction we transform the entire instance space. Consider Figure

1.11: the data on the left is clearly not linearly separable, but by mapping the instance

space into a new ‘feature space’ consisting of the squares of the original features we see

that the data becomes almost linearly separable. In fact, by adding in a third feature

we can perform a remarkable trick: we can build this feature space classifier without

actually constructing the feature space.



1.3 Features: the workhorses of machine learning 43

�2.5 �2 �1.5 �1 �0.5 0 0.5 1 1.5 2 2.5
�2.5

�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 1.11. (left) A linear classifier would perform poorly on this data. (right) By transforming

the original (x, y) data into (x′, y ′)= (x2, y2), the data becomes more ‘linear’, and a linear decision

boundary x′ + y ′ = 3 separates the data fairly well. In the original space this corresponds to a

circle with radius
�

3 around the origin.

Example 1.9 (The kernel trick). Let x1 = (x1, y1) and x2 = (x2, y2) be two data

points, and consider the mapping (x, y) �→ (x2, y2,
�

2x y) to a three-dimensional

feature space. The points in feature space corresponding to x1 and x2 are x′1 =
(x2

1, y2
1 ,
�

2x1 y1) and x′2 = (x2
2, y2

2 ,
�

2x2 y2). The dot product of these two feature

vectors is

x′1 ·x′2 = x2
1 x2

2 + y2
1 y2

2 +2x1 y1x2 y2 = (x1x2+ y1 y2)2 = (x1 ·x2)2

That is, by squaring the dot product in the original space we obtain the dot prod-

uct in the new space without actually constructing the feature vectors! A function

that calculates the dot product in feature space directly from the vectors in the

original space is called a kernel – here the kernel is κ(x1,x2)= (x1 ·x2)2.

We can apply this kernel trick to the basic linear classifier if we modify the

way the decision boundary is calculated. Recall that the basic linear classifier

learns a decision boundary w ·x= t with w= p−n being the difference between

the mean of the positive examples and the mean of the negative examples. As an

example, suppose we have n= (0,0) and p= (0,1), and let’s assume for the sake of

argument that the positive mean has been obtained from two training examples

p1 = (−1,1) and p2 = (1,1). This means that p = 1
2

(
p1+p2

)
and we can rewrite

the decision boundary as 1
2 p1 ·x+ 1

2 p2 ·x−n ·x= t . Applying the kernel trick we

obtain the following decision boundary: 1
2κ(p1,x)+ 1

2κ(p2,x)−κ(n,x)= t . Using
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the kernel defined earlier we have κ(p1,x) = (−x + y)2, κ(p2,x) = (x + y)2 and

κ(n,x)= 0, from which we derive the decision boundary 1
2 (−x+ y)2+ 1

2 (x+ y)2 =
x2+ y2 = t , i.e., a circle around the origin with radius

�
t . Figure 1.11 illustrates

this further for a larger data set.

The key point in this ‘kernelisation’ of the basic linear classifier is that we don’t sum-

marise the training data by the positive and negative means – rather, we keep the train-

ing data (here: p1, p2 and n), so that when classifying a new instance we can evaluate

the kernel on it paired with each training example. In return for this more elaborate

calculation we get the ability to construct much more flexible decision boundaries.

Interaction between features

One fascinating and multi-faceted aspect of features is that they may interact in various

ways. Sometimes such interaction can be exploited, sometimes it can be ignored, and

sometimes it poses a challenge. We have already seen an example of feature interaction

when we talked about Bayesian spam filtering. Clearly, if we notice the term ‘Viagra’ in

an e-mail, we are not really surprised to find that the e-mail also contains the phrase

‘blue pill’. Ignoring this interaction, as the naive Bayes classifier does, means that we

are overestimating the amount of information conveyed by observing both phrases in

the same e-mail. Whether we can get away with this depends on our task: in spam e-

mail classification it turns out not to be a big problem, apart from the fact that we may

need to adapt the decision threshold to account for this effect.

We can observe other examples of feature interaction in Table 1.4 on p.39. Con-

sider the features ‘grad’ and ‘real’, which assess the extent to which models are of the

grading kind, and the extent to which they can handle real-valued features. You may

observe that the values of these two features differ by at most 1 for all but one model.

Statisticians say that these features are positively correlated (see Background 1.3). An-

other pair of positively correlated features is ‘logic’ and ‘disc’, indicating logical models

and the ability to handle discrete features. We can also see some negatively correlated

features, where the value of one goes up when the other goes down: this holds natu-

rally for ‘split’ and ‘grad’, indicating whether models are primarily grouping or grading

models; and also for ‘logic’ and ‘grad’. Finally, pairs of uncorrelated features are ‘unsup’

and ‘multi’, standing for unsupervised models and the ability to handle more than two

classes; and ‘disc’ and ‘sup’, the latter of which indicates supervised models.

In classification, features may be differently correlated depending on the class. For

instance, it is conceivable that for somebody whose last name is Hilton and who works

for the Paris city council, e-mails with just the word ‘Paris’ or just the word ‘Hilton’
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Random variables describe possible outcomes of a random process. They can be either

discrete (e.g., the possible outcomes of rolling a die are {1,2,3,4,5,6}) or continuous (e.g.,

the possible outcomes of measuring somebody’s weight in kilograms). Random variables

do not need to range over integer or real numbers, but it does make the mathematics quite

a bit simpler so that is what we assume here.

If X is a discrete random variable with probability distribution P (X ) then the expected

value of X is E [X ] = ∑x xP (x). For instance, the expected value of tossing a fair die is

1 · 1
6 +2 · 1

6 + . . .+6 · 1
6 = 3.5. Notice that this is not actually a possible outcome. For a con-

tinuous random variable we need to replace the sum with an integral, and the probability

distribution with a probability density function: E [X ] = ∫+∞−∞ xp(x)d x. The idea of this

rather abstract concept is that if we take a sample x1, . . . , xn of outcomes of the random

process, the expected value is what we expect the sample mean x = 1
n
∑n

i=1 xi to be – this

is the celebrated law of large numbers first proved by Jacob Bernoulli in 1713. For this rea-

son the expected value is often called the population mean, but it is important to realise

that the latter is a theoretical value, while the sample mean is an empirical estimate of that

theoretical value.

The expectation operator can be applied to functions of random variables. For instance,

the (population)variance of a discrete random variable is defined as E
[
(X −E [X ])2] =∑

x (x − E [X ])2P (x) – this measures the spread of the distribution around the expected

value. Notice that

E
[

(X −E [X ])2
]
=∑

x
(x−E [X ])2P (x)= E

[
X 2
]
−E [X ]2

We can similarly define the sample variance asσ2 = 1
n
∑n

i=1(xi−x)2, which decomposes as
1
n
∑n

i=1 x2
i −x2. You will sometimes see the sample variance defined as 1

n−1
∑n

i=1(xi −x)2:

dividing by n − 1 rather than n results in a slightly larger estimate, which compensates

for the fact that we are calculating the spread around the sample mean rather than the

population mean.

The (population) covariance between two discrete random variables X and Y is defined

as E [(X −E [X ])(Y −E [Y ])] = E [X ·Y ]− E [X ] · E [Y ] The variance of X is a special case of

this, with Y = X . Unlike the variance, the covariance can be positive as well as neg-

ative. Positive covariance means that both variables tend to increase or decrease to-

gether; negative covariance means that if one variable increases, the other tends to de-

crease. If we have a sample of pairs of values of X and Y , sample covariance is defined as
1
n
∑n

i=1(xi − x)(yi − y) = 1
n
∑n

i=1 xi yi − x y . By dividing the covariance between X and Y

by
√
σ2

X σ2
Y we obtain the correlation coefficient, which is a number between −1 and +1.

Background 1.3. Expectations and estimators.
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are indicative of ham, whereas e-mails with both terms are indicative of spam. Put

differently, within the spam class these features are positively correlated, while within

the ham class they are negatively correlated. In such a case, ignoring these interactions

will be detrimental for classification performance. In other cases, feature correlations

may obscure the true model – we shall see examples of this later in the book. On the

other hand, feature correlation sometimes helps us to zoom in on the relevant part of

the instance space.

There are other ways in which features can be related. Consider the following three

features that can be true or false of a molecular compound:

1. it has a carbon in a six-membered aromatic ring;

2. it has a carbon with a partial charge of −0.13;

3. it has a carbon in a six-membered aromatic ring with a partial charge of −0.13.

We say that the third feature is more specific (or less general) than the other two, be-

cause if the third feature is true, then so are the first and the second. However, the

converse does not hold: if both first and second feature are true, the third feature may

still be false (because the carbon in the six-membered ring may not be the same as the

one with a partial charge of −0.13). We can exploit these relationships when searching

for features to add to our logical model. For instance, if we find that the third feature is

true of a particular negative example that we’re trying to exclude, then there is no point

in considering the more general first and second features, because they will not help

us in excluding the negative either. Similarly, if we find that the first feature is false of

a particular positive we’re trying to include, there is no point in considering the more

specific third feature instead. In other words, these relationships help us to structure

our search for predictive features.

1.4 Summary and outlook

My goal in this chapter has been to take you on a tour to admire the machine learning

landscape, and to raise your interest sufficiently to want to read the rest of the book.

Here is a summary of the things we have been looking at.

� Machine learning is about using the right features to build the right models that

achieve the right tasks. These tasks include: binary and multi-class classifica-

tion, regression, clustering and descriptive modelling. Models for the first few of

these tasks are learned in a supervised fashion requiring labelled training data.

For instance, if you want to train a spam filter using machine learning, you need

a training set of e-mails labelled spam and ham. If you want to know how good

the model is you also need labelled test data that is distinct from the training
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data, as evaluating your model on the data it was trained on will paint too rosy a

picture: a test set is needed to expose any overfitting that occurs.

� Unsupervised learning, on the other hand, works with unlabelled data and so

there is no test data as such. For instance, to evaluate a particular partition of

data into clusters, one can calculate the average distance from the cluster cen-

tre. Other forms of unsupervised learning include learning associations (things

that tend to occur together) and identifying hidden variables such as film gen-

res. Overfitting is also a concern in unsupervised learning: for instance, assign-

ing each data point its own cluster will reduce the average distance to the cluster

centre to zero, yet is clearly not very useful.

