Introduction to Object Oriented Programming
 Introduction: One Characteristic that is constant in the software industry today is the “change”. Since the invention of the computer, many programming approaches have been tried. These include techniques such as modular programming, top-down programming, bottom-up programming and structured programming. The primary motivation in each case has been the concern to handle the increasing complexity of programs that are reliable and maintainable.
With the advent of languages such as C, structured programming became very popular and was the paradigm of the 1980’s. Structured programming became very powerful tool that enabled programmers to write moderately complex programs fairly easy. However, as the programs grew larger, even the structured approach failed to show the desired results in terms of bug-free, easy-to-maintain, and reusable programs.
Object-Oriented Programming (OOP) is an approach to program organization and development, which attempts to eliminate some of the pitfalls of conventional programming methods by incorporating the best of structured programming features with several new concepts. Java is a pure object – oriented language.
 Need of OOP: Two Paradigms of Programming: All computer programs consist of two elements: code and data. Furthermore, a program can be conceptually organized around its code or around its data. That is, some programs are written around what is happening and others are written around who is being affected. These are the two paradigms that govern how a program is constructed.
· The first way is called the process-oriented model. This approach characterizes a program as a series of linear steps (that is, code). The process-oriented model can be thought of as code acting on data. Procedural languages such as C employ this model to considerable success. Problems with this approach appear as programs grow larger and more complex. To manage increasing complexity, the second approach, called object-oriented programming, was conceived.
· Object-oriented programming organizes a program around its data (that is, objects) and a set of well-defined methods to that data. An object-oriented program can be characterized as data controlling access to code.
Data Abstraction: Abstraction refers to the act of representing essential features without including the background details or explanations. Classes use the concept of abstraction.
 Principles of OOP: The following are the 3 principles of OOP
1. Encapsulation
2. Inheritance
3. Polymorphism
1. Encapsulation: Wrapping up of the data and methods into a single unit is known as Encapsulation. Encapsulation is the mechanism that binds together code and the data it manipulates, and keeps both safe from outside interference and misuse.
In Java the basis of encapsulation is the class. A class defines the structure and behavior (data and code) that will be shared by a set of objects. Each object of a given class contains the structure and behavior defined by the class, as if it were stamped out by a mold in the shape of the class. For this reason, objects are sometimes referred to as instances of a class. Thus, a class is a logical construct; an object has physical reality.
2. Inheritance: Inheritance is the process by which objects of one class acquire the properties of objects of another class. A class inherits state and behavior from its superclass. Inheritance provides a powerful and natural mechanism for organizing and structuring software programs.
Reusability is main advantage in inheritance by which we can add additional features to an existing class without modifying it. This is possible by deriving a new class from the existing one. The new class will have the combined features of both the classes.
3. Polymorphism: Polymorphism means the ability to take more than one form. For example, an operation may exhibit different behavior in different instances. The behavior depends upon the types of data used in the operation. For example, consider the operation of addition. For two numbers, the operation will generate a sum. If the operands are strings, then the operation would produce a third string by concatenation.
 Dynamic Binding: Binding refers to the linking of a procedure call to the code to be executed in response to the call. Dynamic Binding is that the code associated with a given procedural call is not known until the time of call at runtime. Dynamic Binding is associated with polymorphism and inheritance.
 Message Communication: An OOP consists of a set of objects that communicate with each other. The processing of programming in an OO language involves the following steps:
1) Creating classes that define objects and their behavior.
2) Creating Objects form class definitions.
3) Establishing communication among objects.
Objects communicate with one another by sending and receiving information much the same way as people messages to one another.
 Procedure oriented Programming Vs Object Oriented Programming
 Procedure oriented Programming:
· In this approach, the problem is always considered as a sequence of tasks to be done. A number of functions are written to accomplish these tasks. Here primary focus on Functions and little attention on data.
· There are many high level languages like COBOL, FORTRAN, PASCAL, C used for conventional programming commonly known as Procedure oriented Programming.
· Procedure oriented Programming basically consists of writing a list of instructions for the computer to follow, and organizing these instructions into groups known as functions.

