Exception Handling
 Errors in a Java Program: There are two types of errors, compile time errors and run time errors.
· Compile time errors: These are syntactical errors found in the code, due to which a program fails to compile. For example, forgetting a semicolon at the end of a Java statement, or writing a statement without proper syntax will result in compile-time error. Detecting and correcting compile-time errors is easy as the Java compiler displays the list of errors with the line numbers along with their description. The programmer can go to the statements, check them word by word and line by line to understand where he has committed the errors.
· Run time errors: The run time errors are the errors that occur at the run-time of the program and cause the abnormal termination of the program. The run time errors are called exceptions. There are the three types of runtime errors.
· Input errors: Input errors occur if the user provides unexpected inputs to the program. For example, if the program wants an integer and the user provides it the string value. These errors can be prevented from occurring by prompting the user to enter the correct type of values.
· System errors: System errors or hardware errors occur rarely. These errors occur due to unreliable system software or hardware malfunctions. These errors are beyond a programmer’s control.
· Logical errors: logical errors occur if the program is logically incorrect. These errors either generate incorrect results or terminate program abnormally. For example, a program for adding two numbers requires an addition operator (+), if the program supplies subtraction operator (-) then this generates the incorrect results. To debug these errors the program must be scanned to check the logical statements.
 Introduction to Exception Handling: Java applications are used in embedded system software, which runs inside specialized devices like hand held computers, cellular phones, and etc. in those kind of applications, it’s especially important that software errors be handled strongly. Java offers a solution to these problems with exception handling.

 Concepts of Exception Handling: An Exception is an abnormal condition that arises during the execution of a program that causes to deviate from the normal flow of execution path. When an exception occurs, it makes the further execution of the program impossible. Thus, an exception can be defined as an event that may cause abnormal termination of the program during its execution.
Exception handling means to handle the exceptions by the programmer to recover the computer from malfunction due to exceptions. In Java, exception handling is managed via five keywords: try, catch, throw, throws, and finally.
· try: The try block is said to govern the statements enclosed within it and defines the scope of any exception associated with it. It detects the exceptions.
· catch: The catch block contains a series of legal Java statements. These statements are executed if and when the exception handler is invoked. It holds an exception. Catch is known as exception handler which is a piece of code used to deal with the exceptions, either to fix the error or abort execution in a sophisticated way.
· throw: To manually throw an exception ,use the keyword throw.
· throws: Any exception that is thrown out of a method must be specified as such by a throws clause.
· finally: Any code that absolutely must be executed after a try block completes is put in a finally block. After the exception handler has run, the runtime system passes control to the finally block.
Syntax: Here, ExceptionType is the type of exception that has occurred.
try
{
	// statements that might cause exceptions
	// possibly including function calls
}
catch (ExceptionType1 id1)
{
 // statements to handle this exception
}
catch (ExceptionType2 id2)
{
 // statements to handle this exception
}
finally
{
 // statements to execute every time this try block executes
}
 Exception Hierarchy: All exception types are subclasses of the built-in class Throwable, where Throwable is subclass for ‘Object’. Thus, Throwable is at the top of the exception class hierarchy. Immediately below Throwable, there are two subclasses that partition exceptions into two distinct branches.

