Applets: An applet is a software components that enables client-side programming and facilitates text, graphics, audio, imaging, animation and networking, besides live updating and securing two-way interaction in web pages.
One of the main features of java is the applet. Applets are dynamic and interactive programs. Applets are usually small in size and facilitate event-driven applications that can be transported over the web.
 Concepts of Applets: An applet is a java program that is embedded in HTML document and runs with the help of java enabled browsers such as Internet Explorer. An applet is a java program that runs in a browser. Unlike java applications, applets don’t have a main() method. All applets inherit the superclass ‘Applet’. An Applet class contains several methods that help to control the execution of an applet. All applets must import java.applet and java.awt packages.
Unlike java applications an applet does not start at main() method. Applets are event-driven i.e., an applet waits until an event occurs. An applet is notified by AWT by calling event handler provided by the applet. Once this is done, an applet takes appropriate action and returns to the AWT.
Example:
import java.applet.*;
import java.awt.*;
public class FirstApplet extends Applet
{
public void paint(Graphics g)
{
g.drawString("Seshu",20,20);
}
}
In the above example, first two lines import the packages. The next line extends an ‘Applet’ class which is very important in all applets. The paint() method is used to draw strings in an applet. It has a method called drawstring() that draws string “Hello” at position (20,20) i.e., x and y pixels. After writing an applet is compiled in the same way as Java application, but running of an applet is different.
There are 2 ways to run an applet,
1) Executing an Applet within a Java-Compatible Web Browser: To execute an applet using web browser, we must write a small HTML text file which contains the appropriate ‘Applet’ tag.
<applet code=”FirstApplet” width=300 height=300> </applet>
After creating this file, we can execute our browser and then load this file, which makes ‘FirstApplet’ to execute.
2) Executing an Applet using ‘AppletViewer’: This executes the applet in a window. In order to execute ‘FirstApplet’ with an AppletViewer, we may also execute the HTML file. If suppose the HTML file is App.html, then the following command will run ‘FirstApplet’.
D:\>appletviewer App.html
 There is one more method which simply includes a comment at the head java source code file that contains ‘Applet’ tag. Thus, our code is documented with a prototype of the necessary HTML statements and we can test our compiled applet by starting the appletviewer with the java file.

UNIT V		APPLETS

DNRCET-CSE	1

Example:
import java.applet.*;
import java.awt.*;
/*<applet code=”FirstApplet” width=300 height=300> </applet>*/
public class FirstApplet extends Applet
{
public void paint(Graphics g)
{
g.drawString("Seshu",20,20);
}
}
Note: run this program with following command.
D:\Seshu\Applets>javac FirstApplet.java
D:\Seshu\Applets>appletviewer FirstApplet.java

[image:]
 Local and Remote Applet: An Applet is a java program which is mainly used in internet computing. Applet can be transported over the internet from one to another computer. They can run using the AppletViewer or a web browser supported by java. There are two types of applet
· Local Applet: A Local applet is an applet i.e. developed and stored on the local computer. Local applet can be accessed directly from the local computer; there is no need to use the internet. A web page trying to access a local applet searches in the local system and locates and loads the specified applet.
· Remote Applet: Remote applet is the one i.e. developed and stored on remote computer connected to the internet. We can download these remote applets from the server on to the local computer through the internet and run it. To download an applet, we must know its address or URL on the web, and it must be specified in the HTML document as the code attribute.
 Applet class: java.applet.Applet is the superclass of all the applets. Thus all the applets directly or indirectly, inherit the methods of the Applet belonging to java.applet package. This class provides all the necessary methods for starting, stopping and manipulating the applets. It also has methods providing multimedia support to an applet. Applet class has a predefined hierarchy in java which shows the classes extended by Applet class.
java.lang.Object
		
 java.awt.Componet

 java.awt.Container

 java.awt.Panel

 	 java.applet.Applet
The above hierarchy simply makes easy for us to understand that an Applet, which is a subclass java.applet.Applet, also inherits the methods of the other class like java.awt.Panel, java.awt.Conatiner, java.awt.Component and java.lang.Object, indirectly.
 Differences between Applet and Applications:
	Java Applications
	Java Applets

	These run on stand-alone systems.
	These runs in web pages.

