Programming Constructs
 Variables: The variable is the basic unit of storage. A variable is defined by the combination of an identifier, a type, and an optional initializer. In addition, all variables have a scope, which defines their visibility, and a lifetime.
Declaring a Variable, in java all variables must be declared before they can be used.
Syntax: type identifier [= value] [, identifier [= value] ...];
The type is one of java’s atomic types, or the name of a class or interface. The identifier is the name of the variable. You can initialize the variable by specifying an equal sign and a value. That the initialization expression must result in a value of the same (or compatible) type as that specified for the variable. To declare more than one variable of the specified type, use comma separated list.
E.g.: int a, b, c; or int a = 3, b = 5, c; byte d = 22; double pi = 3.14159; char s='s';
Dynamic Initialization: Although the preceding examples have used only constants as initializers, Java allows variables to be initialized dynamically, using any expression valid at the time the variable is declared.
//Dynamic initialization.
import java.util.Scanner;
class DynInit
{
public static void main(String args[])
 	{
int num1,num2,num3;
Scanner s=new Scanner(System.in);
System.out.println("Enter num1 & num2 values");
num1=s.nextInt();
num2=s.nextInt();
num3=num1+num2;
System.out.println("num3 value is " + num3);
}
}

 Data Types: Java defines 8 types of data: byte, short, int, long, char, float, double, and boolean. Data types can be divided into 2 types
1. Primitive Data Types (byte, short, int, long, float, double, char, boolean)
2. Non- Primitive Data Types (class, String, arrays, interfaces)
 Primitive Data types: The primitive types are defined to have an explicit range and mathematical behavior.
1. [bookmark: _GoBack]Integers: This group includes byte, short, int, and long, which are for whole-valued signed numbers, positive & negative numbers.
2. Floating-point numbers: This group includes float and double, which represent numbers with fractional precision.
3. Characters: This group includes char, which represents symbols in a character set, like letters and numbers.
4. Boolean: This group includes boolean, which is a special type for representing true/false values.
1. Integers: Java defines four integer types: byte, short, int, and long. All of these are signed, positive and negative values.
a. Java does not support unsigned, positive-only integers.
b. Many other computer languages support both signed and unsigned integers.
c. Java manages the meaning of the high-order bit differently, by adding a special “unsigned right shift” operator. Thus, the need for an unsigned integer type was eliminated.
d. The Java run-time environment is free to use whatever size it wants, as long as the types behave as you declared them.
Width and ranges of integer types
	Name
	Width
	Range

	byte
	8
	–128 to 127

	short
	16
	–32,768 to 32,767

	int
	32
	–2,147,483,648 to 2,147,483,647

	long
	64
	–9,223,372,036,854,775,808to 9,223,372,036,854,775,807

i. byte: The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to 127. Variables of type byte are especially useful when you’re working with a stream of data from a network or file. They are also useful when you’re working with raw binary data that may not be directly compatible with Java’s other built-in types. Byte variables are declared by use of the byte keyword. E.g.: byte b, c;
ii. short: short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-used in Java. E.g.: short s;
iii. int: int is a signed 32-bit type that has a range from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are commonly employed to control loops and to index arrays. Therefore, int is often the best choice when an integer is needed. E.g.: int a, b, c;
iv. long: long is a signed 64-bit type and is useful for those occasions where an int type is not large enough to hold the desired value. The range of a long is quite large. This makes it useful when big, whole numbers are needed.
2. Floating point numbers: Floating point numbers are also known as real numbers. These are used for representing the fractional numbers. There are two types float and double
Width and ranges of floating types
	Name
	Width(bits)
	Approximate Range

	float
	32
	1.4e-045 to 3.4e+038

	double
	64
	4.9e-324 to 1.8e+308

i. float: float specifies a single precision value that uses 32 bits of storage. Float is useful when you need a fractional component. E.g.: float a, b;
ii. double: Its representation is faster than the float representation. It can be used for high speed calculations. E.g.: double a, b, c;
3. Characters: In Java, the data type used to store characters is char. char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This is not the case in Java. Instead, Java uses Unicode to represent characters. It is a unification of dozens of character sets, such as Latin, Greek, Arabic, Cyrillic, Hebrew, Katakana, Hangul, and many more. For this purpose, it requires 16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative chars. The standard set of characters known as ASCII still ranges from 0 to 127 as always, and the extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. E.g.: char ch1, ch2; ch1 = 'Y'; ch2 = 88; // code for X;
4. Booleans: Java has a primitive type, called boolean, for logical values. It can have only one of two possible values, true or false. This is the type returned by all relational operators, as in the case of a < b. boolean is also the type required by the conditional expressions that govern the control statements such as if and for.
E.g.: Program
class BoolTest
{
public static void main(String args[])
{
boolean b;
b = false;
System.out.println("b is " + b);
b = true;
System.out.println("b is " + b);
// a boolean value can control the if statement
if(b)
 System.out.println("This is executed.");
b = false;
if(b)
System.out.println("This is not executed.");
// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));
}
}
Output:
b is false
b is true
This is executed.
10 > 9 is true.
 Non-Primitive (Reference) Data type: A reference data type is used to refer to an object. A reference variable is declared to be of specific and that type can never be change.
 Identifiers: - Identifiers must start with a letter, a currency character ($), or a connecting character such as the underscore _.
a. Identifiers cannot start with a number.
b. After the first character, identifiers can contain any combination of letters, currency characters, connecting characters, or numbers.
c. There is no limit to the number of characters an identifier can contain.
d. You can't use a Java keyword as an identifier.
e. Identifiers in Java are case-sensitive; foo and FOO are two different identifiers.
f. A legal identifier for a variable is also a legal identifier for a method or a class.
Naming Conventions: Java naming convention is a rule to follow as you decide what to name your identifiers such as class, package, variable, constant, method etc. But, it is not forced to follow. So, it is known as convention not rule. All the classes, interfaces, packages, methods and fields of java programming language are given according to java naming convention. Advantage of naming conventions in java: By using standard Java naming conventions, you make your code easier to read for yourself and for other programmers. Readability of Java program is very important. It indicates that less time is spent to figure out what the code does.
	Name
	Convention

	class name
	should start with uppercase letter and be a noun e.g. String, Color, Button, System, Thread etc.

	interface name
	should start with uppercase letter and be an adjective e.g. Runnable, Remote, ActionListener etc.

	method name
	should start with lowercase letter and be a verb e.g. actionPerformed(), main(), print(), println() etc.

	variable name
	should start with lowercase letter e.g. firstName, orderNumber etc.

	package name
	should be in lowercase letter e.g. java, lang, sql, util etc.

	constants name
	should be in uppercase letter. e.g. RED, YELLOW, MAX_PRIORITY etc.