One branch is headed by Exception. This class is used for exceptional conditions that user programs should catch. This is also the class that you will subclass to create your own user defined exception types. There is an important subclass of Exception, called RuntimeException. Exceptions of this type are automatically defined for the programs that you write and include things such as division by zero and invalid array indexing.
The other branch is topped by Error, which defines exceptions that are not expected to be caught under normal circumstances by your program. Exceptions of type Error are used by the Java run-time system to indicate errors having to do with the run-time environment, itself. Stack overflow is an example of such an error.
· java: JAVA API is a library contains the packages.
· lang: lang is a package included in java library. And it is considered as a default package named as language. Implicitly it is imported into every java programs.
· Object: Object is a super class of all classes (user defined, pre-defined classes) directly or indirectly. Because it is included in the lang package.
· Throwable: Throwable is super class of Errors and Exceptions in java. Throwable is derived from the object class.
· Error: Error is a class. This type of errors cannot be handled.
· Exception: An abnormal event in a program is called Exception.
There are basically two types of Exceptions in the Java program:
Checked Exceptions: Checked exceptions are the exceptions thrown by a method, if it encounters a situation which is not handled by itself. All classes that are derived from ‘Exception’ class, but not RuntimeException’ class are checked exceptions. Whenever a method is declared or called it is checked by compiler to determine whether it throws checked exceptions or not.
Programmer should compulsorily handle the checked exceptions in code, otherwise code will not be compiled i.e. the code which may cause checked exception must be specified in try-catch block or throws clause containing the list of checked exception is provided to the method declaration.
· "Checked" means they will be checked at compile time itself.
The example of Checked Exceptions is IOException which should be handled in code compulsorily or else code will throw a Compilation Error.
Example:

UNIT III	Exception Handling

DNRCET-CSE	Page 1

import java.io.*;
class CEDemo
{
public static void main (String args[]) throws IOException
{
BufferedReader br=new BufferedReader (new InputStreamReader (System.in));
System.out.print ("enter ur name: ");
String name=br.readLine ();
System.out.println ("Hai "+name);
}
}
Output:
D:\Seshu\Except>javac CEDemo.java
D:\Seshu\Except>java CEDemo
enter ur name: Seshu
Hai Seshu

Unchecked Exceptions: Exceptions which are checked at run time. A java method does not require to declare that it will throw any of the run-time exception. Unchecked exceptions are RuntimeException and any of its subclasses and Class Error and its subclasses also are unchecked. Unchecked runtime exceptions represent conditions that reflect errors in program's logic and cannot be reasonably recovered from at run time. With an unchecked exception, compiler doesn't force programmers either to catch the exception or declare it in a throws clause.

Example:
public class REDemo
{
static public void main(String args[])
{
int d[]={1,2};
d[3]=99;
int a=5,b=0,c;
c=a/b;
System.out.println("c is:"+c);
System.out.println("okay");
}
}
Output:
D:\Seshu\Except>javac CEDemo.java
D:\Seshu\Except>java REDemo
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3
 at REDemo.main(CEDemo.java:6)

[image:]
[image:]
 Benefits of Exception Handling:
· First, it allows you to fix the error.
· Second, it prevents the program from automatically terminating.
· Third, it adopts the robustness to program.
Exception handling provides the following advantages over ``traditional'' error management techniques:
· Separating Error Handling Code from ``regular'' one: provides a way to separate the details of what to do when something out-of-the-ordinary happens from the normal logical flow of the program code;
· Propagating Errors up the Call Stack: lets the corrective action to be taken at a higher level. This allows the corrective action to be taken in the method that calling that one where an error occurs;
· Grouping Error Types and Error Differentiation: Allows to create similar hierarchical structure for exception handling so groups them in logical way.
 Uncaught Exceptions:
The following program illustrates what happens when you don’t handle the exception when it is raised. This small program includes an expression that intentionally causes a divide-by-zero error:
class Exc0
{
public static void main(String args[])
{
int d = 0;
int a = 42 / d;
}
}
When the Java run-time system detects the attempt to divide by zero, it constructs a new exception object and then throws this exception. This causes the execution of Exc0 to stop, because once an exception has been thrown, it must be caught by an exception handler and dealt with immediately. In this example, no exception handlers are specified, so the exception is caught by the default handler provided by the Java run-time system. Any exception that is not caught by your program will ultimately be processed by the default handler. The default handler displays a string describing the exception, prints a stack trace from the point at which the exception occurred, and terminates the program.
Here is the exception generated when this example is executed:
java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:6)
Notice how the class name, Exc0; the method name, main; the filename, Exc0.java; and the line number, 4, are all included in the simple stack trace. Also, notice that the type of exception thrown is a subclass of Exception called ArithmeticException, which more specifically describes what type of error happened.
The stack trace will always show the sequence of method invocations that led up to the error. For example, here is another version of the preceding program that introduces the same error but in a method separate from main():