	These run from the command line of a computer.
	These are executed using a web browser.

	Parameters to the application are given at the command prompt (for ex: args[0], args[1], .).
	Parameters to the applet are given in the HTML file.

	In an application the program starts at the main() method. The main() method runs throughout the application.
	In an applet there is no main() method i.e. executed continuously throughout the life of an applet.

	These have security instructions.
	These have security instructions.

	They support GUI features.
	They support GUI features along with java-compatible browsers provide capabilities for Graphics, image, event handling, and networking.

	These are compiled using the javac command
	These are also compiled using the javac command.

	These are run by specifying at the command prompt as follows: java classfilename
	These are run by specifying the URL in a web browser, which the HTML file. Or run using the appletviewer by specifying at the command prompt, appletviewer htmlfilename.

 Life Cycle of an Applet: All applets override a set of methods that provides the basic mechanism by which the browser or applet viewer interfaces to the applet and controls its execution. Four of these methods, init(), start(), stop(), and destroy(), apply to all applets and are defined by Applet. Default implementations for all of these methods are provided. Applets do not need to override those methods they do not use. However, only very simple applets will not need to define all of them.
AWT-based applets will also override the paint() method, which is defined by the AWT Component class. This method is called when the applet’s output must be redisplayed. (Swing-based applets use a different mechanism to accomplish this task.) These five methods can be assembled into the skeleton shown here:

// An Applet skeleton.
import java.awt.*;
import java.applet.*;
/*
<applet code="AppletSkel" width=300 height=100>
</applet>
*/
public class AppletSkel extends Applet {
// Called first.
public void init() {
// initialization
}
/* Called second, after init(). Also called whenever
the applet is restarted. */
public void start() {
// start or resume execution
}
// Called when the applet is stopped.
public void stop() {
// suspends execution
}
/* Called when applet is terminated. This is the last
method executed. */
public void destroy() {
// perform shutdown activities
}
// Called when an applet's window must be restored.
public void paint(Graphics g) {
// redisplay contents of window
}
}

Although this skeleton does not do anything, it can be compiled and run. When run, it generates the following window when viewed with an applet viewer:
[image:]