Characteristics of POP:
· Emphasis is on doing actions.
· Large programs are divided into smaller programs known as functions.
· Most of the functions shared global data.
· Data move openly around the program from function to function.
· Functions transform data from one form to another.
· Employs top-down approach in program design.
 OOP: OOP allows us to decompose a problem into a number of entities called objects and then builds data and methods around these entities.
Def: OOP is an approach that provides a way of modularizing programs by creating portioned memory area for both data and methods that can used as templates for creating copies of such modules on demand.
OOP Characteristics:
· Emphasis on data.
· Programs are divided into what are known as methods.
· Data structures are designed such that they characterize the objects.
· Methods that operate on the data of an object are tied together.
· Data is hidden.
· Objects can communicate with each other through methods.
· Reusability.
· Follows bottom-up approach in program design.
Applications of OOPs:
UNIT 1		Introduction to OOP
·
DNRCET-CSE 	Page 11

· Real time systems
· Simulation and modeling
· OO database
· Hypertext, hypermedia and expert-text
· AI and expert systems
· Neural networks and parallel programming
· Decision support and office automation systems
· CAM/CAD systems.

Advantages of OOPs:
· This eliminates redundant code and extends the use of classes with the concept of inheritance.
· This can build the programs from the standard working modules that communicate with one another, rather than having to start writing the code from beginning. This leads to saving of development time and higher productivity.
· The principle of data hiding helps the programmer to build secure programs that cannot be invaded by code in other parts of the program.
· It is possible to have multiple instance of an object to exist without any interference.
· Software complexity can be managed.
· OO systems can be easily upgraded from small to large systems.
 History of JAVA: Java is related to C++, which is a direct descendant of C. Much of the character of Java is inherited from these two languages. From C, Java derives its syntax. Many of Java’s object-oriented features were influenced by C++. In fact, several of Java’s defining characteristics come from—or are responses to—its predecessors. Moreover, the creation of Java was deeply rooted in the process of refinement and adaptation that has been occurring in computer programming languages for the past several decades.
By the end of the 1980s and the early 1990s, object-oriented programming using C++ took hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect language. Because C++ blended the high efficiency and stylistic elements of C with the object-oriented paradigm, it was a language that could be used to create a wide range of programs. However, just as in the past, forces were brewing that would, once again, drive computer language evolution forward. Within a few years, the World Wide Web and the Internet would reach critical mass. This event would precipitate another revolution in programming.