 Keywords: The Java programming language has total of 50 reserved keywords which have special meaning for the compiler and cannot be used as variable names. Following is a list of Java keywords in alphabetical order, click on an individual keyword to see its description and usage example.
abstract	assert		boolean	break		byte		case
catch		char		class		const		continue	default
do		double		else		enum		extends	final
finally		float		for		goto		if		implements
import		instanceof	int		interface	long		native
new		package	private		protected	public		return
short		static		strictfp		super		switch		synchronized
this		throw		throws		transient	try		void
volatile		while
Points regarding Java keywords:
· const and goto are resevered words but not used.
· true, false and null are literals, not keywords.
· all keywords are in lower-case.
	Category
	Keywords

	Access modifiers
	private, protected, public

	Class, method, variable modifiers
	abstract, class, extends, final, implements,
interface, native,new, static, strictfp, synchronized, transient, volatile

	Flow control
	break, case, continue, default, do, else, for,
 if, instanceof,return, switch, while

	Package control
	import, package

	Primitive types
	boolean, byte, char, double, float, int, long, short

	Error handling
	assert, catch, finally, throw, throws, try

	Enumeration
	enum

	Others
	super, this, void

	Unused
	const, goto

 Literals: Literals in Java are a sequence of characters (digits, letters, and other characters) that represent constant values to be stored in variables. Literals can be any number, text, or other information that represents a value. Java language specifies five major types of literals. They are: Integer literals, Floating literals, Character literals, String literals, and Boolean literals. Each of them has a type associated with it. The type describes how the values behave and how they are stored.
1. Integer literals: Integer data types consist of the following primitive data types: int, long, byte, and short. byte, int, long, and short can be expressed in decimal(base10), hexadecimal(base 16) or octal(base 8) number systems as well. Prefix 0 is used to indicate octal and prefix 0x indicates hexadecimal when using these number systems for literals.
Examples: int decimal = 100; int octal = 0144; int hexa = 0x64;
2. Floating-point literals: Floating-point numbers are like real numbers in mathematics, for example, 4.13179, -0.000001. Java has two kinds of floating-point numbers: float and double. The default type when you write a floating-point literal is double, but you can designate it explicitly by appending the D (or d) suffix. However, the suffix F (or f) is appended to designate the data type of a floating-point literal as float. We can also specify a floating-point literal in scientific notation using Exponent (short E ore), for instance: the double literal 0.0314E2 is interpreted as: 0.0314 *10² (i.e. 3.14).
float ff = 89.0f; double dou = 89.0D; double doub = 89.0d;
float f = 89.0; // Type mismatch: cannot convert from double to float
double doubl = 89.0; //OK, by default floating point literal is double
3. Boolean Literals: The values true and false are treated as literals in Java programming. When we assign a value to a boolean variable, we can only use these two values. Unlike C, we can't presume that the value of 1 is equivalent to true and 0 is equivalent to false in Java. We have to use the values true and false to represent a Boolean value. Example boolean chosen = true;
4. Null Literals: The final literal that we can use in Java programming is a null literal. We specify the Null literal in the source code as 'null'. To reduce the number of references to an object, use null literal. The type of the null literal is always null. We typically assign null literals to object reference variables. For instance s = null;
5. Character literals: char data type is a single 16-bit Unicode character. We can specify a character literal as a single printable character in a pair of single quote characters such as 'a', '#', and '3'. You must know about the ASCII character set. The ASCII character set includes 128 characters including letters, numerals, punctuation etc. Below table shows a set of these special characters.
	 Escape
	 Meaning

	 \n
	 New line

	 \t
	 Tab

	 \b
	 Backspace

	 \r
	 Carriage return

	 \f
	 Formfeed

	 \\
	 Backslash

	 \'
	 Single quotation mark

	 \"
	 Double quotation mark

	 \d
	 Octal

	 \xd
	 Hexadecimal

	 \ud
	 Unicode character

If we want to specify a single quote, a backslash, or a non-printable character as a character literal use an escape sequence. An escape sequence uses a special syntax to represents a character. The syntax begins with a single backslash character.
6. String Literals: The set of characters in represented as String literals in Java. Always use "double quotes" for String literals. There are few methods provided in Java to combine strings, modify strings and to know whether to strings have the same values.
	 ""
	 The empty string

	 "\""
	 A string containing

	 "This is a string"
	 A string containing 16 characters

	 "This is a " + "two-line string"
	 actually a string-valued constant expression, formed from two string literals

Standard Default Values: In java, every variable has a default value. If we don’t initialize a variable when it is first created, java provides default value to that variable type automatically as shown in following table:
	Type of Variable
	Default Value

	byte
	0 (byte)

	short
	0 (short)

	int
	0

	long
	0L

	float
	0.0f

	double
	0.0d

	char
	null character

	boolean
	false

	reference
	null

 Operators: Java provides a rich set of operators. An operator is a symbol that tells the computer to perform certain mathematical or logical manipulations. Operators are used in programs to manipulate data and variables.
The following table shows the related categories:
	Category
	Operators

	Simple assignment
	=

	Arithmetic
	+ - * / %

	Unary
	+ - ++ -- !