� On the output side we can distinguish between predictive models whose out-

puts involve the target variable and descriptive models which identify interesting

structure in the data. Often, predictive models are learned in a supervised set-

ting while descriptive models are obtained by unsupervised learning methods,

but there are also examples of supervised learning of descriptive models (e.g.,

subgroup discovery which aims at identifying regions with an unusual class dis-

tribution) and unsupervised learning of predictive models (e.g., predictive clus-

tering where the identified clusters are interpreted as classes).

� We have loosely divided machine learning models into geometric models, prob-

abilistic models and logical models. Geometric models are constructed in Carte-

sian instance spaces, using geometric concepts such as planes and distances.

The prototypical geometric model is the basic linear classifier, which constructs

a decision plane orthogonal to the line connecting the positive and negative cen-

tres of mass. Probabilistic models view learning as a process of reducing uncer-

tainty using data. For instance, a Bayesian classifier models the posterior dis-

tribution P (Y |X ) (or its counterpart, the likelihood function P (X |Y )) which tells

me the class distribution Y after observing the feature values X . Logical models

are the most ‘declarative’ of the three, employing if–then rules built from logical

conditions to single out homogeneous areas in instance space.

� We have also introduced a distinction between grouping and grading models.

Grouping models divide the instance space into segments which are determined

at training time, and hence have a finite resolution. On each segment, grouping

models usually fit a very simple kind of model, such as ‘always predict this class’.

Grading models fit a more global model, graded by the location of an instance in

instance space (typically, but not always, a Cartesian space). Logical models are

typical examples of grouping models, while geometric models tend to be grad-

ing in nature, although this distinction isn’t clear-cut. While this sounds very
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abstract at the moment, the distinction will become much clearer when we dis-

cuss coverage curves in the next chapter.

� Last but not least, we have discussed the role of features in machine learning.

No model can exist without features, and sometimes a single feature is enough

to build a model. Data doesn’t always come with ready-made features, and of-

ten we have to transform or even construct features. Because of this, machine

learning is often an iterative process: we only know we have captured the right

features after we have constructed the model, and if the model doesn’t perform

satisfactorily we need to analyse its performance to understand in what way the

features need to be improved.

What you’ll find in the rest of the book

In the next nine chapters, we will follow the structure laid out above, and look in detail

at

� machine learning tasks in Chapters 2 and 3;

� logical models: concept learning in Chapter 4, tree models in Chapter 5 and rule

models in Chapter 6;

� geometric models: linear models in Chapter 7 and distance-based models in

Chapter 8;

� probabilistic models in Chapter 9; and

� features in Chapter 10.

Chapter 11 is devoted to techniques for training ‘ensembles’ of models that have cer-

tain advantages over single models. In Chapter 12 we will consider a number of meth-

ods for what machine learners call ‘experiments’, which involve training and evaluating

models on real data. Finally, in the Epilogue we will wrap up the book and take a look

ahead.

�



CHAPTER 2

Binary classification and related tasks

I
N THIS CHAPTER and the next we take a bird’s-eye view of the wide range of different

tasks that can be solved with machine learning techniques. ‘Task’ here refers to what-

ever it is that machine learning is intended to improve performance of (recall the def-

inition of machine learning on p.3), for example, e-mail spam recognition. Since this

is a classification task, we need to learn an appropriate classifier from training data.

Many different types of classifiers exist: linear classifiers, Bayesian classifiers, distance-

based classifiers, to name a few. We will refer to these different types as models; they

are the subject of Chapters 4–9. Classification is just one of a range of possible tasks

for which we can learn a model: other tasks that will pass the review in this chapter

are class probability estimation and ranking. In the next chapter we will discuss re-

gression, clustering and descriptive modelling. For each of these tasks we will discuss

what it is, what variants exist, how performance at the task could be assessed, and how

it relates to other tasks. We will start with some general notation that is used in this

chapter and throughout the book (see Background 2.1 for the relevant mathematical

concepts).

The objects of interest in machine learning are usually referred to as instances. The

set of all possible instances is called the instance space, denoted X in this book. To

illustrate, X could be the set of all possible e-mails that can be written using the Latin

49
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alphabet.1 We furthermore distinguish between the label space L and the output space

Y . The label space is used in supervised learning to label the examples. In order to

achieve the task under consideration we need a model: a mapping from the instance

space to the output space. For instance, in classification the output space is a set of

classes, while in regression it is the set of real numbers. In order to learn such a model

we require a training set Tr of labelled instances (x, l (x)), also called examples, where

l : X →L is a labelling function.

Based on this terminology and notation, and concentrating on supervised learning

of predictive models for the duration of the chapter, Table 2.1 distinguishes a number

of specific scenarios. The most commonly encountered machine learning scenario is

where the label space coincides with the output space. That is, Y = L and we are

trying to learn an approximation l̂ : X →L to the true labelling function l , which is

only known through the labels it assigned to the training data. This scenario covers

both classification and regression. In cases where the label space and the output space

differ, this usually serves the purpose of learning a model that outputs more than just

a label – for instance, a score for each possible label. In this case we have Y =Rk , with

k = |L | the number of labels.

Matters may be complicated by noise, which can take the form of label noise – in-

stead of l = l (x) we observe some corrupted label l ′ – or instance noise – instead of x

we observe an instance x ′ that is corrupted in some way. One consequence of noisy

data is that it is generally not advisable to try to match the training data exactly, as

this may lead to overfitting the noise. Some of the labelled data is usually set aside

for evaluating or testing a classifier, in which case it is called a test set and denoted

by Te. We use superscripts to restrict training or test set to a particular class: e.g.,

Te⊕ = {(x, l (x))|x ∈ Te, l (x) = ⊕} is the set of positive test examples, and Te� is the set

of negative test examples.

The simplest kind of input space arises when instances are described by a fixed

number of features, also called attributes, predictor variables, explanatory variables or

independent variables. Indicating the set of values or domain of a feature by Fi , we

then have that X =F1×F2× . . .×Fd , and thus every instance is a d-vector of feature

values. In some domains the features to use readily suggest themselves, whereas in

other domains they need to be constructed. For example, in the spam filter example

in the Prologue we constructed a large number of features, one for each word in a vo-

cabulary, counting the number of occurrences of that word in the e-mail. Even when

features are given explicitly we often want to transform them to maximise their useful-

ness for the task at hand. We will discuss this in considerable detail in Chapter 10.

1It is perhaps worth emphasising that an instance space like this is an unimaginably vast set (e.g., the set

of all possible text messages of 160 characters using only lower-case letters, spaces and full stops is 28160, a

number too large for most pocket calculators), and that only a minuscule fraction of this set carries enough

meaning to be possibly encountered in the real world.
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We briefly review some important concepts from discrete mathematics. A set is a collec-

tion of objects, usually of the same kind (e.g., the set of all natural numbers N or the set of

real numbers R). We write x ∈ A if x is an element of set A, and A ⊆ B if all elements of A

are also elements of B (this includes the possibility that A and B are the same set, which

is equivalent to A ⊆ B and B ⊆ A). The intersection and union of two sets are defined as

A∩B = {x|x ∈ A and x ∈ B } and A∪B = {x|x ∈ A or x ∈ B }. The difference of two sets is

defined as A \ B = {x|x ∈ A and x 
∈ B}. It is customary to fix a universe of discourse U such

that all sets under consideration are subsets of U . The complement of a set A is defined as

A =U \ A. Two sets are disjoint if their intersection is empty: A∩B = �. The cardinality

of a set A is its number of elements and is denoted |A|. The powerset of a set A is the set

of all its subsets 2A = {B |B ⊆ A}; its cardinality is |2A | = 2|A|. The characteristic function of

a set A is the function f : U → {true, false} such that f (x)= true if x ∈ A and f (x)= false if

x ∈U \ A.

If A and B are sets, the Cartesian product A×B is the set of all pairs {(x, y)|x ∈ A and y ∈B };

this generalises to products of more than two sets. A (binary) relation is a set of pairs

R ⊆ A×B for some sets A and B ; if A =B we say the relation is over A. Instead of (x, y) ∈R

we also write xR y . A relation over A is (i) reflexive if xRx for all x ∈ A; (ii) symmetric if xR y

implies yRx for all x, y ∈ A; (iii) antisymmetric if xR y and yRx implies x = y for all x, y ∈ A;

(iv) transitive if xR y and yRz implies xRz for all x, y, z ∈ A. (v) total if xR y or yRx for all

x, y ∈ A.

A partial order is a binary relation that is reflexive, antisymmetric and transitive. For in-

stance, the subset relation ⊆ is a partial order. A total order is a binary relation that is

total (hence reflexive), antisymmetric and transitive. The ≤ relation on real numbers is

a total order. If xR y or yRx we say that x and y are comparable; otherwise they are in-

comparable. An equivalence relation is a binary relation ≡ that is reflexive, symmetric

and transitive. The equivalence class of x is [x] = {y |x ≡ y}. For example, the binary re-

lation ‘contains the same number of elements as’ over any set is an equivalence relation.

Any two equivalence classes are disjoint, and the union of all equivalence classes is the

whole set – in other words, the set of all equivalence classes forms a partition of the set.

If A1, . . . , An is a partition of a set A, i.e. A1∪ . . .∪ An = A and Ai ∩ A j =� for all i 
= j , we

write A = A1� . . .� An .

To illustrate this, let T be a feature tree, and define a relation∼T⊆X ×X such that x ∼T x′

if and only if x and x′ are assigned to the same leaf of feature tree T , then ∼T is an equiv-

alence relation, and its equivalence classes are precisely the instance space segments as-

sociated with T .

Background 2.1. Useful concepts from discrete mathematics.

The sections in this chapter are devoted to the first three scenarios in Table 2.1:
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Task Label space Output space Learning problem

Classification L =C Y =C learn an approximation ĉ :

X → C to the true labelling

function c

Scoring and

ranking

L =C Y =R|C | learn a model that outputs a

score vector over classes

Probability

estimation

L =C Y = [0,1]|C | learn a model that outputs a

probability vector over classes

Regression L =R Y =R learn an approximation f̂ :

X → R to the true labelling

function f

Table 2.1. Predictive machine learning scenarios.

classification in Section 2.1, scoring and ranking in Section 2.2 and class probability

estimation in Section 2.3. To keep things manageable we mostly restrict attention to

two-class tasks in this chapter and deal with more than two classes in Chapter 3. Re-

gression, unsupervised and descriptive learning will also be considered there.