class Exc1
{
static void subroutine()
{
int d = 0;
int a = 10 / d;
}
public static void main(String args[])
{
Exc1.subroutine();
}
}
The resulting stack trace from the default exception handler shows how the entire call stack is displayed:
java.lang.ArithmeticException: / by zero
at Exc1.subroutine(Exc1.java:6)
at Exc1.main(Exc1.java:10)
As you can see, the bottom of the stack is main’s line 7, which is the call to subroutine(), which caused the exception at line 4. The call stack is quite useful for debugging, because it pinpoints the precise sequence of steps that led to the error.
 Usage of try and catch:
try: Although the default exception handler provided by the Java run-time system is useful for debugging, a programmer will usually want to handle an exception by themself. Doing so provides two benefits.
· First, it allows you to fix the error.
· Second, it prevents the program from automatically terminating.
To handle run-time errors and monitor the results, simply enclose the code inside a try block. If an exception occurs within the try block, it is handled by the appropriate exception handler (catch block) associated with the try block. If there are no exceptions to be thrown, then try will return the result executing block. A try should have one (or more) catch blocks or one finally block or both. If neither is present, a compiler error occurs which says try without catch or finally.
catch: A catch block is a group of java statements, enclosed in braces { } which are used to handle a specific exception that has been thrown. Catch blocks should be placed after the try block i.e. catch clause follows immediately after the try block.
A catch block is specified by the keyword catch followed by a single argument within parenthesis (). The argument type in a catch clause is form the Throwable class or one of its subclasses.
· Once the catch statement has executed, program control continues with the next line in the program following the entire try/catch mechanism.
· A try and its catch statement form a unit. The scope of the catch clause is restricted to those statements specified by the immediately preceding try statement. A catch statement cannot catch an exception thrown by another try statement (except in the case of nested try statements)
· The statements that are protected by try must be surrounded by curly braces. (That is, they must be within a block.) We cannot use try on a single statement.
· The goal of most well-constructed catch clauses should be to resolve the exceptional condition and then continue on as if the error had never happened.
To illustrate how easily this can be done, the following program includes a try block and a catch clause that processes the ArithmeticException generated by the division-by-zero error:
class Exc2
{
public static void main(String args[])
{
int d, a;
try
{ // monitor a block of code.
d = 0;
a = 42 / d;
System.out.println("This will not be printed.");
}
catch (ArithmeticException e)
{ // catch divide-by-zero error
System.out.println("Division by zero.");
}
System.out.println("After catch statement.");
}
}
This program generates the following output:
Division by zero.
After catch statement.
· Notice that the call to println() inside the try block is never executed. Once an exception is thrown, program control transfers out of the try block into the catch block.
 Displaying a Description of an Exception: Throwable overrides the toString () method (defined by Object). So that it returns a string containing a description of the exception. We can display this description in a println () statement by simply passing the exception as an argument. For example, the catch block in the preceding program can be rewritten like this:
catch (ArithmeticException e)
{
System.out.println("Exception: " + e);
a = 0; // set a to zero and continue
}
When this version is substituted in the program, and the program is run, each divide-by-zero error displays the following message:
Exception: java.lang.ArithmeticException: / by zero
 Multiple catch Statements:
In some cases, more than one exception could be raised by a single piece of code. To handle this type of situation, we can specify two or more catch clauses, each catching a different type of exception. When an exception is thrown, each catch statement is inspected in order, and the first one whose type matches that of the exception is executed. After one catch statement executes, the others are bypassed, and execution continues after the try/catch block. The following example traps two different exception types:
Example:
class MultiCatch
{
public static void main(String args[])
{
try
{
int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;
int c[] = { 1 };
c[42] = 99;
}
catch(ArithmeticException e)
{
System.out.println("Divide by 0: " + e);
}
catch(ArrayIndexOutOfBoundsException e)
{
System.out.println("Array index oob: " + e);
}
System.out.println("After try/catch blocks.");
}
}
Here is the output generated by running it both ways:
C:\>java MultiCatch
a = 0
Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.
C:\>java MultiCatch TestArg
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException:42
After try/catch blocks.
This program will cause a division-by-zero exception if it is started with no command-line arguments, since a will equal zero. It will survive the division if we provide a command-line argument, setting a value to something larger than zero. But it will cause an ArrayIndexOutOfBoundsException, since the int array c [] has a length of 1, yet the program attempts to assign a value to c [42].
When we use multiple catch statements, it is important to remember that exception subclasses must come before any of their superclasses. This is because a catch statement that uses a superclass will catch exceptions of that type plus any of its subclasses.
Thus, a subclass would never be reached if it came after its superclass. Further, in Java, unreachable code is an error. For example, consider the following program:
/* This program contains an error. A subclass must come before its superclass in a series of catch statements. If not, unreachable code will be created and a compile-time error will result.*/