	Relational
	== != > >= < <=

	Conditional
	&& || ? : (ternary)

	Type comparison
	instanceof

	Bitwise and Bit shift
	~ << >> >>> & ^ |

1. Simple assignment: This is the most commonly used operator. It assigns the value on its right to the operand on its left. Here are some examples:
Assigning numbers: int x = 10; float y = 3.5F;
Assigning object references: String message = “Hello world”; File csv = new File(“test.csv”);
2. Arithmetic operators: The arithmetic operators are used to perform mathematic calculations just like basic mathematics in school. The following table lists all arithmetic operators in Java:
	Operator
	Meaning

	+
	Addition (and strings concatenation) operator

	-
	Subtraction operator

	*
	Multiplication operator

	/
	Division operator

	%
	Remainder operator

UNIT II								Programming Constructs

DNRCET-CSE	Page 28

Example Program:
public class ArithmeticDemo
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = 20;
 int result = x + y;
 System.out.println("x + y = " + result);
 result = x - y;
 System.out.println("x - y = " + result);
 result = x * y;
 System.out.println("x * y = " + result);
 result = y / x;
 System.out.println("y / x = " + result);
 result = x % 3;
 System.out.println("x % 3 = " + result);
 }
}
Output:
x + y = 30
x - y = -10
x * y = 200
y / x = 2
x % 3 = 1

 The addition operator (+) can also be used for joining two or more strings together (strings concatenation). Here’s an example program:

public class StringConcatDemo
{
public static void main(String[] args)
{
String firstName = "James";
String lastName = "Gosling";
String greeting = "Hello " + firstName + " " + lastName;
System.out.println(greeting);
 	}
}
Output:
Hello James Gosling!
3. Unary operators: The unary operators involve in only a single operand. The following table lists all unary operators in Java:

	Operator
	Meaning

	+
	Unary plus operator; indicates positive value (numbers are positive by default, without this operator).

	-
	Unary minus operator; negate an expression.

	++
	Increment operator; increments a value by 1.

	--
	Decrement operator; decrements a value by 1;

	!
	Logical complement operator; inverts value of a boolean.

Example Program:
public class UnaryDemo
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = 20;
 int result = +x;
 System.out.println("+x = " + result);
 result = -y;
 System.out.println("-y = " + result);
 result = ++x;
 System.out.println("++x = " + result);
 result = --y;
 System.out.println("++y = " + result);
 boolean ok = false;
 System.out.println(ok);
 System.out.println(!ok);
 }
}
Output:
+x = 10
-y = -20
++x = 11
++y = 19
false
true

Note that the increment and decrement operators can be placed before (prefix) or after (postfix) the operand, e.g. ++x or x++, --y or y--. When using these two forms in an expression, the difference is:
Prefix form: the operand is incremented or decremented before used in the expression.
Postfix form: the operand is incremented or decremented after used in the expression.
The following example illustrates the prefix/postfix:

public class PrefixPostfixDemo
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = 20;
 System.out.println(++x);
 System.out.println(x++);
 System.out.println(x);
 System.out.println(--y);
 System.out.println(y--);
 System.out.println(y);
 }
}
Output:
11
11
12
19
19
18
4. Relational operators: The relational operators are used to compare two operands or two expressions and result is a boolean. The following table lists all relational operators in Java.
	Operator
	Meaning

	==
	equal to

	!=
	not equal to

	>
	greater than

	>=
	greater than or equal to

	<
	less than

	<=
	less than or equal to

public class RelationalDemo
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = 20;
 boolean result = x == y;
 System.out.println("x == y? " + result);
 result = x != y;
 System.out.println("x != y? " + result);
 result = x > y;
 System.out.println("x > y? " + result);
 result = x >= y;
 System.out.println("x >= y? " + result);
 result = x < y;
 System.out.println("x < y? " + result);
 result = x <= y;
 System.out.println("x <= y? " + result);
 }
}
Output:
x == y? false
x != y? true
x > y? false
x >= y? false
x < y? true
x <= y? true
5. Conditional operators: The conditional operators (&& and ||) are used to perform conditional-AND and conditional-OR operations on two boolean expressions and result in a boolean value. They have “short-circuiting” behavior:
For the && operator: if the left expression is evaluated to false, then the right expression is not evaluated. Final result is false.
For the || operator: if the left expression is evaluated to true, then the right expression is not evaluated. Final result is true.
	Operator
	Meaning

	&&
	conditional -AND operator

	||
	conditional-OR operator

	? :
	ternary operator in form of: A ? B : C

Example Program:
public class ConditionalDemo
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = 20;
 if ((x > 8) && (y > 8))
 {
 System.out.println("Both x and y are greater than 8");
 }
 if ((x > 10) || (y > 10))
 {
 System.out.println("Either x or y is greater than 10");
 }
 }
}
Output:
Both x and y are greater than 8
Either x or y is greater than 10
Other conditional operators are ? and : which form a ternary (three operands) in the following form: result = A ? B : C. This is interpreted like this: if A evaluates to true, then evaluates B and assign its value to the result. Otherwise, if A evaluates to false, then evaluates C and assign its value to the result. For short, we can say: If A then B else C. So this is also referred as shorthand for an if-then-else statement.
Example:
public class TernaryDemo
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = 20;
 int result = (x > 10) ? x : y;
 System.out.println("result 1 is: " + result);
 result = (y > 10) ? x : y;
 System.out.println("result 2 is: " + result);
 }
}
Output: result 1 is: 20
 result 2 is: 10
6. Type comparison operator (instanceof): The instanceof operator tests if an object is an instance of a class, a subclass or a class that implements an interface; and result in a boolean value. Here’s an example program:
public class InstanceofDemo
{
 public static void main(String[] args)
 {
 String name = "Java";
 if (name instanceof String)
 {
 System.out.println("an instance of String class");
 }
 }
}
Output:
an instance of String class
7. Bitwise and Bit shift operators: These operators perform bitwise and bit shift operations on only integral types, not float types. They are rarely used so the listing here is just for reference:
	Operator
	Meaning