Throughout this chapter I will illustrate key concepts by means of examples us-

ing simple models of the kind discussed in the Prologue. These models will either be

simple tree-based models, representative of grouping models, or linear models, rep-

resentative of grading models. Sometimes we will even construct models from single

features, a setting that could be described as univariate machine learning. We will start

dealing with the question of how to learn such models from Chapter 4 onwards.

2.1 Classification

Classification is the most common task in machine learning. A classifier is a mapping

ĉ : X →C , where C = {C1,C2, . . . ,Ck } is a finite and usually small set of class labels. We

will sometimes also use Ci to indicate the set of examples of that class. We use the ‘hat’

to indicate that ĉ(x) is an estimate of the true but unknown function c(x). Examples

for a classifier take the form (x,c(x)), where x ∈X is an instance and c(x) is the true

class of the instance. Learning a classifier involves constructing the function ĉ such

that it matches c as closely as possible (and not just on the training set, but ideally on

the entire instance space X ).

In the simplest case we have only two classes which are usually referred to as pos-

itive and negative, ⊕and �, or +1 and −1. Two-class classification is often called bi-

nary classification (or concept learning, if the positive class can be meaningfully called
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Figure 2.1. (left) A feature tree with training set class distribution in the leaves. (right) A decision

tree obtained using the majority class decision rule.

a concept). Spam e-mail filtering is a good example of binary classification, in which

spam is conventionally taken as the positive class, and ham as the negative class (clearly,

positive here doesn’t mean ‘good’!). Other examples of binary classification include

medical diagnosis (the positive class here is having a particular disease) and credit card

fraud detection.

The feature tree in Figure 2.1 (left) can be turned into a classifier by labelling each

leaf with a class. The simplest way to do this is by assigning the majority class in each

leaf, resulting in the decision tree in Figure 2.1 (right). The classifier works as follows: if

an e-mail contains the word ‘Viagra’ it is classified as spam (right-most leaf); otherwise,

the occurrence of the word ‘lottery’ decides whether it gets labelled spam or ham.2

From the numbers in Figure 2.1 we can get an idea how well this classifier does. The

left-most leaf correctly predicts 40 ham e-mails but also mislabels 20 spam e-mails

that contain neither ‘Viagra’ nor ‘lottery’. The middle leaf correctly classifies 10 spam

e-mails but also erroneously labels 5 ham e-mails as spam. The ‘Viagra’ test correctly

picks out 20 spam e-mails but also 5 ham e-mails. Taken together, this means that 30

out of 50 spam e-mails are classified correctly, and 40 out of 50 ham e-mails.

Assessing classification performance

The performance of such classifiers can be summarised by means of a table known as a

contingency table or confusion matrix (Table 2.2 (left)). In this table, each row refers to

2If you are keen to know how such a decision tree can be learned from data, you may want to take a sneak

preview at Algorithm 5.1 on p.132.
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actual classes as recorded in the test set, and each column to classes as predicted by the

classifier. So, for instance, the first row states that the test set contains 50 positives, 30

of which were correctly predicted and 20 incorrectly. The last column and the last row

give the marginals (i.e., column and row sums). Marginals are important because they

allow us to assess statistical significance. For instance, the contingency table in Table

2.2 (right) has the same marginals, but the classifier clearly makes a random choice as

to which predictions are positive and which are negative – as a result the distribution

of actual positives and negatives in either predicted class is the same as the overall

distribution (uniform in this case).

Predicted ⊕ Predicted �
Actual ⊕ 30 20 50

Actual � 10 40 50

40 60 100

⊕ �
⊕ 20 30 50

� 20 30 50

40 60 100

Table 2.2. (left) A two-class contingency table or confusion matrix depicting the performance

of the decision tree in Figure 2.1. Numbers on the descending diagonal indicate correct predic-

tions, while the ascending diagonal concerns prediction errors. (right) A contingency table with

the same marginals but independent rows and columns.

From a contingency table we can calculate a range of performance indicators. The

simplest of these is accuracy, which is the proportion of correctly classified test in-

stances. In the notation introduced at the beginning of this chapter, accuracy over a

test set Te is defined as

acc= 1

|Te|
∑

x∈Te
I [ĉ(x)= c(x)] (2.1)

Here, the function I [·] denotes the indicator function, which is 1 if its argument evalu-

ates to true, and 0 otherwise. In this case it is a convenient way to count the number of

test instances that are classified correctly by the classifier (i.e., the estimated class label

ĉ(x) is equal to the true class label c(x)). For example, in Table 2.2 (left) the accuracy

of the classifier is 0.70 or 70%, and in Table 2.2 (right) it is 0.50. Alternatively, we can

calculate the error rate as the proportion of incorrectly classified instances, here 0.30

and 0.50, respectively. Clearly, accuracy and error rate sum to 1.

Test set accuracy can be seen as an estimate of the probability that an arbitrary

instance x ∈X is classified correctly: more precisely, it estimates the probability

PX (ĉ(x)= c(x))

(Notice that I write PX to emphasise that this is a probability distribution over the

instance space X ; I will often omit subscripts if this is clear from the context.) We
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typically only have access to the true classes of a small fraction of the instance space

and so an estimate is all we can hope to get. It is therefore important that the test set

is as representative as possible. This is usually formalised by the assumption that the

occurrence of instances in the world – i.e., how likely or typical a particular e-mail is

– is governed by an unknown probability distribution on X , and that the test set Te is

generated according to this distribution.

It is often convenient – not to say necessary – to distinguish performance on the

classes. To this end, we need some further terminology. Correctly classified positives

and negatives are referred to as true positives and true negatives, respectively. Incor-

rectly classified positives are, perhaps somewhat confusingly, called false negatives;

similarly, misclassified negatives are called false positives. A good way to think of this is

to remember that positive/negative refers to the classifier’s prediction, and true/false

refers to whether the prediction is correct or not. So, a false positive is something that

was incorrectly predicted as positive, and therefore an actual negative (e.g., a ham e-

mail misclassified as spam, or a healthy patient misclassified as having the disease in

question). In the previous example (Table 2.2 (left)) we have 30 true positives, 20 false

negatives, 40 true negatives and 10 false positives.

The true positive rate is the proportion of positives correctly classified, and can be

defined mathematically as

tpr =
∑

x∈Te I [ĉ(x)= c(x)=⊕]∑
x∈Te I [c(x)=⊕]

(2.2)

True positive rate is an estimate of the probability that an arbitrary positive is classified

correctly, that is, an estimate of PX (ĉ(x) = ⊕|c(x) = ⊕). Analogously, the true nega-

tive rate is the proportion of negatives correctly classified (see Table 2.3 on p.57 for the

mathematical definition), and estimates PX (ĉ(x)=�|c(x)=�). These rates, which are

sometimes called sensitivity and specificity, can be seen as per-class accuracies. In the

contingency table, the true positive and negative rates can be calculated by dividing

the number on the descending (good) diagonal by the row total. We can also talk about

per-class error rates, which is the false negative rate for the positives (i.e., the number

of misclassified positives or false negatives as a proportion of the total number of pos-

itives) and the false positive rate for the negatives (sometimes called the false alarm

rate). These rates can be found by dividing the number on the ascending (bad) diago-

nal by the row total.

In Table 2.2 (left) we have a true positive rate of 60%, a true negative rate of 80%, a

false negative rate of 40% and a false positive rate of 20%. In Table 2.2 (right) we have

a true positive rate of 40%, a true negative rate of 60%, a false negative rate of 60% and

a false positive rate of 40%. Notice that the accuracy in both cases is the average of

the true positive rate and the true negative rate (and the error rate is the average of the

false positive rate and the false negative rate). However, this is true only if the test set
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contains equal numbers of positives and negatives – in the general case we need to use

a weighted average, where the weights are the proportions of positives and negatives

in the test set.

Example 2.1 (Accuracy as a weighted average). Suppose a classifier’s predic-

tions on a test set are as in the following table:

Predicted ⊕ Predicted �
Actual ⊕ 60 15 75

Actual � 10 15 25

70 30 100

From this table, we see that the true positive rate is tpr = 60/75= 0.80 and the true

negative rate is tnr = 15/25 = 0.60. The overall accuracy is acc = (60+15)/100 =
0.75, which is no longer the average of true positive and negative rates. However,

taking into account the proportion of positives pos = 0.75 and the proportion of

negatives neg = 1−pos= 0.25, we see that

acc= pos · tpr+neg · tnr (2.3)

This equation holds in general: if the numbers of positives and negatives are

equal, we obtain the unweighted average from the earlier example (acc = (tpr+
tnr)/2).

Equation 2.3 has a neat intuition: good performance on either class contributes to

good classification accuracy, but the more prevalent class contributes more strongly. In

order to achieve good accuracy, a classifier should concentrate on the majority class,

particularly if the class distribution is highly unbalanced. However, it is often the case

that the majority class is also the least interesting class. To illustrate, suppose you issue

a query to an internet search engine,3 and suppose that for that particular query there

is only one relevant page in every 1 000 web pages. Now consider a ‘reluctant’ search

engine that doesn’t return any answers – i.e., it classifies every web page as irrelevant to

your query. Consequently, it will achieve 0% true positive rate and 100% true negative

rate. Because pos = 1/1000 = 0.1% and neg = 99.9%, the reluctant search engine’s ac-

curacy is very high (99.9%). Put differently, if we select a random web page uniformly

3An internet search engine can be seen as a binary classifier into the classes relevant and irrelevant, or

interesting and not interesting, if we fix the query – not very realistic in practice, but a useful analogy for our

purposes.
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Measure Definition Equal to Estimates

number of positives Pos=∑x∈Te I [c(x)=⊕]

number of negatives Neg =∑x∈Te I [c(x)=�] |Te|−Pos

number of true positives TP =∑x∈Te I [ĉ(x)= c(x)=⊕]

number of true negatives TN =∑x∈Te I [ĉ(x)= c(x)=�]

number of false positives FP =∑x∈Te I [ĉ(x)=⊕,c(x)=�] Neg−TN

number of false negatives FN =∑x∈Te I [ĉ(x)=�,c(x)=⊕] Pos−TP

proportion of positives pos= 1
|Te|
∑

x∈Te I [c(x)=⊕] Pos/|Te| P (c(x)=⊕)

proportion of negatives neg = 1
|Te|
∑

x∈Te I [c(x)=�] 1−pos P (c(x)=�)

class ratio clr = pos/neg Pos/Neg

(*) accuracy acc= 1
|Te|
∑

x∈Te I [ĉ(x)= c(x)] P (ĉ(x)= c(x))

