
R16 – B.Tech – CSE – IV/II – Machine Learning – Unit VI 

 Page 1 of 3 

 

 

 

Dimensionality Reduction: Principal Component Analysis (PCA), Implementation and 
demonstration. Artificial Neural Networks: Introduction, Neural network representation, 
appropriate problems for neural network learning, Multilayer networks and the back propagation 
algorithm. 

Introduction 

 In machine learning problems there often involves tens of thousands of features for each 
training instance. This can be a problem as it makes our training extremely slow and prone to 
overfitting (refer to overfitting section). This problem is commonly referred to as the curse of 
dimensionality. 

 Because of the issues associated with the curse of dimensionality, it is necessary to reduce the 
number of features/dimensions considerably to help increase our model’s performance and 
enables us to arrive at an optimal solution for our machine learning model. 

 By reducing the dimensions of our training set, we can increase the speed of our training, and 
reduce our dataset down to two or three dimensions, making it easier to perform data 
visualizations (clustering, patterns). 

 The various methods in performing Dimensionality Reduction (Projection & Manifold Learning) 
and a Dimensional Reduction algorithm known as Principal Component Analysis (PCA). 

 As a general rule, if you are given a data set which has more than 3 dimensions, it is often the 
case that dimensionality reduction algorithms will be beneficial in enhancing the performance 
of your model. 

Principal Component Analysis (PCA) 

 PCA is fundamentally a simple dimensionality reduction technique that transforms the columns 
of a dataset into a new set feature. It does this by finding a new set of directions (like X and Y 
axes) that explain the maximum variability in the data. 

 This new system coordinate axes is called Principal Components (PCs). The projections of the 
original data on the new set of coordinate axes (PCs) serves as the new transformed dataset.  

But why even compute the PCs? 
 Because, the information contained in a dataset column (variable) is the amount of variance it 

contains. It will effectively explain the vast information present in the original data into a fewer 
number of columns. 

 The objective of Principle Component Analysis is simple, identify a hyperplane that lies closest 
to the data points, and project the data onto it. 

Preservation our Variance 
 When mapping our original data set in a lower-dimensional hyperplane, we first must 

determine the right hyperplane. In Principal Component Analysis, the hyperplane, in most 
cases is determined by the axis through our data set, which preserves the maximum amount of 
variance. 

https://hackernoon.com/supervised-machine-learning-linear-regression-in-python-541a5d8141ce


R16 – B.Tech – CSE – IV/II – Machine Learning – Unit VI 

 Page 2 of 3 

 

 

 

 

 
 

 

Why use PCA? 

 Practically PCA is used for two reasons: 
1. Dimensionality Reduction: The information distributed across a large number of 

columns is transformed into principal components (PC) such that the first few PCs can 
explain a sizeable chunk of the total information (variance). These PCs can be used as 
explanatory variables in Machine Learning models. 

2. Visualize Classes: Visualizing the separation of classes (or clusters) is hard for data with 
more than 3 dimensions (features). With the first two PCs itself, it’s usually possible to 
see a clear separation. 

Is PCA a feature selection technique? 
 It is not a feature selection technique. Rather, it is a feature combination technique. Because 

each PC is a weighted additive combination of all the columns in the original dataset. More on 
this when you implement it in the next section. 

 However, the PCs are formed in such a way that the first Principal Component (PC1) explains 
more variance in original data compared to PC2. Likewise, PC2 explains more than PC3, and so 
on. 

Principal Components 
 There are various techniques we can use to find our principle components. However, the most 

common method in finding our principle components is known as Singular Value 
Decomposition (SVD). It turns out that if you perform a basic matrix factorisation technique 
known as Singular Value Decomposition (SVD), where you decompose the training set matrix 



R16 – B.Tech – CSE – IV/II – Machine Learning – Unit VI 

 Page 3 of 3 

 

 

 

X, into the dot product of three matrices, our third matrix V* actually contains all the principal 
components we are looking for. 

 
 

Where 
M = m × n matrix whose entries come from a field, where either field consists of real numbers 
or complex numbers. 

U = a m × m unitary matrix. (left singular vector) 
Σ = m × n diagonal matrix with non-negative real numbers. 
V = n × n unitary matrix. (Right singular vector) 
V* = conjugate transpose of the n × n unitary matrix. 

Building PCA with Scikit-learn 
 Using scikit-learn package, the implementation of PCA is quite straight forward. The module 

named sklearn.decomposition provides the PCA object which can simply fit and transform the 
data into Principal components. 

o Load packages 
o Import data 
o Build the principle components 

Artificial Neural Networks: Introduction 



-- --

Intr oduction to Artificial Neural Networks

• What is an Artificial Neural Network ?

- It is a computational system inspired by the

Structure

Processing Method

Learning Ability

of a biological brain

- Characteristics of Artificial Neural Networks

A large number of very simple processing neuron-like processing
elements

A large number of weighted connections between the elements

Distributed representation of knowledge over the connections

Knowledge is acquired by network through a learning process



-- --

- 2 -

• Why Artificial Neural Netw orks ?

- Massive Parallelism

- Distributed representation

- Learning ability

- Generalization ablity

- Fault tolerance

• Elements of Artificial Neural Networks

- Processing Units

- Topology

- Learning Algorithm

• Processing Units



-- --

- 3 -

Node input: neti =
j

Σ wij Ii

Node Output:Oi = f (neti)

• Activation Function

- An example



-- --

- 4 -

• Topology

• Learning

- Learn the connection weights from a set of training examples

- Different network architectures required different learning algo-
rithms

Supervised Learning

The network is provided with a correct answer (output) for every
input pattern

Weights are determined to allow the network to produce answers
as close as possible to the known correct answers

Theback-propagation algorithm belongs into this category



-- --

- 5 -



-- --

- 6 -

Unsupervised Learning

Does not require a correct answer associated with each input pat-
tern in the training set

Explores the underlying structure in the data, or correlations
between patterns in the data, and organizes patterns into cate-
gories from these correlations

TheKohonen algorithm belongs into this category

Hybrid Learning

Comnines supervised and unsupervised learning

Part of the weights are determined through supervised learning
and the others are obtained through aunsupervised learning

• Computational Properties

A single hidden layer feed-forward network with arbitrary sigmoid
hidden layer activation functions can approximate arbitrarily well an
arbitrary mapping from one finite dimensional space to another



-- --

- 7 -

• Practical Issues

- Generalization vs Memorization

Good fit Bad fit

How to choose the network size (free parameters)

How many training examples

When to stop training

• Applications

- Pattern Classification

- Clustering/Categorization

- Function approximation

- Prediction/Forecasting

- Optimization

- Content-addressable Memory

- Control



-- --

- 8 -



-- --

- 9 -

• Tw o Successful Applications

- Zipcode Recognition

- Text to voice translation (NeTtalk)

-- --


	Introduction
	Principal Component Analysis (PCA)
	Preservation our Variance
	Why use PCA?
	Is PCA a feature selection technique?
	Principal Components
	Building PCA with Scikit-learn

	Artificial Neural Networks: Introduction