	~
	unary bitwise complement; inverts a bit pattern

	<<
	signed left shift

	>>
	signed right shift

	>>>
	unsigned right shift

	&
	bitwise AND

	^
	bitwise exclusive OR

	|
	bitwise inclusive OR

public class BitDemo
{
 public static void main(String[] args)
 {
 int x = 10;
 int result = x << 2;
 System.out.println("Before left shift: " + x);
 System.out.println("After left shift: " + result);
 }
}
Output:
Before left shift: 10
After left shift: 40
 Expressions: An arithmetic expression is a combination of variables, constants, and operators arranged as per the syntax of the language. Java can handle any complex mathematical expressions.
	Algebraic expression
	Java expression

	ab-c	
	a*b-c

	(m+n)(x+y)	
	(m+n)*(x+y)

	3x2+2x+1	
	3*x*x+2*x+1

Evaluation of Expression: Expressions in java are evaluated using an assignment of the form variable = expression; variable is any valid java variable name. When the statement is encountered, the expression is evaluated first and the result then replaces the previous value of the variable on the left-hand side. All variables used in the expression must be assigned values before evaluation is attempted.
 Precedence rules and Associativity: Java operators have two properties those are precedence, and associativity. Precedence is the priority order of an operator, if there are two or more operators in an expression then the operator of highest priority will be executed first then higher, and then high. For example, in expression 1 + 2 * 5, multiplication (*) operator will be processed first and then addition. It's because multiplication has higher priority or precedence than addition.
If all operators in an expression have same priority in such case the second property associated with an operator comes into play, which is associativity. Associativity tells the direction of execution of operators that can be either left to right or right to left.
For example, in expression a = b = c = 8 the assignment operator is executed from right to left that means c will be assigned by 8, then b will be assigned by c, and finally a will be assigned by b. You can parenthesize this expression as (a = (b = (c = 8))).

The following is the Table which lists Java operators - precedence chart highest to lowest.

	Precedence
	Operator
	Description
	Associativity

	1
	[]
()
.
	array index
method call
member access
	Left -> Right

	2
	++
--
+ -
~
!
	pre or postfix increment
pre or postfix decrement
unary plus, minus
bitwise NOT
logical NOT
	Right -> Left

	3
	(type cast)
new
	type cast
object creation
	Right -> Left

	4
	*
/
%
	multiplication
division
modulus (remainder)
	Left -> Right

	5
	+ -
+
	addition, subtraction
string concatenation
	Left -> Right

	6
	<<
>>
>>>
	left shift
signed right shift
unsigned or zero-fill right shift
	Left -> Right

	7
	<
<=
>
>=
instanceof
	less than
less than or equal to
greater than
greater than or equal to
reference test
	Left -> Right

	8
	==
!=
	equal to
not equal to
	Left -> Right

	9
	&
	bitwise AND
	Left -> Right

	10
	^
	bitwise XOR
	Left -> Right

	11
	|
	bitwise OR
	Left -> Right

	12
	&&
	logical AND
	Left -> Right

	13
	||
	logical OR
	Left -> Right

	14
	? :
	conditional (ternary)
	Right -> Left

	15
	= += -=
*= /= %=
&= ^= |=
<<= >>=
>>>=
	assignment and short hand assignment operators
	Right -> Left

 Primitive Type Conversion and Casting: Java supports two types of castings – primitive data type casting and reference type casting. Reference type casting is nothing but assigning one Java object to another object. Type casting comes with 3 categories.
1. Implicit casting (widening conversion): A data type of lower size (occupying less memory) is assigned to a data type of higher size. This is done implicitly by the JVM. The lower size is widened to higher size. This is also named as automatic type conversion.
Examples:
 int x = 10; // occupies 4 bytes
 double y = x; // occupies 8 bytes
 System.out.println(y); // prints 10.0
In the above code 4 bytes integer value is assigned to 8 bytes double value.
2. Explicit casting (narrowing conversion): A data type of higher size (occupying more memory) cannot be assigned to a data type of lower size. This is not done implicitly by the JVM and requires explicit casting; a casting operation to be performed by the programmer. The higher size is narrowed to lower size.
 double x = 10.5; // 8 bytes
 int y = x; // 4 bytes ; raises compilation error
In the above code, 8 bytes double value is narrowed to 4 bytes int value. It raises error. Let us explicitly type cast it.
 double x = 10.5;
 int y = (int) x;
The double x is explicitly converted to int y. The thumb rule is, on both sides, the same data type should exist.
3. Boolean casting: A boolean value cannot be assigned to any other data type. Except boolean, all the remaining 7 data types can be assigned to one another either implicitly or explicitly; but boolean cannot. We say, boolean is incompatible for conversion. Maximum we can assign a boolean value to another boolean.
Following raises error.
 boolean x = true;
 int y = x; // error
 boolean x = true;
 int y = (int) x; // error
byte –> short –> int –> long –> float –> double
In the above statement, left to right can be assigned implicitly and right to left requires explicit casting. That is, byte can be assigned to short implicitly but short to byte requires explicit casting.
Example:
public class Demo
{
 public static void main(String args[])
 {
 char ch1 = 'A';
 double d1 = ch1;