(*) error rate err = 1
|Te|
∑

x∈Te I [ĉ(x) 
= c(x)] 1−acc P (ĉ(x) 
= c(x))

true positive rate, sensi-

tivity, recall

tpr =
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [c(x)=⊕] TP/Pos P (ĉ(x)=⊕|c(x)=⊕)

true negative rate, speci-

ficity, negative recall

tnr =
∑

x∈Te I [ĉ(x)=c(x)=�]∑
x∈Te I [c(x)=�] TN/Neg P (ĉ(x)=�|c(x)=�)

false positive rate, false

alarm rate

fpr =
∑

x∈Te I [ĉ(x)=⊕,c(x)=�]∑
x∈Te I [c(x)=�] FP/Neg = 1− tnr P (ĉ(x)=⊕|c(x)=�)

false negative rate fnr =
∑

x∈Te I [ĉ(x)=�,c(x)=⊕]∑
x∈Te I [c(x)=⊕] FN/Pos= 1− tpr P (ĉ(x)=�|c(x)=⊕)

precision, confidence prec=
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [ĉ(x)=⊕] TP/(TP+FP) P (c(x)=⊕|ĉ(x)=⊕)

Table 2.3. A summary of different quantities and evaluation measures for classifiers on a test set

Te. Symbols starting with a capital letter denote absolute frequencies (counts), while lower-case

symbols denote relative frequencies or ratios. All except those indicated with (*) are defined only

for binary classification. The right-most column specifies the instance space probabilities that

these relative frequencies are estimating.

over all web pages, the probability of selecting a positive is only 0.001, and these are

the only pages on which the reluctant engine makes an error. However, we are not nor-

mally selecting pages from the web uniformly, and hence accuracy is not a meaningful

quantity in this context. To be of any use at all, a search engine should achieve a much

better true positive rate, which usually comes at the expense of a worse true negative

rate (and hence a drop in accuracy).

We conclude from this example that, if the minority class is the class of interest and

very small, accuracy and performance on the majority class are not the right quanti-

ties to optimise. For this reason, an alternative to true negative rate called precision is

usually considered in such cases. Precision is a counterpart to true positive rate in the

following sense: while true positive rate is the proportion of predicted positives among

the actual positives, precision is the proportion of actual positives among the predicted

positives. In Example 2.1 the classifier’s precision on the test set is 60/70 = 85.7%. In
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Figure 2.2. (left) A coverage plot depicting the two contingency tables in Table 2.2. The plot is

square because the class distribution is uniform. (right) Coverage plot for Example 2.1, with a

class ratio clr = 3.

the reluctant search engine example we have not only 0 true positive rate (which in this

context is usually called recall) but also 0 precision, which clearly demonstrates the

problem with a search engine that doesn’t return any answers. Table 2.3 summarises

the evaluation measures introduced in this section.

Visualising classification performance

I will now introduce an important tool for visualising the performance of classifiers

and other models called a coverage plot. If you look at two-class contingency tables

such as the ones depicted in Table 2.2, you realise that, even though the table contains

nine numbers, only four of those can be chosen freely. For instance, once you’ve de-

termined the true/false positives/negatives, the marginals are fixed. Or if you know

the true positives, true negatives, total number of positives and size of the test set, you

can reconstruct all other numbers. Statisticians say that the table has four degrees of

freedom.4

Often we are particularly interested in the following four numbers that completely

determine the contingency table: the number of positives Pos, the number of negatives

Neg, the number of true positives TP and the number of false positives FP. A coverage

plot visualises these four numbers by means of a rectangular coordinate system and a

point. Imagine a rectangle with height Pos and width Neg. Imagine furthermore that

all positives live on the y-axis of this rectangle, and all negatives on the x-axis. We don’t

4More generally, a k-class contingency table has (k+1)2 entries and k2 degrees of freedom.
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Figure 2.3. (left) C1 and C3 both dominate C2, but neither dominates the other. The diagonal

line indicates that C1 and C3 achieve equal accuracy. (right) The same plot with normalised

axes. We can interpret this plot as a merger of the two coverage plots in Figure 2.2, employing

normalisation to deal with the different class distributions. The diagonal line now indicates that

C1 and C3 have the same average recall.

really care how positives and negatives are ordered on their respective axes, as long as

positive predictions come before negative predictions. This gives us enough information

to depict the whole contingency table as a single point within the rectangle (Figure 2.2).

Consider the two classifiers marked C1 and C2 in Figure 2.2 (left). One reason why

coverage plots are so useful is that we can immediately see that C1 is better than C2.

How do we know that? Well, C1 has both more true positives and fewer false positives

than C2, and so is better in both respects. Put differently, C1 achieves better perfor-

mance than C2 on both classes. If one classifier outperforms another classifier on all

classes, the first one is said to dominate the second.5 However, things are not always

that straightforward. Consider a third classifier C3, better than C1 on the positives but

worse on the negatives (Figure 2.3 (left)). Although both C1 and C3 dominate C2, nei-

ther of them dominates the other. Which one we prefer depends on whether we put

more emphasis on the positives or on the negatives.

We can make this a little bit more precise. Notice that the line segment connecting

C1 and C3 has a slope of 1. Imagine travelling up that line: whenever we gain a true

positive, we also lose a true negative (or gain a false positive, which is the same thing).

This doesn’t affect the sum of true positives and true negatives, and hence the accu-

racy is the same wherever we are on the line. It follows that C1 and C3 have the same

accuracy. In a coverage plot, classifiers with the same accuracy are connected by line

segments with slope 1. If true positives and true negatives are equally important, the

5This terminology comes from the field of multi-criterion optimisation. A dominated solution is one that

is not on the Pareto front.
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choice between C1 and C3 is arbitrary; if true positives are more important we should

choose C3, if true negatives are more important we prefer C1.

Now consider Figure 2.3 (right). What I have done here is renormalise the axes by

dividing the x-axis by Neg and the y-axis by Pos, resulting in a plot in the unit square

with true positive rate on the y-axis and false positive rate on the x-axis. In this case

the original coverage plot was already square (Pos=Neg), so the relative position of the

classifiers isn’t affected by the normalisation. However, since the normalised plot will

be square regardless of the shape of the original plot, normalisation is a way to com-

bine differently shaped coverage plots, and thus to combine results on test sets with

different class distributions. Suppose you would normalise Figure 2.2 (right): since C3’s

true and false positive rates are 80% and 40%, respectively (see Example 2.1 on p.56),

its position in a normalised plot is exactly the same as the one labelled C3 in Figure

2.3 (right)! In other words, classifiers occupying different points in different coverage

spaces (e.g., C3 in Figure 2.2 (right) and C3 in Figure 2.3 (left)) can end up in the same

point in a normalised plot.

What is the meaning of the diagonal line connecting C1 and C3 in Figure 2.3 (right)?

It can’t have the same meaning as in the coverage plot, because in a normalised plot we

know the true and false positive rates but not the class distribution, and so we cannot

calculate accuracy (refer back to Equation 2.3 on p.56 if you want to remind yourself

why). The line is defined by the equation tpr = fpr + y0, where y0 is the y-intercept

(the value of tpr where the line intersects the y-axis) . Now consider the average of the

true positive rate and the true negative rate, which we will call average recall, denoted

avg-rec.6 On a line with slope 1 we have avg-rec = (tpr+ tnr)/2 = (tpr+ 1− fpr)/2 =
(1+ y0)/2, which is a constant. In a normalised coverage plot, line segments with slope 1

connect classifiers with the same average recall. If recall on the positives and the nega-

tives are equally important, the choice between C1 and C3 is arbitrary; if positive recall

is more important we should choose C3, if negative recall is more important we prefer

C1.

In the literature, normalised coverage plots are referred to as ROC plots, and we

will follow that convention from now on.7 ROC plots are much more common than

coverage plots, but both have their specific uses. Broadly speaking, you should use

a coverage plot if you explicitly want to take the class distribution into account, for

instance when you are working with a single data set. An ROC plot is useful if you want

to combine results from different data sets with different class distributions. Clearly,

there are many connections between the two. Since an ROC plot is always square,

lines of constant average recall (so-called average recall isometrics) do not only have

6Remember that recall is just a different name for true positive rate; negative recall is then the same as

the true negative rate, and average recall is the average of positive recall (or true positive rate) and negative

recall (or true negative rate). It is sometimes called macro-averaged accuracy.
7ROC stands for receiver operating characteristic, a term originating from signal detection theory.
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Figure 2.4. (left) In a coverage plot, accuracy isometrics have a slope of 1, and average recall

isometrics are parallel to the ascending diagonal. (right) In the corresponding ROC plot, average

recall isometrics have a slope of 1; the accuracy isometric here has a slope of 3, corresponding to

the ratio of negatives to positives in the data set.

a slope of 1 but are parallel to the ascending diagonal. The latter property carries over

to coverage plots. To illustrate, in the coverage plot in Figure 2.4, C1 and C2 have the

same accuracy (they are connected by a line segment with slope 1), and C1 and C3 have

the same average recall (they are connected by a line segment parallel to the diagonal).

You can also argue that C2 has both higher accuracy and higher average recall than C3

(why?). In the corresponding ROC plot, the average recall isometric has a slope of 1,

and the accuracy isometric’s slope is Neg/Pos= 1/clr.

2.2 Scoring and ranking

Many classifiers compute scores on which their class predictions are based. For in-

stance, in the Prologue we saw how SpamAssassin calculates a weighted sum from the

rules that ‘fire’ for a particular e-mail. Such scores contain additional information that

can be beneficial in a number of ways, which is why we perceive scoring as a task in its

own right. Formally, a scoring classifier is a mapping ŝ : X → Rk , i.e., a mapping from

the instance space to a k-vector of real numbers. The boldface notation indicates that

a scoring classifier outputs a vector ŝ(x)= (ŝ1(x), . . . , ŝk (x)) rather than a single number;

ŝi (x) is the score assigned to class Ci for instance x. This score indicates how likely it

is that class label Ci applies. If we only have two classes, it usually suffices to consider

the score for only one of the classes; in that case, we use ŝ(x) to denote the score of the

positive class for instance x.