Applet Initialization and Termination: It is important to understand the order in which the various methods shown in the skeleton are called.
When an applet begins, the following methods are called, in this sequence:
· init() : public void init()
· start() : public void start()
· paint() : public void paint()
When an applet is terminated, the following sequence of method calls takes place:
· stop() : public void stop()
· destroy() : public void destroy()
init() : The init() method is the first method to be called. This is where you should initialize variables. This method is called only once during the run time of your applet.
start() : The start() method is called after init(). It is also called to restart an applet after it has been stopped. Whereas init() is called once—the first time an applet is loaded—start() is called each time an applet’s HTML document is displayed onscreen. So, if a user leaves a web page and comes back, the applet resumes execution at start().
paint() : The paint() method is called each time your applet’s output must be redrawn. This situation can occur for several reasons. For example, the applet window may be minimized and then restored. paint() is also called when the applet begins execution. Whatever the cause, whenever the applet must redraw its output, paint() is called. The paint() method has one parameter of type Graphics. This parameter will contain the graphics context, which describes the graphics environment in which the applet is running. This context is used whenever output to the applet is required.
stop() : The stop() method is called when a web browser leaves the HTML document containing the applet—when it goes to another page, for example. When stop() is called, the applet is probably running. You should use stop() to suspend threads that don’t need to run when the applet is not visible. You can restart them when start() is called if the user returns to the page.
destroy() : The destroy() method is called when the environment determines that your applet needs to be removed completely from memory. At this point, you should free up any resources the applet may be using. The stop() method is always called before destroy().
 Types of Applets: There are two types of applets. They are,
· Applets that are based directly on ‘Applet’ class: These types of applets make use of the AWT in order to provide the GUI. This type of applet is available to be used from the time when java was created. It is used when simple user-interface is to be built.
· Applets that are based on ‘Swing’ class ‘JApplet’: These types of Applets make use of the Swing classes in order to provide the GUI. The user interface provided by Swing classes is richer and easy-to-use compared to that provided using AWT. These types of applets are very popular in these days. The JApplet class inherits the ‘Applet’ class, thus all the ‘Applet’ features are also present in ‘JApplet’ class.
 Creating Applets: An applet like any application program can do many tasks. The process of creating an applet is as follows:
· Building an Applet code: (.java file): consider a simple applet code,
import java.applet.*;
import java.awt.*;
public class FirstApplet extends Applet
{
public void paint(Graphics g)
{
g.drawString("Seshu",20,20);
}
}
The two import statements imports all the classes of AWT, these classes are used to construct a GUI. The other Applet package classes’ supports different methods used to work with applets.
Here FirstApplet is the new class created, it extends the properties of the class Applet. The applets do not contain man() method. The paint() method is supported by AWT. This method is used by the Applet object to draw. The paint() takes, Grpahics object as parameter. drawstring() method of Graphics class is used to draw text on the applet when the code is saved.
· Creating an Executable Applet (.class file): using the java compiler compile the Applet class. javac FirstApplet.java, which generates a class file.
· Designing a webpage using HTML Tags: Designing a webpage as shown below using HTML tags,
<html>
	<head>
		<title> Creation of Applet </title>
	</head>
	<body>

	</body>
</html>
· Preparing <applet> tag: The tag <applet> is used to embed the java applet into a HTML file.
Example:	<applet code=”FirstApplet” width=300 height=300>
</applet>
The code specifies the class which is going to be embedded into HTML file.
Width parameter specifies the width of applet to be created in pixels. Similarly, height specifies the height of applet.
· Incorporating <applet> tag into the webpage:
<html>
	<head>
		<title> Creation of Applet </title>
	</head>
	<body>
		<applet code=”FirstApplet” width=300 height=300>
</applet>
	</body>
</html>
Let this file be App.html, there are two ways of incorporating applet tag,
· Creating HTML file with applet tag and running it in browser.
· Incorporating <applet> tag within the applet code and running with appletviewer.
If we consider our example, the first way would be running App.html in web browser. The second way will be adding <applet> to applet code itself.
import java.applet.*;
import java.awt.*;
/*<applet code=”FirstApplet” width=300 height=300> </applet>*/
public class FirstApplet extends Applet
{
public void paint(Graphics g)
{
g.drawString("Seshu",20,20);
}
}
· Creating HTML file: Here, the code (HTML) created in above step is saved as App.html.
· Run the Applet: Either applet can be run by running the App.html file in web browser or by using appletviewer. One of these is shown below,
D:\Seshu\Applets>javac FirstApplet.java
D:\Seshu\Applets>appletviewer FirstApplet.java
[image:]

 Example Program:
import java.awt.*;
import java.applet.*;
/*<applet code="AppletDemo" width=300 height=300></applet> */
public class AppletDemo extends Applet
{
String msg,msg1,msg2,msg3;
public void init()
{
setBackground(Color.red);
setForeground(Color.green);
msg="INIT Method";
}
public void start()
{
msg1="START Method";
}
public void stop()
{
msg2="STOP Method";
resize(200,200);
}
public void destroy()
{
msg3="DESTROY Method";
}
public void paint(Graphics g)
{
g.drawString("Applet Life Cycle",20,20);
if(msg!=null)
g.drawString(msg,20,40);
if(msg1!=null)
g.drawString(msg1,20,60);
if(msg2!=null)
g.drawString(msg2,20,80);
if(msg3!=null)
g.drawString(msg3,20,100);
showStatus("Applet Life Cycle");
}
}
D:\Seshu\Applets>javac AppletDemo.java
D:\Seshu\Applets>appletviewer AppletDemo.java