class SuperSubCatch
{
public static void main(String args[])
{
try
{
int a = 0;
int b = 42 / a;
}
catch(Exception e)
{
System.out.println("Generic Exception catch.");
}
/* This catch is never reached because ArithmeticException is a subclass of Exception. */
catch(ArithmeticException e) { // ERROR - unreachable
System.out.println("This is never reached.");
}
}
}

If we try to compile this program, we will receive an error message stating that the second catch statement is unreachable because the exception has already been caught. Since ArithmeticException is a subclass of Exception, the first catch statement will handle all Exception-based errors, including ArithmeticException. This means that the second catch statement will never execute. To fix the problem, reverse the order of the catch statements.
 Nested try Statements: The try statement can be nested. That is, a try statement can be inside the block of another try. Each time a try statement is entered, the context of that exception is pushed on the stack. If an inner try statement does not have a catch handler for a particular exception, the stack is unwound and the next try statement’s catch handlers are inspected for a match. This continues until one of the catch statements succeeds, or until all of the nested try statements are exhausted. If no catch statement matches, then the Java run-time system will handle the exception. Here is an example that uses nested try statements:
Example:
class NestTry
{
public static void main(String args[])
{
try
{
int a = args.length;
/* If no command-line args are present, the following statement will generate a divide-by-zero exception. */
int b = 42 / a;
System.out.println("a = " + a);
try
{ // nested try block
/* If one command-line arg is used,
then a divide-by-zero exception
will be generated by the following code. */
if(a==1) a = a/(a-a); // division by zero
/* If two command-line args are used, then generate an out-of-bounds exception. */
if(a==2)
{
int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception
}
}
catch(ArrayIndexOutOfBoundsException e)
{
System.out.println("Array index out-of-bounds: " + e);
}
}
catch(ArithmeticException e)
{
System.out.println("Divide by 0: " + e);
}
}
}
As you can see, this program nests one try block within another. The program works as follows.
C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero
C:\>java NestTry One
a = 1
Divide by 0: java.lang.ArithmeticException: / by zero
C:\>java NestTry One Two
a = 2
Array index out-of-bounds:
java.lang.ArrayIndexOutOfBoundsException:42
When we execute the program with no command-line arguments, a divide-by-zero exception is generated by the outer try block. Execution of the program with one command-line argument generates a divide-by-zero exception from within the nested try block. Since the inner block does not catch this exception, it is passed on to the outer try block, where it is handled. If we execute the program with two command-line arguments, an array boundary exception is generated from within the inner try block.
 throw: ‘throw’ is a java keyword used in exception handling. Generally a try block checks for arrival of error and when an error occurs it throws the error and it is caught by the catch statement and then appropriate action will take place. Only the expressions thrown by the java run-time system are being caught, but thrown statement allows a program to thrown an exception explicitly.
Syntax: throw ThrowableInstance;
Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable. Primitive types, such as int or char, as well as non-Throwable classes, such as String and Object, cannot be used as exceptions.
There are two ways you can obtain a Throwable object:
· using a parameter in a catch clause:: catch(NullPointerException e) { throw e; }
· Creating one with the new operator:: throw new ArithmeticException ();
The flow of execution stops immediately after the throw statement; any subsequent statements are not executed.
The nearest enclosing try block is inspected to see if it has a catch statement that matches the type of exception. If it does find a match, control is transferred to that statement. If not, then the next enclosing try statement is inspected, and so on. If no matching catch is found, then the default exception handler halts the program and prints the stack trace.
Example:
class ThrowDemo
{
static void demoproc()
 {
try
 {
throw new NullPointerException("demo");
}
catch(NullPointerException e)
 {
System.out.println("Caught inside demoproc.");
throw e; // rethrow the exception
}
}
public static void main(String args[])
 {
try
{
demoproc();
}
catch(NullPointerException e)
{
System.out.println("Recaught: " + e);
}
}
}
Here is the resulting output:
Caught inside demoproc.
Recaught: java.lang.NullPointerException: demo