 System.out.println(d1); // prints 65.0
 System.out.println(ch1 * ch1); // prints 4225 , 65 * 65

 double d2 = 66.0;
 char ch2 = (char) d2;
 System.out.println(ch2); // prints B
 }
}
Flow of Control: A Java program is a set of statements, which are normally executed sequentially in the order in which they appear. This happens when options or repetitions of certain calculations are not necessary.
When a program breaks the sequential flow and jumps to another part of the code, it is called branching. When the branching is based on a particular condition, it is known as conditional branching. It the branching takes place without any decision, it is known as unconditional branching.
1. Conditional Statements: these conditional statements include the following
a) if else statement
b) nested if statement
c) if else if ladder
d) switch case statement
2. Iteration Statements: these iteration statements include the following
a) while loop
b) do while loop
c) for loop
3. Jump Statements: these jump statements include the following
a) break
b) continue
c) return
1. Conditional Statements:
 a) if else statement: This statement is used to perform a task depending upon whether the given condition is true or false. Here a task represents single statement or group of statements.
Syntax: if(condition)
{
//statements;
}
else
{
//Statements;
}
 Here if condition is true then statement1 will be executed. if condition is false then statement2 will be executed. statement1 and statement2 represent either a single statements or more than one statement. If more than one statement is used then they should be enclosed in angular bracket {}.
E.g.: if(a>b)
 System.out.println(“the value of a=” +a);
 else
 System.out.println(“the value of b=” +b);
b) Nested if statement: A nested if is an if statement that is the target of another if or else. Nested ifs are very common in programming. When you nest ifs, the main thing to remember is that an else statement always refers to the nearest if statement that is within the same block as the else and that is not already associated with an else.

Syntax: if(condition1)
 {
 if(condition2)
 	 //Statements1;
 else
 //Statements2;
 }
 else
 //Statements3;
 E.g.: if(i == 10)
 {
 if(j < 20)
 a = b;
 else
 a = c; // associated with this else
 }
 else
 a = d; // this else refers to if(i == 10)
c) if-else-if Ladder: A common programming construct that is based upon a sequence of nested ifs is the if-else-if ladder.
Syntax: if(condition)
 // statement;
else if(condition)
 // statement;
else if(condition)
 // statement;
else
 //statement;
The if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final else statement will be executed. The final else acts as a default condition; that is, if all other conditional tests fail, then the last else statement is performed. If there is no final else and all other conditions are false, then no action will take place.
E.g.: int fib(int m)
 {
 if(m==1)
 	return 1;
 else
if(m==2)
 	 return 1;
 else
 return (fib(m-1)+fib(m-2));
 }
d) switch: The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch execution to different parts of your code based on the value of an expression. As such, it often provides a better alternative than a large series of if-else-if statements.
Syntax: switch (expression)
{
case value1:
// statement sequence
break;
case value2:
// statement sequence
break;
...
case valueN:
// statement sequence
break;
default:
// default statement sequence
}
The expression must be of type byte, short, int, or char; each of the values specified in the case statements must be of a type compatible with the expression.
Each case value must be a unique literal (that is, it must be a constant, not a variable). Duplicate case values are not allowed.
E.g.: switch(i)
 {
 case 0: System.out.println("i is zero.");
 break;
 case 1: System.out.println("i is one.");
 break;
 case 2: System.out.println("i is two.");
 break;
 case 3: System.out.println("i is three.");
 break;
 default: System.out.println("i is greater than 3.");
 }

2. Iteration Statements: Java’s iteration statements are for, while, and do-while. These statements create what we commonly call loops. As you probably know, a loop repeatedly executes the same set of instructions until a termination condition is met.
a) while loop: The while loop is Java’s most fundamental loop statement. It repeats a statement or block while its controlling expression is true.
Syntax: while(condition)
{
// body of loop
}
The condition can be any Boolean expression. The body of the loop will be executed as long as the conditional expression is true. When condition becomes false, control passes to the next line of code immediately following the loop. The curly braces are unnecessary if only a single statement is being repeated.
E.g.: while(c<n)
 {
 a=b;
 b=c;
 c=a+b;
 }

b) do-while loop: If the conditional expression controlling a while loop is initially false, then the body of the loop will not be executed at all. However, sometimes it is desirable to execute the body of a loop at least once, even if the conditional expression is false to begin with. In other words, there are times when you would like to test the termination expression at the end of the loop rather than at the beginning. Fortunately, Java supplies a loop that does just that: the do-while. The do-while loop always executes its body at least once, because its conditional expression is at the bottom of the loop.
Syntax: do
 	{
// body of loop
} while (condition);
Each iteration of the do-while loop first executes the body of the loop and then evaluates the conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop terminates. As with all of Java’s loops, condition must be a Boolean expression.
The do-while loop is especially useful when you process a menu selection, because you will usually want the body of a menu loop to execute at least once. Consider the following program, which implements a very simple help system for Java’s selection and iteration statements:
E.g.: int n=10;
 do
 {
 System.out.println(n);
 n--;
 }while(n>0);
c) for loop: The traditional form that has been in use since the original version of Java. When the loop starts, the initialization portion of the loop is executed. Initialization expression executed only once and then condition is evaluated. This must be a Boolean expression. Check the condition; if the condition is true, then the body of the loop is executed. If it is fail, the loop terminates. Next, the iteration portion of the loop is executed and goes to increment or decrement the loop control variable and again checks the condition if it is true, then the body of the loop is executed. This process is repeated up to the condition is fail.
Syntax: traditional for statement:
for(initialization; condition; iteration)
{
// body
}
E.g.: for(i=1;i<=n;i++)
 {
 a=b;
 b=c;
 c=a+b;
 }
Declaring Loop Control Variables Inside the for Loop
for(datatype initialization; condition; iteration)
{
 // body

}
E.g.: for(int i=1;i<=n;i++)
 {
 a=b;
 b=c;
 c=a+b;
3. Jump Statements: Java supports three jump statements: break, continue, and return. These statements transfer control to another part of your program.
a) break: In Java, the break statement has three uses.
· it terminates a statement sequence in a switch statement.
· it can be used to exit a loop.
· it can be used as a “civilized” form of goto.
 The last two uses are explained here.
Using break to Exit a Loop: By using break, you can force immediate termination of a loop, bypassing the conditional expression and any remaining code in the body of the loop. When a break statement is encountered inside a loop, the loop is terminated and program control resumes at the next statement following the loop.
E.g.: for(int i=0; i<100; i++)
 {
 if(i == 10)
 break; // terminate loop if i is 10
 System.out.println("i: " + i);
 }
Labelled break: java supports labelled break
Syntax: break label;
boolean t = true;
first:
{
second:
{
third:
{
System.out.println("Before the break.");
if(t)
 break second; // break out of second block
System.out.println("This won't execute");
}
}
System.out.println("This is after second block.");
}
Output:
Before the break.
This is after second block.