Figure 2.5 demonstrates how a feature tree can be turned into a scoring tree. In

order to obtain a score for each leaf, we first calculate the ratio of spam to ham, which

is 1/2 for the left leaf, 2 for the middle leaf and 4 for the right leaf. Because it is often

more convenient to work with an additive scale, we obtain scores by taking the loga-

rithm of the class ratio (the base of the logarithm is not really important; here we have
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Figure 2.5. (left) A feature tree with training set class distribution in the leaves. (right) A scoring

tree using the logarithm of the class ratio as scores; spam is taken as the positive class.

taken base-2 logarithms to get nice round numbers). Notice that the majority class de-

cision tree corresponds to thresholding ŝ(x) at 0: i.e., predict spam if ŝ(x)> 0 and ham

otherwise.

If we take the true class c(x) as +1 for positive examples and −1 for negative ex-

amples, then the quantity z(x) = c(x)ŝ(x) is positive for correct predictions and nega-

tive for incorrect predictions: this quantity is called the margin assigned by the scor-

ing classifier to the example.8 We would like to reward large positive margins, and

penalise large negative values. This is achieved by means of a so-called loss function

L : R �→ [0,∞) which maps each example’s margin z(x) to an associated loss L(z(x)). We

will assume that L(0)= 1, which is the loss incurred by having an example on the deci-

sion boundary. We furthermore have L(z)≥ 1 for z < 0, and usually also 0≤ L(z)< 1 for

z > 0 (Figure 2.6). The average loss over a test set Te is 1
|Te|
∑

x∈Te L(z(x)).

The simplest loss function is 0–1 loss, which is defined as L01(z) = 1 if z ≤ 0 and

L(z) = 0 if z > 0. The average 0–1 loss is simply the proportion of misclassified test

examples:

1

|Te|
∑

x∈Te
L01(z(x))= 1

|Te|
∑

x∈Te
I [c(x)ŝ(x)≤ 0]= 1

|Te|
∑

x∈Te
I [c(x) 
= ĉ(x)]= err

where ĉ(x) = +1 if ŝ(x) > 0, ĉ(x) = 0 if ŝ(x) = 0, and ĉ(x) = −1 if ŝ(x) < 0. (It is some-

times more convenient to define the loss of examples on the decision boundary as 1/2).

In other words, 0–1 loss ignores the magnitude of the margins of the examples, only

8Remember that in Chapter 1 we talked about the margin of a classifier as the distance between the deci-

sion boundary and the nearest example. Here we use margin in a slightly more general sense: each example

has a margin, not just the nearest one. This will be further explained in Section 7.3.
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Figure 2.6. Loss functions: from bottom-left (i) 0–1 loss L01(z) = 1 if z ≤ 0, and L01(z) = 0 if

z > 0; (ii) hinge loss Lh(z) = (1− z) if z ≤ 1, and Lh(z) = 0 if z > 1; (iii) logistic loss Llog(z) =
log2(1+exp(−z)); (iv) exponential loss Lexp(z)= exp(−z); (v) squared loss Lsq(z)= (1− z)2 (this

can be set to 0 for z > 1, just like hinge loss).

taking their sign into account. As a result, 0–1 loss doesn’t distinguish between scoring

classifiers, as long as their predictions agree. This means that it isn’t actually that use-

ful as a search heuristic or objective function when learning scoring classifiers. Figure

2.6 pictures several loss functions that are used in practice. Except for 0–1 loss, they

are all convex: linear interpolation between any two points on the curve will never re-

sult in a point below the curve. Optimising a convex function is computationally more

tractable.

One loss function that will be of interest later is the hinge loss, which is defined as

Lh(z)= (1−z) if z ≤ 1, and Lh(z)= 0 if z > 1. The name of this loss function comes from

the fact that the loss ‘hinges’ on whether an example’s margin is greater than 1 or not:

if so (i.e., the example is on the correct side of the decision boundary with a distance

of at least 1) the example incurs zero loss; if not, the loss increases with decreasing

margin. In effect, the loss function expresses that it is important to avoid examples

having a margin (much) less than 1, but no additional value is placed on achieving large

positive margins. This loss function is used when training a �support vector machine

(Section 7.3). We will also encounter exponential loss later when we discuss �boosting

in Section 11.2.

Assessing and visualising ranking performance

It should be kept in mind that scores are assigned by a classifier, and are not a prop-

erty inherent to instances. Scores are not estimated from ‘true scores’ – rather, a scor-

ing classifier has to be learned from examples in the form of instances x labelled with



64 2. Binary classification and related tasks

classes c(x), just as a classifier. (The task where we learn a function f̂ from examples

labelled with true function values (x, f (x)) is called �regression and is covered in Sec-

tion 3.2.) Often it is more convenient to keep the order imposed by scores on a set of

instances, but ignore their magnitudes – this has the advantage, for instance, of being

much less sensitive to outliers. It also means that we do not have to make any assump-

tions about the scale on which scores are expressed: in particular, a ranker does not

assume a particular score threshold for separating positives from negatives. A ranking

is defined as a total order on a set of instances, possibly with ties.9

Example 2.2 (Ranking example). The scoring tree in Figure 2.5 produces the

following ranking: [20+,5−][10+,5−][20+,40−]. Here, 20+ denotes a sequence

of 20 positive examples, and instances in square brackets [. . . ] are tied. By select-

ing a split point in the ranking we can turn the ranking into a classification. In

this case there are four possibilities: (A) setting the split point before the first seg-

ment, and thus assigning all segments to the negative class; (B) assigning the first

segment to the positive class, and the other two to the negative class; (C) assign-

ing the first two segments to the positive class; and (D) assigning all segments to

the positive class. In terms of actual scores, this corresponds to (A) choosing any

score larger than 2 as the threshold; (B) choosing a threshold between 1 and 2;

(C) setting the threshold between −1 and 1; and (D) setting it lower than −1.

Suppose x and x ′ are two instances such that x receives a lower score: ŝ(x)< ŝ(x ′).

Since higher scores express a stronger belief that the instance in question is positive,

this would be fine except in one case: if x is an actual positive and x ′ is an actual neg-

ative. We will call this a ranking error. The total number of ranking errors can then be

expressed as
∑

x∈Te⊕,x′∈Te� I [ŝ(x) < ŝ(x ′)]. Furthermore, for every positive and negative

that receive the same score – a tie – we count half a ranking error. The maximum num-

ber of ranking errors is equal to |Te⊕| · |Te�| = Pos ·Neg, and so the ranking error rate is

defined as

rank-err =
∑

x∈Te⊕,x′∈Te� I [ŝ(x)< ŝ(x ′)]+ 1
2 I [ŝ(x)= ŝ(x ′)]

Pos ·Neg
(2.4)

and analogously the ranking accuracy

rank-acc=
∑

x∈Te⊕,x′∈Te� I [ŝ(x)> ŝ(x ′)]+ 1
2 I [ŝ(x)= ŝ(x ′)]

Pos ·Neg
= 1− rank-err (2.5)

9A total order with ties should not be confused with a partial order (see Background 2.1 on p.51). In a total

order with ties (which is really a total order on equivalence classes), any two elements are comparable, either

in one direction or in both. In a partial order some elements are incomparable.
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Ranking accuracy can be seen as an estimate of the probability that an arbitrary positive–

negative pair is ranked correctly.

Example 2.3 (Ranking accuracy). We continue the previous example consider-

ing the scoring tree in Figure 2.5, with the left leaf covering 20 spam and 40 ham,

the middle leaf 10 spam and 5 ham, and the right leaf 20 spam and 5 ham. The

5 negatives in the right leaf are scored higher than the 10 positives in the middle

leaf and the 20 positives in the left leaf, resulting in 50+100= 150 ranking errors.

The 5 negatives in the middle leaf are scored higher than the 20 positives in the

left leaf, giving a further 100 ranking errors. In addition, the left leaf makes 800

half ranking errors (because 20 positives and 40 negatives get the same score), the

middle leaf 50 and the right leaf 100. In total we have 725 ranking errors out of a

possible 50 ·50= 2500, corresponding to a ranking error rate of 29% or a ranking

accuracy of 71%.

The coverage plots and ROC plots introduced in the previous section for visualising

classifier performance provide an excellent tool for visualising ranking performance

too. If Pos positives and Neg negatives are plotted on the vertical and horizontal axes,

respectively, then each positive–negative pair occupies a unique ‘cell’ in this plot. If we

order the positives and negatives on decreasing score, i.e., examples with higher scores

are closer to the origin, then we can clearly distinguish the correctly ranked pairs at

the bottom right, the ranking errors at the top left, and the ties in between (Figure 2.7).

The number of cells in each area gives us the number of correctly ranked pairs, ranking

errors and ties, respectively. The diagonal lines cut the ties area in half, so the area

below those lines corresponds to the ranking accuracy multiplied by Pos ·Neg, and the

area above corresponds to the ranking error rate times that same factor.

Concentrating on those diagonal lines gives us the piecewise linear curve shown in

Figure 2.7 (right). This curve, which we will call a coverage curve, can be understood

as follows. Each of the points marked A, B, C and D specifies the classification per-

formance, in terms of true and false positives, achieved by the corresponding ranking

split points or score thresholds from Example 2.2. To illustrate, C would be obtained by

a score threshold of 0, leading to TP2= 20+10= 30 true positives and FP2= 5+5= 10

false positives. Similarly, B would be obtained by a higher threshold of 1.5, leading to

TP1 = 20 true positives and FP1 = 5 false positives. Point A would result if we set the

threshold unattainably high, and D if we set the threshold trivially low.

Why are these points connected by straight lines? How can we interpolate between,

say, points C and D? Suppose we set the threshold exactly at −1, which is the score
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Figure 2.7. (left) Each cell in the grid denotes a unique pair of one positive and one negative

example: the green cells indicate pairs that are correctly ranked by the classifier, the red cells

represent ranking errors, and the orange cells are half-errors due to ties. (right) The coverage

curve of a tree-based scoring classifier has one line segment for each leaf of the tree, and one

(FP,TP) pair for each possible threshold on the score.

assigned by the left leaf of the tree. The question is now what class we predict for the

20 positives and 40 negatives that filter down to that leaf. It would seem reasonable to

decide this by tossing a fair coin, leading to half of the positives receiving a positive pre-

diction (on average) and half of them a negative one, and similar for the negatives. The

total number of true positives is then 30+20/2= 40, and the number of false positives

is 10+40/2= 30. In other words, we land exactly in the middle of the CD line segment.