This program gets two chances to deal with the same error. First, main() sets up an exception context and then calls demoproc(). The demoproc()method then sets up another exception-handling context and immediately throws a new instance of NullPointerException, which is caught on the next line. The exception is then rethrown.
throw new NullPointerException("demo");
Here, new is used to construct an instance of NullPointerException. Many of Java’s built- in run-time exceptions have at least two constructors: one with no parameter and one that takes a string parameter. When the second form is used, the argument specifies a string that describes the exception. This string is displayed when the object is used as an argument to print() or println(). It can also be obtained by a call to getMessage(), which is defined by Throwable.
 throws: If a method is capable of causing an exception that it does not handle, it must specify this behavior so that callers of the method can guard themselves against that exception. We do this by including a throws clause in the method’s declaration. A throws clause lists the types of exceptions that a method might throw. This is necessary for all exceptions, except those of type Error or RuntimeException, or any of their subclasses. All other exceptions that a method can throw must be declared in the throws clause. If they are not, a compile-time error will result.
Syntax:
returntype method-name(parameter-list) throws exception-list
{
// body of method
}
Here, exception-list is a comma-separated list of the exceptions that a method can throw. Following is an example of an incorrect program that tries to throw an exception that it does not catch. Because the program does not specify a throws clause to declare this fact, the program will not compile.
// This program contains an error and will not compile.
class ThrowsDemo
{
static void throwOne()
{
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");
}
public static void main(String args[])
{
throwOne();
}
}
To make this example compile, you need to make two changes.
· First, you need to declare that throwOne() throws IllegalAccessException.
· Second, main() must define a try/catch statement that catches this exception.
The corrected example is shown here:
// This is now correct.
class ThrowsDemo
{
static void throwOne() throws IllegalAccessException
{
System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");
}
public static void main(String args[])
{
try
{
throwOne();
}
catch (IllegalAccessException e)
{
System.out.println("Caught " + e);
}
}
}
Here is the output generated by running this example program:
inside throwOne
caught java.lang.IllegalAccessException: demo

What is the difference between throws and throw?
throws clause is used when the programmer does not want to handle the exception and throw it out of a method. throw clause is used when the programmer wants to throw an exception explicitly and wants to handle it using catch block. Hence, throws and throw are contradictory.
 finally:
Whenever an exception occurs, the exception affects the flow of execution of the program. Sometimes some blocks may be bypassed by exception handling. For example, if a method opens a file upon entry and closes it upon exit, then you will not want the code that closes the file to be bypassed by the exception-handling mechanism. The finally keyword is designed to address this contingency.
· finally creates a block of code that will be executed after a try/catch block has completed and before the code following the try/catch block.
· The finally block will execute whether or not an exception is thrown. If an exception is thrown, the finally block will execute even if no catch statement matches the exception.
· Any time a method is about to return to the caller from inside a try/catch block, via an uncaught exception or an explicit return statement, the finally clause is also executed just before the method returns.
· This can be useful for closing file handles and freeing up any other resources that might have been allocated at the beginning of a method with the intent of disposing of them before returning.
· The finally clause is optional. However, each try statement requires at least one catch or a finally clause.
Here is an example program that shows three methods that exit in various ways, none without executing their finally clauses:

// Demonstrate finally.
class FinallyDemo
 {
// Through an exception out of the method.
static void procA()
{
try
{
System.out.println("inside procA");
throw new RuntimeException("demo");
}
finally
{
System.out.println("procA's finally");
}
}
// Return from within a try block.
static void procB()
 {
try
{
System.out.println("inside procB");
return;
}
finally
{
System.out.println("procB's finally");
}
}

// Execute a try block normally.
static void procC()
 {
try
 {
System.out.println("inside procC");
}
finally
 {
System.out.println("procC's finally");
}
}
public static void main(String args[])
 {
try
{
procA();
}
catch(Exception e)
{
System.out.println(“Exception Caught”);
}
}
procB();
procC();
}
}

Output:
inside procA
procA’s finally
Exception caught
inside procB
procB’s finally
inside procC
procC’s finally

· In this example, procA() prematurely breaks out of the try by throwing an exception.
· The finally clause is executed on the way out. procB()’s try statement is exited via a return statement.
· The finally clause is executed before procB() returns. In procC(), the try statementexecutes normally, without error. However, the finally block is still executed.
NOTE: If a finally block is associated with a try, the finally block will be executed upon conclusion of the try.
 Creating own Exception Sub Classes: Although Java’s built-in exceptions handle most common errors, we will probably want to create our own exception types to handle situations specific to our applications. This is quite easy to do: just define a subclass of Exception (which is, of course, a subclass of Throwable). our subclasses don’t need to actually implement anything—it is their existence in the type system that allows us to use them as exceptions.
The Exception class does not define any methods of its own. It does, of course, inherit those methods provided by Throwable. Thus, all exceptions, including those that you create, have the methods defined by Throwable available to them. They are shown in Table.
We may also wish to override one or more of these methods (shown in table) in exception classes that you create. Exception defines 2 constructors.
· Exception()
· Exception(String msg)
The first form creates an exception that has no description. The second form lets us specify a description of the exception. Although specifying a description when an exception is created is often useful, sometimes it is better to override toString(). Here’s why: The version of toString() defined by Throwable (and inherited by Exception) first displays the name of the exception followed by a colon, which is then followed by your description. By overriding toString(), we can prevent the exception name and colon from being displayed. This makes for a cleaner output, which is desirable in some cases.
The following example declares a new subclass of Exception and then uses that subclass to signal an error condition in a method. It overrides the toString() method, allowing a carefully tailored description of the exception to be displayed.

// This program creates a custom exception type.
class MyException extends Exception
{
private int detail;
MyException(int a)
{
detail = a;
}
public String toString()
{
return "MyException[" + detail + "]";
}
}
class ExceptionDemo
 {
static void compute(int a) throws MyException
{
System.out.println("Called compute(" + a + ")");
if(a > 10)
throw new MyException(a);
System.out.println("Normal exit");
}
public static void main(String args[])
{
try
{
compute(1);
compute(20);
}
 catch (MyException e)
{
System.out.println("Caught " + e);
}
}
}
Here is the result:
Called compute(1)
Normal exit
Called compute(20)
Caught MyException[20]

This example defines a subclass of Exception called MyException. This subclass is quite simple: it has only a constructor plus an overloaded toString() method that displays the value of the exception. The ExceptionDemo class defines a method named compute() that throws a MyException object. The exception is thrown when compute()’s integer parameter is greater than 10. The main() method sets up an exception handler for MyException, then calls compute() with a legal value (less than 10) and an illegal one to show both paths through the code.
[image:]
image2.png

image3.png

image4.png

image5.png

image1.png