[image:]
After resise();
[image:]

 Graphis: The AWT supports a rich assortment of graphics methods. All graphics are drawn relative to a window. Agraphics context is encapsulated by the Graphics class and is obtained in two ways:
· It is passed to an applet when one of its various methods, such as paint() is called.
· It is returned by the getGraphics() method of Component.
Drawing Lines: Lines are drawn by means of the drawLine() method, shown here:
· void drawLine(int startX, int startY, int endX, int endY) : drawLine() displays a line in the current drawing color that begins at startX,startY and ends at endX,endY.
Drawing Rectangles: The drawRect() and fillRect() methods display an outlined and filled rectangle, respectively. They are shown here:
· void drawRect(int top, int left, int width, int height)
· void fillRect(int top, int left, int width, int height)
· The upper-left corner of the rectangle is at top,left. The dimensions of the rectangle are specified by width and height.
To draw a rounded rectangle, use drawRoundRect() or fillRoundRect(), both shown here:
· void drawRoundRect(int top, int left, int width, int height, int xDiam, int yDiam)
· void fillRoundRect(int top, int left, int width, int height, int xDiam, int yDiam)
Arounded rectangle has rounded corners. The upper-left corner of the rectangle is at top,left. The dimensions of the rectangle are specified by width and height. The diameter of the rounding arc along the X axis is specified by xDiam. The diameter of the rounding arc along the Y axis is specified by yDiam.
Drawing Ellipses and Circles: To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval(). These methods are shown here:
· void drawOval(int top, int left, int width, int height)
· void fillOval(int top, int left, int width, int height)
The ellipse is drawn within a bounding rectangle whose upper-left corner is specified by top,left and whose width and height are specified by width and height. To draw a circle, specify a square as the bounding rectangle.
Drawing Arcs: Arcs can be drawn with drawArc() and fillArc(), shown here:
· void drawArc(int top, int left, int width, int height, int startAngle, int sweepAngle)
· void fillArc(int top, int left, int width, int height, int startAngle, int sweepAngle)
The arc is bounded by the rectangle whose upper-left corner is specified by top,left and whose width and height are specified by width and height. The arc is drawn from startAngle through the angular distance specified by sweepAngle. Angles are specified in degrees.
Drawing Polygons: It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(), shown here:
· void drawPolygon(int x[], int y[], int numPoints)
· void fillPolygon(int x[], int y[], int numPoints)
The polygon’s endpoints are specified by the coordinate pairs contained within the x and y arrays. The number of points defined by x and y is specified by numPoints. There are alternative forms of these methods in which the polygon is specified by a Polygon object.
// Draw lines
import java.awt.*;
import java.applet.*;
/*<applet code="Draw" width=500 height=500>
</applet>*/
public class Draw extends Applet
{
	public void paint(Graphics g)
	{
		g.drawLine(0, 0, 250, 0);
		g.drawRect(10, 10, 60, 50);
		g.setColor(Color.cyan);
		g.fillRect(80, 10, 60, 50);
		g.drawRoundRect(10, 80, 60, 50, 15, 15);
		g.setColor(Color.red);
		g.fillRoundRect(80, 80, 60, 50, 30, 40);
		g.drawOval(160, 10, 50, 50);
		g.setColor(Color.blue);
		g.fillOval(240, 10, 75, 50);
		g.drawOval(160, 80, 90, 30);
		g.setColor(Color.gray);
		g.fillOval(240, 80, 140, 100);
		g.setColor(Color.black);
		g.drawLine(250, 250, 0, 250);
	}
}
[image:]
image1.png

image2.wmf

image3.png

image4.png

image5.png