b) continue: The continue statement performs such an action. In while and do-while loops, a continue statement causes control to be transferred directly to the conditional expression that controls the loop. In a for loop, control goes first to the iteration portion of the for statement and then to the conditional expression. For all three loops, any intermediate code is bypassed.
E.g.: for(int i=0; i<10; i++)
 {
 System.out.print(i + " ");
 if (i%2 == 0) continue;
 System.out.println("");
 }
c) return: The last control statement is return. The return statement is used to explicitly return from a method. That is, it causes program control to transfer back to the caller of the method. As such, it is categorized as a jump statement. At any time in a method the return statement can be used to cause execution to branch back to the caller of the method. Thus, the return statement immediately terminates the method in which it is executed. Here, return causes execution to return to the Java run-time system, since it is the run-time system that calls main().
E.g.: int fib(int m)
 {
 if(m==1)
 return 1;
 else if(m==2)
 return 1;
 else
 return (fib(m-1)+fib(m-2));
 }
 Classes and Objects: Java is a true object-oriented language and therefore a java program must be encapsulated in a class that defines the state and behavior of the basic program components known as Objects.
Class: A class can be defined as a template/blue print that describes the behaviors/states that object of its type support. It is a combination of data items and functions which are called as members of class.

The General Form of a Class
class ClassName [extends SuperClassName]
{
[type instanceVariable1;]
[type instanceVariable2;]
[type methodName1(parameter-list)
{
// body of method
}]
[type methodName2(parameter-list)
 {
// body of method
}]
}
Everything inside the square brackets is optional. Therefore, the following is a valid class definition:
class Empty
{
}
The data, or variables, defined within a class are called instance variables. The code is contained within methods. Collectively, the methods and variables defined within a class are called members of the class. Variables defined within a class are called instance variables because each instance of the class (that is, each object of the class) contains its own copy of these variables.
Object: An object in java is essentially a block of memory that contains space to store the instance variables. Creating an object is also refers to as instantiating an object. Objects are created using “new” operator. The new operator dynamically allocates memory for an object and returns reference to that object.
ClassName cn;	//declare the reference variable
cn=new ClassName(); //instantiate the object
The first statement declares a variable to hold the object reference and the second one actually assigns the object reference to the variable. The variable cn is now an object of the ClassName.
Both Statements can be combined into one statement: ClassName cn=new ClassName();
It is important to understand that any changes to the variables of one object have no effect on the variables of another.
Accessing Class Members: Each object of a class is having its own set of variables, we should assign values to these variables in order to use them in our program. The following is the procedure for accessing a variable and a method respectively.
objectname.variablename = value;
objectname.methodname();
Example: Program to illustrate class members:
import java.util.*;
class Example
{
int num1,num2;
void method()
{
	System.out.println(“Num1 value is “+num1+” Num2 value is “+num2);
}
public static void main(String args[])
{
	Example e=new Example();
	e.num1=12;
	e.num2=22;
	e.method();
}
}
Output:
Num1 value is 12 Num2 value is 22
Methods: Classes usually consist of two things: instance variables and methods. Method is a large one because Java gives them so much power and flexibility. This is the general form of a method:
return type methodName(parameter-list)
{
// body of method
}
Here, return type specifies the type of data returned by the method. This can be any valid type, including class types that you create. If the method does not return a value, its return type must be void.
Method name can be any legal identifier other than those already used by other items within the current scope.
The parameter-list is a sequence of type and identifier pairs separated by commas. Parameters are essentially variables that receive the value of the arguments passed to the method when it is called.
If the method has no parameters, then the parameter list will be empty.
Methods that have a return type other than void return a value to the calling routine using the following form of the return statement: return value; here, value is the value returned.
Example:
class MethodDemo
{
int a,b,c;
int show()
{
 	return a*b*c;
}
void var(int x,int y, int z)
{
a=x;
b=y;
c=z;
}
}
class ParaMain
{
public static void main(String args[])
{
int d;
MethodDemo mdr=new MethodDemo();
md.var(10,2,3);
d=md.show();
System.out.println("D value: "+d);
}
}
Output:
D value: 60

 Constructors: Constructor in java is a special type of method that is used to initialize the object. Java constructor is invoked at the time of object creation. It constructs the values i.e. provides data for the object that is why it is known as constructor.
There are basically two rules defined for the constructor.
· Constructor name must be same as its class name
· Constructor must have no explicit return type
There are two types of constructors:
· Default constructor (no-arg constructor): A constructor that has no parameter is known as default constructor.
· Parameterized constructor: A constructor that has parameters is known as parameterized constructor.
Default constructor: Default constructor provides the default values to the object like 0, null etc. depending on the type.
Example:
class ConstructorDemo
{
	ConstructorDemo()
	{
		System.out.println(“Default Constructor”);
	}
public static void main(String args[])
	{
		ConstructorDemo cd=new ConstructorDemo();
	}
}
Output: Default Constructor
Note: If there is no constructor in a class, compiler automatically creates a default constructor.
Parameterized constructor: Parameterized constructor is used to provide different values to the distinct objects.
Example:
class ConstructorDemoOne
{
int num1,num2;
	ConstructorDemoOne(int n1,int n2)
	{
		num1=n1;
		num2=n2;
	}
	void display()
{
	System.out.println(“Num1 value is “+num1+” Num2 value is ”+num2);
}
public static void main(String args[])
	{
		ConstructorDemoOne cd=new ConstructorDemoOne(2,5);
		cd.display();
	}
}
Output:
Num1 value is 2 Num2 value is 5.
 Constructor Overloading: A constructor can also be overloaded. Overloaded constructors are differentiated on the basis of their type of parameters or number of parameters. Constructor overloading is not much different than method overloading. In case of method overloading you have multiple methods with same name but different signature, whereas in Constructor overloading you have multiple constructor with different signature but only difference is that Constructor doesn't have return type in Java. Constructor overloading is done to construct object in different ways.
Example:

class ConstructorOLDemo
{
int num1,num2;
ConstructorOLDemo()
{
num1=num2=0;
}
	ConstructorOLDemo(int n1,int n2)
	{
		num1=n1;
		num2=n2;
	}
	void display()
{
	System.out.println(“Num1 value is “+num1+” Num2 value is ”+num2);
}
public static void main(String args[])
	{
		ConstructorOLDemo cd=new ConstructorOLDemo();
		cd.display();
		ConstructorOLDemo cd1=new ConstructorOLDemo(2,5);
		cd1.display();
	}
}