There were five primary goals in the creation of the Java language
· It should use the object-oriented programming methodology.	
· It should allow the same program to be executed on multiple operating systems.	
· It should contain built-in support for using computer networks.	
· It should be designed to execute code from remote sources securely.	
· It should be easy to use by selecting what was considered the good parts of other object oriented languages.
The Creation of Java: Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working version. This language was initially called “Oak,” but was renamed “Java” in 1995.
Between the initial implementation of Oak in the fall of 1992 and the public announcement of Java in the spring of 1995, many more people contributed to the design and evolution of the language. Bill Joy, Arthur van Ho, Jonathan Payne, Frank Yellin, and Tim Lindholm were key contributors to the maturing of the original prototype.
Java was designed not for the Internet, the primary motivation was the need for a platform-independent (that is, architecture- neutral) language that could be used to create software to be embedded in various consumer electronic devices, such as microwave ovens and remote controls. The trouble with C and C++ (and most other languages) is that they are designed to be compiled for a specific target. Although it is possible to compile a C++ program for just about any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The problem is that compilers are expensive and time-consuming to create. An easier—and more cost efficient—solution was needed.
In an attempt to find such a solution, Gosling and others began work on a portable, platform-independent language that could be used to produce code that would run on a variety of CPUs under differing environments. This effort ultimately led to the creation of Java.
Because of the similarities between Java and C++, Java should not be considered as the “Internet version of C++.” Java has significant differences. Even though Java was influenced by C++, it is not an enhanced version of C++. For example, Java is neither upwardly nor downwardly compatible with C++. Of course, the similarities with C++ are significant. One other point: Java was not designed to replace C++. Java was designed to solve a certain set of problems. C++ was designed to solve a different set of problems. Both will coexist for many years to come.
 Java and Internet: The Internet helped Java to the forefront of programming, and Java, in turn, had a profound effect on the Internet. In addition to simplifying web programming in general, Java innovated a new type of networked program called the applet that changed the way the online world thought about content. Java also addressed some of the issues associated with the Internet: portability and security.
1. Java Applets: An applet is a special kind of Java program that is designed to be transmitted over the Internet and automatically executed by a Java-compatible web browser. Furthermore, an applet is downloaded on demand, without further interaction with the user. If the user clicks a link that contains an applet, the applet will be automatically downloaded and run in the browser. Applets are intended to be small programs. The creation of the applet changed Internet programming because it expanded the universe of objects that can move about freely in cyberspace.
2. Security: As you are likely aware, every time you download a “normal” program, you are taking a risk, because the code you are downloading might contain a virus, Trojan horse, or other harmful code. At the core of the problem is the fact that malicious code can cause its damage because it has gained unauthorized access to system resources. For example, a virus program might gather private information, such as credit card numbers, bank account balances, and passwords, by searching the contents of your computer’s local file system. Java achieved this protection by conning an applet to the Java execution environment and not allowing it access to other parts of the computer.
3. Portability: Portability is a major aspect of the Internet because there are many different types of computers and operating systems connected to it. If a Java program were to be run on virtually any computer connected to the Internet, there needed to be some way to enable that program to execute on different systems. For example, in the case of an applet, the same applet must be able to be downloaded and executed by the wide variety of CPUs, operating systems, and browsers connected to the Internet. It is not practical to have different versions of the applet for different computers. The same code must work on all computers.
 Java Virtual Machine:
Byte Code: The key that allows Java to solve both the security and the portability problems is that the output of a Java compiler is not executable code. Rather, it is byte code.
Byte code is a highly optimized set of instructions designed to be executed by the Java run-time system, which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as an interpreter for byte code.
Translating a Java program into byte code makes it much easier to run a program in a wide variety of environments because only the JVM needs to be implemented for each platform. Once the run-time package exists for a given system, any Java program can run on it. Remember, although the details of the JVM will differ from platform to platform, all understand the same Java byte code. Thus, the execution of byte code by the JVM is the easiest way to create truly portable programs.
A Java program is executed by the JVM also helps to make it secure. Because the JVM is in control, it can contain the program and prevent it from generating side effects outside of the system. As you will see, safety is also enhanced by certain restrictions that exist in the Java language.
In general, when a program is compiled to an intermediate form and then interpreted by a virtual machine, it runs slower than it would run if compiled to executable code. However, with Java, the differential between the two is not so great. Because byte code has been highly optimized, the use of byte code enables the JVM to execute programs much faster than you might expect.
Just-In-Time (JIT) compiler: When a JIT compiler is part of the JVM, selected portions of byte code are compiled into executable code in real time, on a piece-by-piece, demand basis. It is important to understand that it is not practical to compile an entire Java program into executable code all at once, because Java performs various run-time checks that can be done only at run time. JIT compiles parts of the byte code that have similar functionality at the same time, and hence reduces the amount of time needed for compilation. It is used to improve the performance.
 Java Features: The Java language was invented not only for portability and security, but also there are many other features played an important role. The following are the features of java
a) Simple, Small and Familiar: Java is a simple and familiar language because it contains many features of other Languages like c and C++. Java removes complexity because it doesn’t use pointers, storage classes and go to statements and also java doesn’t support Multiple Inheritance and operator overloading.
b) Compiled and Interpreted: Java combines the features of both compiled and interpreted approaches. First, Java compiler translates source code into what is known as byte code instructions. Byte codes are not machine instructions. Second, Java interpreter generates machine code that can be directly executed by the machine that is running the java program. Java is both compiled and interpreted language.
c) Platform-Independent and Portable: Java programs can be easily moved from one computer system to another, anywhere and anytime. Changes and upgrades in operating systems, processors and system resources will not force any changes in java programs. Java ensures portability in two ways. First, Java compiler generates byte code instruction that can be implemented on any machine. Secondly, the sizes of the primitive data types are machine independent.
d) Object-Oriented: Java is a true object-oriented language. Almost everything in java is an object. All program code and data reside within objects and classes. Java comes with an extensive set of classes, arranged in packages.
e) Robust and Secure: Java is a robust language. It provides many safeguards to ensure reliable code. It has strict compile time and run time checking for data types. It is designed as a garbage-collected language relieving the programmers virtually all memory management problems. Java also incorporates the concepts of exception handling which captures series errors and eliminates any risk of crashing the system. Java systems not only verify all memory access but also ensure that no viruses are communicated with an applet. The absence of pointers in java ensures that programs cannot gain access to memory locations without proper authorization.
f) Distributed: Java is designed as a distributed language for creating applications on networks. It has the ability to share both data and programs. Java applications can open and access remote objects on Internet as easily as they can do in local system. This enables multiple programmers at multiple remote locations to collaborate and work together on a single project.
g) Multithreaded and Interactive: Multithreaded means handling multiple tasks simultaneously. Java supports multithreaded programming. This means that we not wait for the application to finish one task before beginning another. The java runtime comes with tools that support multiprocess synchronization and construct smoothly running interactive systems.
h) High Performance: Java performance is impressive for an interpreted language, mainly due to the use of intermediate byte code. Java speed is comparable to the native C/C++. Java architecture is also designed to reduce the overheads during runtime. Further, the incorporation of multithreading enhances the overall execution speed of java programs.
i) Dynamic and Extensible: Java is a dynamic language. Java is capable of dynamically linking a new class libraries, methods, and objects. Java can also determine the type of class through a query, making it possible to dynamically link or abort the program, depending on the response. Java programs support functions written in other languages such as C and C++. These functions are known as native methods. Native methods are linked dynamically at runtime.