We can apply the same procedure to achieve performance half-way BC, by setting the

threshold at 1 and tossing the same fair coin to obtain uniformly distributed predic-

tions for the 10 positives and 5 negatives in the middle leaf, leading to 20+10/2 = 25

true positives and 5+ 5/2 = 7.5 false positives (of course, we cannot achieve a non-

integer number of false positives in any trial, but this number represents the expected

number of false positives over many trials). And what’s more, by biasing the coin to-

wards positive or negative predictions we can achieve expected performance anywhere

on the line.

More generally, a coverage curve is a piecewise linear curve that rises monotoni-

cally from (0,0) to (Neg,Pos) – i.e., TP and FP can never decrease if we decrease the

decision threshold. Each segment of the curve corresponds to an equivalence class of

the instance space partition induced by the model in question (e.g., the leaves of a fea-

ture tree). Notice that the number of segments is never more than the number of test

instances. Furthermore, the slope of each segment is equal to the ratio of positive to

negative test instances in that equivalence class. For instance, in our example the first

segment has a slope of 4, the second segment slope 2, and the third segment slope 1/2
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Figure 2.8. (left) A coverage curve obtained from a test set with class ratio clr = 1/2. (right) The

corresponding ROC curve is the same as the one corresponding to the coverage curve in Figure

2.7 (right).

— exactly the scores assigned in each leaf of the tree! This is not true in general, since

the coverage curve depends solely on the ranking induced by the scores, not on the

scores themselves. However, it is not a coincidence either, as we shall see in the next

section on class probability estimation.

An ROC curve is obtained from a coverage curve by normalising the axes to [0,1].

This doesn’t make much of a difference in our running example, but in general cover-

age curves can be rectangular whereas ROC curves always occupy the unit square. One

effect this has is that slopes are multiplied by Neg/Pos= 1/clr. Furthermore, while in a

coverage plot the area under the coverage curve gives the absolute number of correctly

ranked pairs, in an ROC plot the area under the ROC curve is the ranking accuracy as

defined in Equation 2.5 on p.64. For that reason people usually write AUC for ‘Area

Under (ROC) Curve’, a convention I will follow.

Example 2.4 (Class imbalance). Suppose we feed the scoring tree in Figure 2.5

on p.62 an extended test set, with an additional batch of 50 negatives. The added

negatives happen to be identical to the original ones, so the net effect is that the

number of negatives in each leaf doubles. As a result the coverage curve changes

(because the class ratio changes), but the ROC curve stays the same (Figure 2.8).

Note that the AUC stays the same as well: while the classifier makes twice as

many ranking errors, there are also twice as many positive–negative pairs, so the

ranking error rate doesn’t change.

Let us now consider an example of a coverage curve for a grading classifier. Figure

2.9 (left) shows a linear classifier (the decision boundary is denoted B) applied to a
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Figure 2.9. (left) A linear classifier induces a ranking by taking the signed distance to the decision

boundary as the score. This ranking only depends on the orientation of the decision boundary:

the three lines result in exactly the same ranking. (right) The grid of correctly ranked positive–

negative pairs (in green) and ranking errors (in red).

small data set of five positive and five negative examples, achieving an accuracy of 0.80.

We can derive a score from this linear classifier by taking the distance of an example

from the decision boundary; if the example is on the negative side we take the negative

distance. This means that the examples are ranked in the following order: p1 – p2 – p3

– n1 – p4 – n2 – n3 – p5 – n4 – n5. This ranking incurs four ranking errors: n1 before p4,

and n1, n2 and n3 before p5. Figure 2.9 (right) visualises these four ranking errors in

the top-left corner. The AUC of this ranking is 21/25= 0.84.

From this grid we obtain the coverage curve in Figure 2.10. Because of its stepwise

character, this curve looks quite different from the coverage curves for scoring trees

that we saw earlier in this section. The main reason is the absence of ties, which means

that all segments in the curve are horizontal or vertical, and that there are as many

segments as examples. We can generate this stepwise curve from the ranking as fol-

lows: starting in the lower left-hand corner, we go up one step if the next example in

the ranking is positive, and right one step if the next example is negative. The result is

a curve that goes three steps up (for p1–3), one step to the right (for n1), one step up

(p4), two steps to the right (n2–3), one step up (p5), and finally two steps to the right

(n4–5).

We can actually use the same procedure for grouping models if we handle ties as

follows: in case of a tie between p positive examples and n negative examples, we go

p steps up and at the same time n steps to the right. Looking back at Figure 2.7 on

p.66, you will see that this is exactly what happens in the diagonal segments spanning

the orange rectangles which arise as a result of the ties in the leaves of the decision

tree. Thus, the principles underlying coverage and ROC curves are the same for both
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grouping and grading models, but the curves themselves look quite different in each

case. Grouping model ROC curves have as many line segments as there are instance

space segments in the model; grading models have one line segment for each example

in the data set. This is a concrete manifestation of something I mentioned in the Pro-

logue: grading models have a much higher ‘resolution’ than grouping models; this is

also called the model’s refinement.

Notice the three points in Figure 2.10 labelled A, B and C. These points indicate the

performance achieved by the decision boundaries with the same label in Figure 2.9. As

an illustration, the middle boundary B misclassifies one out of five positives (tpr = 0.80)

and one out of five negatives (fpr = 0.80). Boundary A doesn’t misclassify any negatives,

and boundary C correctly classifies all positives. In fact, while they should all have

the same orientation, their exact location is not important, as long as boundary A is

between p3 and n1, boundary B is between p4 and n2, and boundary C is between

p5 and n4. There are good reasons why I chose exactly these three boundaries, as we

shall see shortly. For the moment, observe what happens if we use all three boundaries

to turn the linear model into a grouping model with four segments: the area above A,

the region between A and B, the bit between B and C, and the rest below C. The result

is that we no longer distinguish between n1 and p4, nor between n2–3 and p5. The

ties just introduced change the coverage curve to the dotted segments in Figure 2.10.

Notice that this results in a larger AUC of 0.90. Thus, by decreasing a model’s refinement

we sometimes achieve better ranking performance. Training a model is not just about

amplifying significant distinctions, but also about diminishing the effect of misleading

distinctions.

Turning rankers into classifiers

I mentioned previously that the main difference between rankers and scoring classi-

fiers is that a ranker only assumes that a higher score means stronger evidence for the

positive class, but otherwise makes no assumptions about the scale on which scores

are expressed, or what would be a good score threshold to separate positives from neg-

atives. We will now consider the question how to obtain such a threshold from a cov-

erage curve or ROC curve.

The key concept is that of the accuracy isometric. Recall that in a coverage plot

points of equal accuracy are connected by lines with slope 1. All we need to do, there-

fore, is to draw a line with slope 1 through the top-left point (which is sometimes called

ROC heaven) and slide it down until we touch the coverage curve in one or more points.

Each of those points achieves the highest accuracy possible with that model. In Figure

2.10 this method would identify points A and B as the points with highest accuracy

(0.80). They achieve this in different ways: e.g., model A is more conservative on the

positives.
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Figure 2.10. The coverage curve of the linear classifier in Figure 2.9. The points labelled A, B

and C indicate the classification performance of the corresponding decision boundaries. The

dotted lines indicate the improvement that can be obtained by turning the grading classifier

into a grouping classifier with four segments.

A similar procedure can be followed with ROC plots, as long as you keep in mind

that all slopes have to be multiplied by the reciprocal of the class ratio, 1/clr =Neg/Pos.

Example 2.5 (Tuning your spam filter). You have carefully trained your

Bayesian spam filter, and all that remains is setting the decision threshold.

You select a set of six spam and four ham e-mails and collect the scores assigned

by the spam filter. Sorted on decreasing score these are 0.89 (spam), 0.80 (spam),

0.74 (ham), 0.71 (spam), 0.63 (spam), 0.49 (ham), 0.42 (spam), 0.32 (spam), 0.24

(ham), and 0.13 (ham). If the class ratio of 3 spam against 2 ham is represen-

tative, you can select the optimal point on the ROC curve using an isometric

with slope 2/3. As can be seen in Figure 2.11, this leads to putting the decision

boundary between the sixth spam e-mail and the third ham e-mail, and we can

take the average of their scores as the decision threshold (0.28).

An alternative way of finding the optimal point is to iterate over all possible

split points – from before the top ranked e-mail to after the bottom one – and

calculate the number of correctly classified examples at each split: 4 – 5 – 6 – 5 –

6 – 7 – 6 – 7 – 8 – 7 – 6. The maximum is achieved at the same split point, yielding

an accuracy of 0.80. A useful trick to find out which accuracy an isometric in an

ROC plot represents is to intersect the isometric with the descending diagonal.
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Figure 2.11. Selecting the optimal point on an ROC curve. The top dotted line is the accuracy

isometric, with a slope of 2/3. The lower isometric doubles the value (or prevalence) of negatives,

and allows a choice of thresholds. By intersecting the isometrics with the descending diagonal

we can read off the achieved accuracy on the y-axis.

Since accuracy is a weighted average of the true positive and true negative rates,

and since these are the same in a point on the descending diagonal, we can read

off the corresponding accuracy value on the y-axis.

If the class distribution in the data is not representative, we can simply adjust the

slope of the isometric. For example, if ham is in fact twice as prevalent, we use an

isometric with slope 4/3. In the previous example this leads to three optimal points

on the ROC curve.10 Even if the class ratio in the data is representative, we may have

other reasons to assign different weights to the classes. To illustrate, in the spam e-mail

situation our spam filter may discard the false positives (ham e-mails misclassified as

spam) so we may want to drive the false positive rate down by assigning a higher weight

to the negatives (ham). This is often expressed as a cost ratio c = cFN/cFP of the cost of

false negatives in proportion to the cost of false positives, which in this case would

be set to a value smaller than 1. The relevant isometrics then have a slope of 1/c in a

coverage plot, and 1/(c · clr) in an ROC plot. The combination of cost ratio and class

ratio gives a precise context in which the classifier is deployed and is referred to as the

10It seems reasonable to choose the middle of these three points, leading to a threshold of 0.56. An alter-

native is to treat all e-mails receiving a score in the interval [0.28,0.77] as lying on the decision boundary, and

to randomly assign a class to those e-mails.



72 2. Binary classification and related tasks

operating condition.