Output:
Num1 value is 0 Num2 value is 0.
Num1 value is 2 Num2 value is 5.

 There is no copy constructor in java. But, we can copy the values of one object to another like copy constructor in C++.

class CopyDemo
{
int num1,num2;
CopyDemo ()
{
num1=num2=0;
}
	CopyDemo (int n1,int n2)
	{
		num1=n1;
		num2=n2;
	}
	CopyDemo(CopyDemo cd)
	{
		num1=cd.num1;
		num2=cd.num2;
	}
	void display()
{
	System.out.println(“Num1 value is “+num1+” Num2 value is ”+num2);
}
public static void main(String args[])
	{
		CopyDemo cd=new CopyDemo();
		cd.display();
		CopyDemo cd1=new CopyDemo(2,5);
		cd1.display();
		CopyDemo cd2=new CopyDemo(cd1);
		cd2.display();

	}
}
Output:
Num1 value is 0 Num2 value is 0.
Num1 value is 2 Num2 value is 5.
Num1 value is 2 Num2 value is 5.

 Garbage Collector: In java, garbage means unreferenced objects. Garbage Collection is process of reclaiming the runtime unused memory automatically. In other words, it is a way to destroy the unused objects.
To do so, we were using free() function in C language and delete() in C++. But, in java it is performed automatically. So, java provides better memory management.
Advantage of Garbage Collection: It makes java memory efficient because garbage collector removes the unreferenced objects from heap memory. It is automatically done by the garbage collector (a part of JVM) so we don't need to make extra efforts.
An object can be unreferenced. There are many ways:
· By nulling the reference
· By assigning a reference to another
1) By nulling a reference:
Employee e=new Employee();
e=null;
2) By assigning a reference to another:
Employee e1=new Employee();
Employee e2=new Employee();
e1=e2;//now the first object referred by e1 is available for garbage collection
 finalize() method: The finalize() method is invoked each time before the object is garbage collected. This method can be used to perform cleanup processing. This method is defined in Object class as: protected void finalize(){}
Note: The Garbage collector of JVM collects only those objects that are created by new keyword. So if you have created any object without new, you can use finalize method to perform cleanup processing (destroying remaining objects).
 gc() method: The gc() method is used to invoke the garbage collector to perform cleanup processing. The gc() is found in System and Runtime classes. public static void gc(){}.

Note: Neither finalization nor garbage collection is guaranteed.

Example:
public class TestGarbage1
{
public void finalize()
{
System.out.println("object is garbage collected");
}
public static void main(String args[])
{
TestGarbage1 s1=new TestGarbage1();
TestGarbage1 s2=new TestGarbage1();
s1=null;
s2=null;
System.gc();
 	}
}
Output:
object is garbage collected
object is garbage collected

 this keyword: this is a reference variable that refers to the current object. The following are the usages of this keyword.
· this keyword can be used to refer current class instance variable.
· this() can be used to invoke current class constructor.
· this keyword can be used to invoke current class method (implicitly)
· this can be passed as an argument in the method call.
· this can be passed as argument in the constructor call.
· this keyword can also be used to return the current class instance.
Example for this keyword can be used to refer current class instance variable.

class Box
{
	double width,height,length;
	Box()
	{
		width=length=height=-1;
	}
	Box(double width, double height, double length)
	{
		this.width=width;
 this.height=height;
 this.length=length;
}
double volume()
{
	return width*length*height;
}
	public static void main(String args[])
	{
		Box b=new Box();
		double vol=b.volume();
		System.out.println(“Volume of Box is “+vol);
		Box b1=new Box(12,12,12);
		b1.volume();
		System.out.println(“Volume of Box is “+vol);
	}
}
Output:
Volume of Box is -1
Volume of Box is 1728

Example for this() can be used to invoke current class constructor.
class ThisDemo
{
	int num1,num2;
	ThisDemo(int num1,int num2)
	{
		this.num1=num1;
 this.num2=num2;
	}
	ThisDemo(int num1)
	{
		this(num1,num1);
	}
	ThisDemo()
	{
		this(0);
	}
	public static void main(String args[])
	{
		ThisDemo td=new ThisDemo();
	}
}
Explanation: this() is used for calling the current class constructor. this(0) calls the constructor which is having a single parameter constructor of type integer. this(num1,num1) calls the constructor which is having two parameters of type integer.
 Static Keyword: If we want to define a class member where that will be used independently of any object of that class. Normally, a class member must be accessed only in conjunction with an object of its class. But, it is possible to create a member that can be used by itself, without reference to a specific instance. To create such a member, precede its declaration with the keyword static.
When a member is declared static, it can be accessed before any objects of its class are created, and without reference to any object. You can declare both methods and variables to be static. The most common example of a static member is main(). main() is declared as static because it must be called before any objects exist.
The members that are declared as static are called static members. Since these members are associated with the class itself rather than individual objects, the static variables and static methods are referred as class variables and class methods in order to distinguish them from instance variables and instance methods.
Static variables are used when we want to have a variable common to all instances of a class. Java creates only one copy for a static variable which can be used even if the class in not instantiated.
Methods declared as static have several restrictions:
· They can only directly call other static methods.
· They can only directly access static data.
· They cannot refer to this or super in any way.
We can declare static block that gets executed exactly once, when the class is first loaded. static variables and static methods can be used independently of any object. For this, we need to specify the name of their class followed by the dot operator.
Syntax: ClassName.staticVariable;
	 ClassName.staticMethod();

Example: // Demonstrate static variables, methods, and blocks.
class UseStatic
{
 static int a = 3;
 static int b;
 static void meth(int x)
 {
System.out.println("x = " + x);
System.out.println("a = " + a);
System.out.println("b = " + b);
 }
 static
 {
System.out.println("Static block initialized.");
b = a * 4;
}
}
class StaticDemo
{
public static void main(String args[])
{
	UseStatic.meth(42);
}
}
Output:
Static block initialized.
x = 42
a = 3
b = 12

 Arrays: An array is a group of variables that are referred to by a common name. Arrays of any type can be created and may have one or more dimensions. A specific element in an array is accessed by its index.
 One-Dimensional Arrays: A one-dimensional array is a list of variables.
· To create an array, first you must create an array variable of the desired type.
Syntax: type[] var-name;
· type declares the base type of the array.
· The base type determines the data type of each element that comprises the `array. Thus, the base type for the array determines what type of data the array will hold.
· new is a special operator for allocating memory.
Syntax var-name = new type[size];
· type specifies the type of data being allocated.
· size specifies the number of elements in the array which must be a numeric constant.
· var-name is the array variable that is linked to the array.
The elements in the array allocated by new will automatically be initialized to zero.
E.g.: int[] numbers = new int[3];
An array is a two-step process:
· You must declare a variable of the desired array type.
· You must allocate the memory that will hold the array, using new, and assign it to the array variable.
Thus, in Java all arrays are dynamically allocated. Once you have allocated an array, you can access a specific element in the array by specifying its index within square brackets. All array indexes start at zero.
// Demonstrate a one-dimensional array.
class Array
{
public static void main(String args[])
{
int numbers[];
numbers = new int[3];
numbers [0] = 4;
numbers [1] = 3;
numbers [2] = 6;
System.out.println("I Like Number "+ numbers [0]);
}
}
Output:
I Like Number 4

· An array initializer is a list of comma-separated expressions surrounded by curly braces. The commas separate the values of the array elements. The array will automatically be created large enough to hold the number of elements you specify in the array initializer. There is no need to use new.
// An improved version of the previous program.
class AutoArray
{
public static void main(String args[])
 {
int[] numbers = { 4,3,6 };
System.out.println("I Like Number "+ numbers [0]);
}
}
Output:
I Like Number 4
 Alternative Array Declaration Syntax: There is a second form that may be used to declare an array: Syntax: type var-name[];
Here, the square brackets follow the array variable name, and not the type specifier.
E.g.: the following two declarations are equivalent:
int[] a2 = new int[3];
int al[] = new int[3];
The following declarations are also equivalent:
char[][] twod2 = new char[3][4];
char twod1[][] = new char[3][4];
This first declaration form offers convenience when declaring several arrays at the same time.
E.g. int[] nums, nums2, nums3; // create three arrays
The above statement creates three array variables of type int. It is the writing same as the following: int nums[], nums2[], nums3[]; // create three arrays
The first declaration form is also useful when specifying an array as a return type for a method.
 Multidimensional Arrays: In Java, multidimensional arrays are actually arrays of arrays. To declare a multidimensional array variable, specify each additional index using another set of square brackets.
E.g.: int[][] TD = new int[3][3];
This allocates a 3 by 3 array and assigns it to TD. Internally this matrix is implemented as an array of arrays of int.
The following program numbers each element in the array, row by row, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray
{
public static void main(String args[])
{
int i ,j ,k=0;
int TD[][]= new int[3][3];
for(i=0; i<3; i++)
 		{
for(j=0; j<3; j++)
{
k=TD[i][j];
k++;
}
}
for(i=0; i<3; i++)
{
for(j=0; j<3; j++)
{
System.out.print(TD[i][j] + " ");
}
System.out.println();
}
}
}
Output:
0 1 2
3 4 5
6 7 8

 foreach loop: JDK 1.5 introduced a new for loop known as foreach loop or enhanced for loop, which enables you to traverse the complete array sequentially without using an index variable.
public class TestArray
{
	public static void main(String args[])
	{
		double[] myList = {1,2,3,4};
		for(double ele:myList)
		{
			System.out.print(ele);
		}
}	}
Output: E:\> javac TestArray.java
E:\ >java TestArray
1.0 2.0 3.0 4.0
 Command Line Arguments: String[] args within the declaration of the main method represents a String array named args where args is nothing more than an identifier, we can replace it with any other identifier and the program will still work. A String array can be passed as an argument when we execute the program. We pass it through the command line itself. Consider that we have a class named Add. The following statement normally used to execute the program.
E:\>javac Add.java
E:\>java Add
When we wish to pass the String array, we simply include the elements of the array as simple Strings beside the class name. Enclosing the Strings in quotes is optional. Consecutive Strings are separated with a space. For example, if we wish to pass a three element String array containing the values "1", "2", and "3" any of the following lines is entered on the command prompt.
E:\>java Add 1 2 3
E:\>java Add "1" "2" "3"
Since these arguments are passed through the command line, they are known as command line arguments. The String arguments passed are stored in the array specified in the main() declaration. args[] is now a three element String array. These elements are accessed in the same way as the elements of a normal array. The following is the complete Add program which is capable of adding any number of integers passed as command line arguments.
public class Add
{
public static void main(String[] args)
{
int sum = 0;
for (int i = 0; i < args.length; i++)
{
sum = sum + Integer.parseInt(args[i]);
}
System.out.println("The sum of the arguments passed is " + sum);
}
}
Output:
E:\ >javac Add.java
E:\ >java Add 1 2 3
The sum of the arguments passed is 6
E:\ >java Add "1" "2" "3"
The sum of the arguments passed is 6