 Java Program Structure: A java program may contain many classes of which only one class defines a main method. Classes contain data members and methods that operate on the data members of the class. Methods may contain data type declarations and executable statements. The Java program contains the sections as in following figure.
[image:]
Fig: General Structure of a Java Program
a) Documentation Section: This Section comprises a set of comment lines giving the name of the program, the author and other details. Comments must explain why and what of classes. Java uses three styles of comments. One is single-line comment (//), Second one is multi-line comment (/* … */) and the third one is documentation comment (/** … */).
b) Package Statement: The first statement allowed in a java file is a package statement. This statement declares a package name and informs the compiler that the classes defined here belong to this package. Example: package student; The Package statement is optional.
c) Import Statements: After a package statement there can be any number of import statements. This is similar to the #include statement in C. Example: import java.util.Scanner;. This statement instructs the interpreter to load the Scanner class contained in the package java.util. Using import statements, we can have access to classes that are part of other named packages.
d) Interface Statements: An interface is like a class but includes a group of method declarations. This is an optional section.
e) Class Definitions: A java program may contain multiple class definitions. Classes are the primary and essential elements of a java program. These classes are used to map the objects of real-world problems.
f) Main Method Class: Every stand-alone program requires a main method as its starting point; this class is the essential part of a java program. The main method creates objects of various classes and establishes communications between them. On reaching the end of main, the program terminates and the control passes back to the operating system.
image1.png
Documentation Section

Package Statement

Import Statements

Interface Statements

Class Definitions

Main Method Class
{

}

Main Method Definition