If the class or cost ratio is highly skewed, this procedure may result in a classifier

that assigns the same class to all examples. For instance, if negatives are 1 000 times

more prevalent than positives, accuracy isometrics are nearly vertical, leading to an

unattainably high decision threshold and a classifier that classifies everything as neg-

ative. Conversely, if the profit of one true positive is 1 000 times the cost of a false

positive, we would classify everything as positive – in fact, this is the very principle

underlying spam e-mail! However, often such one-size-fits-all behaviour is unaccept-

able, indicating that accuracy is not the right thing to optimise here. In such cases we

should use average recall isometrics instead. These run parallel to the ascending diag-

onal in both coverage and ROC plots, and help to achieve similar performance on both

classes.

The procedure just described learns a decision threshold from labelled data by

means of the ROC curve and the appropriate accuracy isometric. This procedure is

often preferable over fixing a decision threshold in advance, particularly if scores are

expressed on an arbitrary scale – for instance, this would provide a way to finetune the

SpamAssassin decision threshold to our particular situation and preferences. Even if

the scores are probabilities, as in the next section, these may not be sufficiently well

estimated to warrant a fixed threshold of 0.5.

2.3 Class probability estimation

A class probability estimator – or probability estimator in short – is a scoring classifier

that outputs probability vectors over classes, i.e., a mapping p̂ : X → [0,1]k . We write

p̂(x)= (p̂1(x), . . . , p̂k (x)
)
, where p̂i (x) is the probability assigned to class Ci for instance

x, and
∑k

i=1 p̂i (x)= 1. If we have only two classes, the probability associated with one

class is 1 minus the probability of the other class; in that case, we use p̂(x) to denote

the estimated probability of the positive class for instance x. As with scoring classifiers,

we usually do not have direct access to the true probabilities pi (x).

One way to understand the probabilities p̂i (x) is as estimates of the probability

PC (c(x ′) = Ci |x ′ ∼ x), where x ′ ∼ x stands for ‘x ′ is similar to x’. In other words, how

frequent are instances of this class among instances similar to x? The intuition is that

the more (or less) frequent they are, the more (or less) confident we should be in our

belief that x belongs to that class as well. What we mean with similarity in this context

will depend on the models we are considering – we will illustrate it here by means of a

few two-class examples. First, assume a situation in which any two instances are sim-

ilar to each other. We then have PC (c(x ′) = ⊕|x ′ ∼ x) = PC (c(x ′) = ⊕) which is simply

estimated by the proportion pos of positives in our data set (I am going to drop the sub-

script C from now on). In other words, in this scenario we predict p̂(x)= pos regardless
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Figure 2.12. A probability estimation tree derived from the feature tree in Figure 1.4.

of whether we know anything about x’s true class. At the other extreme, consider a situ-

ation in which no two instances are similar unless they are the same, i.e., x ′ ∼ x if x ′ = x,

and x ′ 
∼ x otherwise. In this case we have P (c(x ′) = ⊕|x ′ ∼ x) = P (c(x) = ⊕), which –

because x is fixed – is 1 if c(x)=⊕ and 0 otherwise. Put differently, we predict p̂(x)= 1

for all known positives and p̂(x)= 0 for all known negatives, but we can’t generalise this

to unseen instances.

A feature tree allows us to strike a balance between these extreme and simplistic

scenarios, using the similarity relation∼T associated with feature tree T : x ′ ∼T x if, and

only if, x and x ′ are assigned to the same leaf of the tree. In each leaf we then predict

the proportion of positives assigned to that leaf. For example, in the right-most leaf

in Figure 1.4 on p.32 the proportion of positives is 40/50 = 0.80, and thus we predict

p̂(x) = 0.80 for all instances x assigned to that leaf; similarly for the other two leaves

(Figure 2.12). If we threshold p̂(x) at 0.5 (i.e., predict spam if the spam probability

is 0.5 or more and predict ham otherwise), we get the same classifier as obtained by

predicting the majority class in each leaf of the feature tree.

Assessing class probability estimates

As with classifiers, we can now ask the question of how good these class probability

estimators are. A slight complication here is that, as already remarked, we do not have

access to the true probabilities. One trick that is often applied is to define a binary

vector (I [c(x)=C1], . . . , I [c(x)=Ck ]), which has the i -th bit set to 1 if x’s true class is Ci

and all other bits set to 0, and use these as the ‘true’ probabilities. We can then define

the squared error (SE) of the predicted probability vector p̂(x)= (p̂1(x), . . . , p̂k (x)
)

as

SE(x)= 1

2

k∑
i=1

(p̂i (x)− I [c(x)=Ci ])2 (2.6)
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and the mean squared error (MSE) as the average squared error over all instances in

the test set:

MSE(Te)= 1

|Te|
∑

x∈Te
SE(x) (2.7)

This definition of error in probability estimates is often used in forecasting theory where

it is called the Brier score. The factor 1/2 in Equation 2.6 ensures that the squared er-

ror per example is normalised between 0 and 1: the worst possible situation is that the

wrong class is predicted with probability 1, which means two ‘bits’ are wrong. For two

classes this reduces to a single term (p̂(x)− I [c(x) = ⊕])2 only referring to the positive

class. Notice that, if a class probability estimator is ‘categorical’ – i.e., it assigns proba-

bility 1 to one class and probability 0 to the rest – it is effectively a classifier, and MSE

reduces to accuracy as defined in Section 2.1.

Example 2.6 (Squared error). Suppose one model predicts (0.70,0.10,0.20) for

a particular example x in a three-class task, while another appears much more

certain by predicting (0.99,0,0.01). If the first class is the actual class, the second

prediction is clearly better than the first: the SE of the first prediction is ((0.70−
1)2+(0.10−0)2+(0.20−0)2)/2= 0.07, while for the second prediction it is ((0.99−
1)2+(0−0)2+(0.01−0)2)/2= 0.0001. The first model gets punished more because,

although mostly right, it isn’t quite sure of it.

However, if the third class is the actual class, the situation is reversed: now

the SE of the first prediction is ((0.70−0)2+ (0.10−0)2+ (0.20−1)2)/2= 0.57, and

of the second ((0.99−0)2+ (0−0)2+ (0.01−1)2)/2= 0.98. The second model gets

punished more for not just being wrong, but being presumptuous.

Returning to the probability estimation tree in Figure 2.12, we calculate the squared

error per leaf as follows (left to right):

SE1 = 20(0.33−1)2+40(0.33−0)2 = 13.33

SE2 = 10(0.67−1)2+5(0.67−0)2 = 3.33

SE3 = 20(0.80−1)2+5(0.80−0)2 = 4.00

which leads to a mean squared error of MSE= 1
100 (SE1+SE2+SE3)= 0.21. An interesting

question is whether we can change the predicted probabilities in each leaf to obtain a

lower mean squared error. It turns out that this is not possible: predicting probabilities

obtained from the class distributions in each leaf is optimal in the sense of lowest MSE.
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For instance, changing the predicted probabilities in the left-most leaf to 0.40 for spam

and 0.60 for ham, or 0.20 for spam and 0.80 for ham, results in a higher squared error:

SE′1 = 20(0.40−1)2+40(0.40−0)2 = 13.6

SE′′1 = 20(0.20−1)2+40(0.20−0)2 = 14.4

The reason for this becomes obvious if we rewrite the expression for two-class

squared error of a leaf as follows, using the notation n⊕ and n� for the numbers of

positive and negative examples in the leaf:

n⊕(p̂−1)2+n�p̂2 = (n⊕+n�)p̂2−2n⊕p̂+n⊕ = (n⊕+n�)
[
p̂2−2ṗ p̂+ ṗ

]
= (n⊕+n�)

[
(p̂− ṗ)2+ ṗ(1− ṗ)

]
where ṗ = n⊕/(n⊕+n�) is the relative frequency of the positive class among the exam-

ples covered by the leaf, also called the empirical probability. As the term ṗ(1− ṗ) does

not depend on the predicted probability p̂, we see immediately that we achieve lowest

squared error in the leaf if we assign p̂ = ṗ.

Empirical probabilities are important as they allow us to obtain or finetune proba-

bility estimates from classifiers or rankers. If we have a set S of labelled examples, and

the number of examples in S of class Ci is denoted ni , then the empirical probability

vector associated with S is ṗ(S) = (n1/|S|, . . . ,nk /|S|). In practice, it is almost always a

good idea to smooth these relative frequencies to avoid issues with extreme values (0

or 1). The most common way to do this is to set

ṗi (S)= ni +1

|S|+k
(2.8)

This is called the Laplace correction, after the French mathematician Pierre-Simon

Laplace, who introduced it for the case k = 2 (also known as Laplace’s rule of suc-

cession). In effect, we are adding uniformly distributed pseudo-counts to each of the

k alternatives, reflecting our prior belief that the empirical probabilities will turn out

uniform.11 We can also apply non-uniform smoothing by setting

ṗi (S)= ni +m ·πi

|S|+m
(2.9)

This smoothing technique, known as the m-estimate, allows the choice of the number

of pseudo-counts m as well as the prior probabilities πi . The Laplace correction is a

special case of the m-estimate with m = k and πi = 1/k.

If all elements of S receive the same predicted probability vector p̂(S) – which hap-

pens if S is a segment of a grouping model – then a similar derivation to the one above

11This can be modelled mathematically by a prior probability distribution known as a Dirichlet prior.
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allows us to write the total incurred squared error over S in terms of estimated and

empirical probabilities as

SE(S)=∑
x∈S

SE(x)=∑
x∈S

1

2

k∑
i=1

(p̂i (x)− I [c(x)=Ci ])2

= 1

2
|S|

k∑
i=1

(p̂i (S)− ṗi (S))2+ 1

2
|S|

k∑
i=1

(ṗi (S)(1− ṗi (S))

The first term of the final expression is called the calibration loss, and measures squared

error with respect to the empirical probabilities. It can be reduced to 0 in grouping

models where we are free to choose the predicted probabilities for each segment, as

in probability estimation trees. Models with low calibration loss are said to be well-

calibrated. The second term is called the refinement loss; this depends only on the

empirical probabilities, and is smaller if they are less uniform.

This analysis suggests that the best way of obtaining probability estimates is from

empirical probabilities, obtained from the training set or from another set of labelled

examples specifically set aside for the purpose. However, there are two issues we need

to consider here. The first is that with some models we must make sure that the pre-

dicted probabilities obey the ranking imposed by the model. The second is that with

grading models we don’t have immediate access to empirical probabilities, since each

example tends to get assigned an equivalence class of its own. We will now discuss this

in a bit more detail.

Turning rankers into class probability estimators

Consider again Example 2.5 on p.70, and imagine the scores are not probabilities but

on some unknown scale, so that the spam filter is a ranker rather than a class proba-

bility estimator. Since each test example receives a different score, the ‘empirical prob-

abilities’ are either 0 (for negative examples) or 1 (for positive examples), leading to a

sequence of ṗ-values of 1 – 1 – 0 – 1 – 1 – 0 – 1 – 1 – 0 – 0 in order of decreasing scores. The

obvious problem is that these ṗ-values do not obey the order imposed by the scores,

and so cannot be used directly to obtain probability estimates. Smoothing the empiri-

cal probabilities using Laplace correction doesn’t really address this problem, since all

it does is replace 0 with 1/3 and 1 with 2/3. We need a different idea.

Looking at Figure 2.11, we see that ṗ = 1 corresponds to a vertical segment of the

ROC curve, and ṗ = 0 to a horizontal segment. The problem we have is caused by

having a vertical segment following a horizontal one, or, more generally, a segment

with steeper slope following a flatter segment. We will call a sequence of segments

with increasing slope a concavity, as it forms a ‘dent’ in the ROC curve. A curve without

concavities is a convex ROC curve. Our curve has two concavities: one formed by the

third, fourth and fifth example, and the other by the sixth, seventh and eighth example.
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Figure 2.13. (left) The solid red line is the convex hull of the dotted ROC curve. (right) The cor-

responding calibration map in red: the plateaus correspond to several examples being mapped

to the same segment of the convex hull, and linear interpolation between example scores occurs

when we transition from one convex hull segment to the next. A Laplace-corrected calibration

map is indicated by the dashed line in blue: Laplace smoothing compresses the range of cali-

brated probabilities but can sometimes affect the ranking.

Suppose now that the third to the fifth example all receive the same score, say 0.7; and

the sixth to the eight example are also tied, say at 0.4. In that case the ROC curve would

have six segments, with empirical probabilities 1 – 1 – 2/3 – 2/3 – 0 – 0. As we see,

the ṗ-values are now decreasing with the scores; in other words, the concavities have

disappeared and the ROC curve has become convex.

More generally speaking, concavities in ROC curves can be remedied by combining

segments through tied scores. This is achieved by identifying what are sometimes called

adjacent violators. For instance, in the sequence 1 – 1 – 0 – 1 – 1 – 0 – 1 – 1 – 0 – 0,

the third and fourth example are adjacent violators, because they violate the rule that

scores should be decreasing from left to right in the sequence (or, mathematically more

accurate, they should be non-increasing). This is remedied by assigning them both

their average score, leading to the sequence 1 – 1 – [1/2 – 1/2] – 1 – 0 – 1 – 1 – 0 – 0.

The newly introduced segment now forms an adjacent violator pair with the fourth

example, so we give them all their mean score, leading to the sequence 1 – 1 – [2/3 –

2/3 – 2/3] – 0 – 1 – 1 – 0 – 0.12 The second 0 – 1 – 1 concavity is treated identically, and

the final sequence is 1 – 1 – [2/3 – 2/3 – 2/3] – [2/3 – 2/3 – 2/3] – 0 – 0.

The result is illustrated in Figure 2.13. On the left, we see how the two concavi-

ties are replaced with two diagonal line segments with the same slope. These diagonal

segments coincide with the accuracy isometric that gives the three ‘outermost’ points

12These two steps can be combined into one: once a pair of adjacent violators is found, we can scan to the

left and right to include examples with the same score as the left and right example in the pair, respectively.
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involved in the concavities the same accuracy (Figure 2.11 on p.71). Jointly, the red seg-

ments constitute the convex hull of the ROC curve, which is the unique convex curve

through the outermost points of the original ROC curve. The convex hull has a higher

AUC than the original curve, because it replaces (some of) the ranking errors of the

original curve with half-errors due to ties. In our example the original ranking incurs

6 out of 24 ranking errors (AUC = 0.75), while the convex hull turns all of these into

half-errors (AUC= 0.83).

Once we have determined the convex hull, we can use the empirical probabilities

in each segment of the convex hull as calibrated probabilities. Figure 2.13 (right) shows

the resulting calibration map, which is a piecewise linear, non-decreasing curve map-

ping original scores on the x-axis to calibrated probabilities on the y-axis. Also shown

is an alternative calibration map giving probability estimates after Laplace correction:

for the given sequence these are 2/3 – 2/3 – [3/5 – 3/5 – 3/5] – [3/5 – 3/5 – 3/5] – 1/3 –

1/3, giving rise to a much compressed range of probability estimates.

Let’s now look at this process from the point of view of mean squared error, calibra-

tion and refinement. The original scores had a mean squared error of 1
10 [(0.89−1)2+

(0.80−1)2+(0.74−0)2+(0.71−1)2+(0.63−1)2+(0.49−0)2+(0.42−1)2+(0.32−1)2+(0.24−
0)2+ (0.13−0)2] = 0.19. Notice that this is entirely incurred by the calibration loss, as

all empirical probabilities are either 0 or 1 and thus the refinement loss is zero. The

calibrated scores have a mean squared error of 1
10 [(1−1)2+(1−1)2+(0.67−0)2+(0.67−

1)2+(0.67−1)2+(0.67−0)2+(0.67−1)2+(0.67−1)2+(0−0)2+(0−0)2]= 0.13. Now the

entire mean squared error is incurred by refinement loss as the estimated probabilities

are equal to the empirical ones in each segment by construction. We have traded an in-

crease in refinement loss for a decrease in calibration loss; since the latter is larger than

the former, the overall error decreases. The increase in refinement loss comes from the

construction of the convex hull, which introduces diagonal segments. The technical

term for this process of obtaining calibrated scores through the convex hull of the ROC

curve is isotonic calibration, as the mathematical problem underlying it is called iso-

tonic regression. Some caution is in order when applying isotonic calibration, as it is

easy to overfit the data in this process. In the calibration map in Figure 2.13 (right),

both the horizontal transition points and the vertical levels are directly obtained from

the given data, and may not generalise well to unseen data. This is why it is advisable to

apply the Laplace correction to the empirical probabilities, even though it will increase

the calibration loss on the given data.
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2.4 Binary classification and related tasks: Summary and fur-

ther reading

In this chapter we have looked at binary classification, a ubiquitous task that forms the

starting point of a lot of work in machine learning. Although we haven’t talked much

about learning in this chapter, my philosophy is that you will reach a better under-

standing of machine learning models and algorithms if you first study the tasks that

these models are meant to address.

� In Section 2.1 we defined the binary classification task and introduced an impor-

tant tool to assess performance at such a task, namely the two-by-two contin-

gency table. A wide range of performance indicators are derived from the counts

in a contingency table. I introduced the coverage plot, which visualises a con-

tingency table as a rectangle with size Pos up and size Neg across, and within

that rectangle a point with y-coordinate TP and x-coordinate FP. We can visu-

alise several models evaluated on the same data set by several points, and use

the fact that accuracy is constant along line segments with slope 1 to visually

rank these classifiers on accuracy. Alternatively, we can normalise the rectangle

to be a unit square with true and false positive rate on the axes. In this so-called

ROC space, line segments with slope 1 (i.e., those parallel to the ascending diag-

onal) connect points with the same average recall (sometimes also called macro-

accuracy). The use of these kinds of plot in machine learning was pioneered by

Provost and Fawcett (2001). Unnormalised coverage plots were introduced by

Fürnkranz and Flach (2003).

� Section 2.2 considered the more general task of calculating a score for each ex-

ample (or a vector of scores in the general case of more than two classes). While

the scale on which scores are expressed is unspecified, it is customary to put the

decision threshold at ŝ(x) = 0 and let the sign of the score stand for the predic-

tion (positive or negative). Multiplying the score with the true class gives us the

margin, which is positive for a correct prediction and negative for an incorrect

one. A loss function determines how much negative margins are penalised and

positive margins rewarded. The advantage of working with convex and continu-

ously differentiable ‘surrogate’ loss functions (rather than with 0–1 loss, which is

the loss function we ultimately want to optimise) is that this often leads to more

tractable optimisation problems.

� Alternatively, we can ignore the scale on which scores are measured altogether

and only work with their order. Such a ranker is visualised in coverage or ROC

space by a piecewise continuous curve. For grouping models the line segments

in these curves correspond to instance space segments (e.g., the leaves of a tree
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model) whereas for grading models there is a segment for each unique score as-

signed by the model. The area under the ROC curve gives the ranking accuracy

(an estimate of the probability that a random positive is ranked before a ran-

dom negative) and is known in statistics as the Wilcoxon-Mann-Whitney statis-

tic These curves can be used to find a suitable operating point by translating

the operating condition (class and cost distribution) into an isometric in ROC or

coverage space. The origins of ROC curves are in signal detection theory (Egan,

1975); accessible introductions can be found in (Fawcett, 2006; Flach, 2010b).

� In Section 2.3 we looked at scoring models whose scores can be interpreted as

estimates of the probability that the instance belongs to a particular class. Such

models were pioneered in forecasting theory by Brier (1950) and Murphy and

Winkler (1984), among others. We can assess the quality of class probability es-

timates by comparing them to the ‘ideal’ probabilities (1 for a positive, 0 for a

negative) and taking mean squared error. Since there is no reason why the true

probabilities should be categorical this is quite a crude assessment, and decom-

posing it into calibration loss and refinement loss provides useful additional in-

formation. We have also seen a very useful trick for smoothing relative frequency

estimates of probabilities by adding pseudo-counts, either uniformly distributed

(Laplace correction) or according to a chosen prior (m-estimate). Finally, we

have seen how we can use the ROC convex hull to obtain calibrated class prob-

ability estimates. The approach has its roots in isotonic regression (Best and

Chakravarti, 1990) and was introduced to the machine learning community by

Zadrozny and Elkan (2002). Fawcett and Niculescu-Mizil (2007) and Flach and

Matsubara (2007) show that the approach is equivalent to calibration by means

of the ROC convex hull. (Note that in this chapter we have seen two different uses

of the term ‘convex’: one in relation to loss functions, where convexity means

that linear interpolation between any two points on the curve depicting the loss

function will never result in a point below the curve; and the other in relation to

the ROC convex hull, where it refers to the linearly interpolated boundary of a

convex set which envelopes all points in the set.)

�


