Multi-Threading
 Multi-Threading: - Java provides built-in support for multithreaded programming. A multithreaded program contains two or more parts that can run concurrently. Each part of such a program is called a thread, and each thread defines a separate path of execution. Thus, multithreading is a specialized form of multitasking. However, there are two distinct types of multitasking: process-based and thread-based.
· A process is a program that is executing. Thus, process-based multitasking is the feature that allows your computer to run two or more programs concurrently. For example, process-based multitasking enables you to run the java compiler at the same time that you are using a text editor. In process-based multitasking, a program is the smallest unit of code that can be dispatched by the scheduler.
· In a thread-based multitasking environment, the thread is the smallest unit of dispatchable code i.e. that a single program can perform two or more tasks simultaneously. For instance, a text editor can format text at the same time that it is printing, as long as these two actions are being performed by two separate threads.
Thus, process-based multitasking deals with the “big picture,” and thread-based multitasking handles the details.
Multitasking threads require less overhead than multitasking processes. Processes are heavyweight tasks that require their own separate address spaces. Inter-process communication is expensive and limited. Context switching from one process to another is also costly.
Threads, on the other hand, are lightweight. They share the same address space and cooperatively share the same heavyweight process. Inter-thread communication is inexpensive, and context switching from one thread to the next is low cost.
 Multithreading enables you to write very efficient programs that make maximum use of the CPU, because idle time can be kept to a minimum.

 Differences between multi-threading and multitasking:

	MULTI THREADING
	MULTI TASKING

	More than one thread running simultaneously
	More than one process running simultaneously

	It’s a part of program
	It’s a program.

	It is a light-weight process.
	It is a heavy-weight process.

	Threads are divided into sub threads
	Process is divided into threads.

	Within the process threads are communicated.
	Inter process communication is difficulty

	Context switching between threads is cheaper.
	Context switching between process is costly

	It is controlled by Java(JVM)
	It is controlled by operating System.

	It is a specialized form of multitasking
	It is a generalized form of multithreading.

 Thread Life Cycle: Thread States (Life-Cycle of a Thread): The life cycle of a thread contains several states. At any time the thread falls into any one of these states.
· New thread
· Runnable
· Running
· Blocked
· Dead
· New Thread: When a thread is created it is in a new state. In this state system resources are not allocated to the thread.
· Runnable: When the start() method is called on the thread object, the thread is in runnable state. A runnable thread is ready for execution, but is not executed currently. The runnable thread takes the CPU determined by the OS and goes to running state.
· Running: A thread being executed by the CPU is in a running state.
· Blocked: A running thread may go to a blocked state due to any of the following conditions:
· A wait method is called by the thread.
· The thread performs I/O operations
· A sleep method is called by the thread.
· A suspend method is called by the thread.
A thread which has moved to blocked state goes into the runnable state by the following ways:
· If a thread has been put to sleep() the specified timeout period must expire
· If a thread has called wait() then some other thread using the resource for which the first thread is waiting must call notify() or notifyAll()
· If a thread is waiting for the completion of an input or output operation, then the operation must finish.
· If a thread has called suspend() then some other thread using the resource for which the thread is suspended must call resume().
When the blocked thread is unblocked, it goes to runnable state and not to running state.
· Dead: A thread goes into dead state in two ways.
· If its run() exits: a thread completes its task.
· A stop() is invoked: this method kills the thread.
 Creating a Thread:
A thread can be created by instantiating an object of type Thread. Java defines two ways in which this can be accomplished:
· Implement the Runnable interface.
· Extend the Thread class, itself.
 Implementing Runnable: The easiest way to create a thread is to create a class that implements the Runnable interface.
We can construct a thread on any object that implements Runnable. To implement Runnable, a class need only implement a single method called run(), which is declared like this: public void run()
Inside run(), define the code that constitutes the new thread. It is important to understand that run() can call other methods, use other classes, and declare variables, just like the main thread can. The only difference is that run() establishes the entry point for another, concurrent thread of execution within the program. This thread will end when run() returns.
After creating a class that implements Runnable, instantiate an object of type Thread from within that class. Thread defines several constructors.
Thread(Runnable threadOb, String threadName)
In this constructor, threadOb is an instance of a class that implements the Runnable interface. This defines where execution of the thread will begin. The name of the new thread is specified by threadName.
After the new thread is created, it will not start running until you call its start() method, which is declared within Thread. In essence, start() executes a call to run(). The start() method is shown here: void start()
Here is an example that creates a new thread and starts it running:
// Create a second thread.
class NewThread implements Runnable {
Thread t;
NewThread() {
// Create a new, second thread
t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);
t.start(); // Start the thread
}
// This is the entry point for the second thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);
}
} catch (InterruptedException e) {
System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");
}
}
class ThreadDemo {
public static void main(String args[]) {
new NewThread(); // create a new thread
try {
for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");
}
}
Inside NewThread’s constructor, a new Thread object is created by the following statement: t = new Thread(this, "Demo Thread"); Passing this as the first argument indicates that you want the new thread to call the run() method on this object. Next, start() is called, which starts the thread execution beginning at the run() method. This causes the child thread’s for loop to begin. After calling start(), NewThread’s constructor returns to main(). When the main thread resumes, it enters its for loop. Both threads continue running, sharing the CPU, until their loops finish. The output produced by this program is as follows.

UNIT IV	Multi-Threading

DNRCET-CSE		Page 1

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5
Child Thread: 5
Child Thread: 4
Main Thread: 4
Child Thread: 3
Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

Notice the output produced when t is used as an argument to println(). This display, in order: the name of the thread, its priority, and the name of its group. The name of the child thread is Demo Thread. Its priority is 5, which is the default value, and main is the name of the group of threads to which this thread belongs. A thread group is a data structure that controls the state of a collection of threads as a whole.
 Extending Thread: The second way to create a thread is to create a new class that extends Thread, and then to create an instance of that class. The extending class must override the run() method, which is the entry point for the new thread. It must also call start() to begin execution of the new thread. Here is the preceding program rewritten to extend Thread:

// Create a second thread by extending Thread
class NewThread extends Thread {
NewThread() {
// Create a new, second thread
super("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread
}
// This is the entry point for the second thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);
}
} catch (InterruptedException e) {
System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");
}
}
class ExtendThread {
public static void main(String args[]) {
new NewThread(); // create a new thread
try {
for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");
}
}

This program generates the same output as the preceding version. As we can see, the child thread is created by instantiating an object of NewThread, which is derived from Thread. Notice the call to super() inside NewThread. This invokes the following form of the Thread constructor:
public Thread(String threadName)
Here, threadName specifies the name of the thread.
What is the difference between ‘extends thread’ and ‘implements Runnable’ ? which one is advantageous?
‘extends Thread’ and ‘implements Runnable’-both are functionally same. But when we write extends Thread, there is no scope to extend another class, as multiple inheritance is not supported in java.
 Creating Multiple Threads: Multiple threads is a concept of creating multiple threads. Our program can create as many threads as it needs. For example, the following program creates three child threads:

// Create multiple threads.
class NewThread implements Runnable {
String name; // name of thread
Thread t;
NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread
}
// This is the entry point for thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println(name + ": " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println(name + "Interrupted");
}
System.out.println(name + " exiting.");
}
}
class MultiThreadDemo {
public static void main(String args[]) {
new NewThread("One"); // start threads
new NewThread("Two");
new NewThread("Three");
try {
// wait for other threads to end
Thread.sleep(10000);
} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");
}
System.out.println("Main thread exiting.");
}
}
The output from this program is shown here:
New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Three: 3
Two: 3
One: 2
Three: 2
Two: 2
One: 1
Three: 1
Two: 1
One exiting.
Two exiting.
Three exiting.
Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to sleep(10000) in main().
 The Main Thread: When a Java program starts up, one thread begins running immediately. This is usually called the main thread of your program, because it is the one that is executed when your program begins. The main thread is important for two reasons:
· It is the thread from which other “child” threads will be spawned.
· Often, it must be the last thread to finish execution because it performs various shutdown actions.
 Thread Priority: To set a thread’s priority, use the setPriority() method, which is a member of Thread. This is its general form: final void setPriority(int level)
Here, level specifies the new priority setting for the calling thread. The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and 10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is currently 5. These priorities are defined as static final variables within Thread.
We can obtain the current priority setting by calling the getPriority() method of Thread, shown here: final int getPriority()
 Using isAlive() and join(): As mentioned earlier we want the main thread to finish last. In the preceding examples, this is accomplished by calling sleep() within main(), with a long enough delay to ensure that all child threads terminate prior to the main thread. How can one thread know when another thread has ended? Fortunately, Thread provides a means by which you can answer this question.
Two ways exist to determine whether a thread has finished. First, you can call isAlive() on the thread. This method is defined by Thread, and its general form is shown here: final boolean isAlive()
The isAlive() method returns true if the thread upon which it is called is still running. It returns false otherwise. While isAlive() is occasionally useful, the method that you will more commonly use to wait for a thread to finish is called join(), shown here: final void join() throws InterruptedException This method waits until the thread on which it is called terminates.
Here is an improved version of the preceding example that uses join() to ensure that the main thread is the last to stop. It also demonstrates the isAlive() method.

// Using join() to wait for threads to finish.
class NewThread implements Runnable {
String name; // name of thread
Thread t;
NewThread(String threadname) {
name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start(); // Start the thread
}
// This is the entry point for thread.
public void run() {
try {
for(int i = 5; i > 0; i--) {
System.out.println(name + ": " + i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println(name + " interrupted.");
}
System.out.println(name + " exiting.");
}
}
class DemoJoin {
public static void main(String args[]) {
NewThread ob1 = new NewThread("One");
NewThread ob2 = new NewThread("Two");
NewThread ob3 = new NewThread("Three");
System.out.println("Thread One is alive: "+ ob1.t.isAlive());
System.out.println("Thread Two is alive: "+ ob2.t.isAlive());
System.out.println("Thread Three is alive: "+ ob3.t.isAlive());
// wait for threads to finish
try {
System.out.println("Waiting for threads to finish.");
ob1.t.join();
ob2.t.join();
ob3.t.join();
} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");
}
System.out.println("Thread One is alive: "+ ob1.t.isAlive());
System.out.println("Thread Two is alive: "+ ob2.t.isAlive());
System.out.println("Thread Three is alive: "+ ob3.t.isAlive());
System.out.println("Main thread exiting.");
}
}
Sample output from this program is shown here. (output may vary based on processor speed and task load.)
New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
Thread One is alive: true
Thread Two is alive: true
Thread Three is alive: true
Waiting for threads to finish.
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Two: 3
Three: 3
One: 2
Two: 2
Three: 2
One: 1
Two: 1
Three: 1
Two exiting.
Three exiting.
One exiting.
Thread One is alive: false
Thread Two is alive: false
Thread Three is alive: false
Main thread exiting.

 Multiple Threads acting on a single resource: If several threads act on a single resource which may lead to confusion. The following program illustrates about the problem.

// This program is not synchronized.
class Callme {
void call(String msg) {
System.out.print("[" + msg);
try {
Thread.sleep(1000);
} catch(InterruptedException e) {
System.out.println("Interrupted");
}
System.out.println("]");
}
}
class Caller implements Runnable {
String msg;
Callme target;
Thread t;
public Caller(Callme targ, String s) {
target = targ;
msg = s;
t = new Thread(this);
t.start();
}
public void run() {
target.call(msg);
}
}
class Synch {
public static void main(String args[]) {
Callme target = new Callme();
Caller ob1 = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");
// wait for threads to end
try {
ob1.t.join();
ob2.t.join();
ob3.t.join();
} catch(InterruptedException e) {
System.out.println("Interrupted");
}
}
}
Here is the output produced by this program:
Hello[Synchronized[World]
]
]

As you can see, by calling sleep(), the call() method allows execution to switch to another thread. This results in the mixed-up output of the three message strings. In this program, nothing exists to stop all three threads from calling the same method, on the same object, at the same time. This is known as a race condition, because the three threads are racing each other to complete the method.
To avoid methods serving many threads to leave in the middle before completing the task, java provides a mechanism called synchronization. When two or more threads need access to a shared resource, they need some way to ensure that the resource will be used by only one thread at a time. The process by which this is achieved is called synchronization.
Key to synchronization is the concept of the monitor (also called a semaphore). A monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread can own a monitor at a given time. When a thread acquires a lock, it is said to have entered the monitor. All other threads attempting to enter the locked monitor will be suspended until the first thread exits the monitor. To achieve the synchronization in java a keyword called synchronized is used.
Using Synchronized Methods: To fix the preceding program, you must serialize access to call(). That is, you must restrict its access to only one thread at a time. To do this, you simply need to precede call()’s definition with the keyword synchronized, as shown here:
class Callme {
synchronized void call(String msg) {
...
This prevents other threads from entering call() while another thread is using it. After synchronized has been added to call(), the output of the program is as follows:
[Hello]
[Synchronized]
[World]
The synchronized Statement: The following is the general form of the synchronized statement:
synchronized(object) {
// statements to be synchronized
}
Here, object is a reference to the object being synchronized. A synchronized block ensures that a call to a method that is a member of object occurs only after the current thread has successfully entered object’s monitor. Here is an alternative version of the preceding example, using a synchronized block within the run() method:
Here, the call() method is not modified by synchronized. Instead, the synchronized statement is used inside Caller’s run() method. This causes the same correct output as the preceding example, because each thread waits for the prior one to finish before proceeding.

// This program uses a synchronized block.
class Callme {
void call(String msg) {
System.out.print("[" + msg);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
System.out.println("Interrupted");
}
System.out.println("]");
}
}
class Caller implements Runnable {
String msg;
Callme target;
Thread t;
public Caller(Callme targ, String s) {
target = targ;
msg = s;
t = new Thread(this);
t.start();
}
// synchronize calls to call()
public void run() {
synchronized(target) { // synchronized block
target.call(msg);
}
}
}
class Synch1 {
public static void main(String args[]) {
Callme target = new Callme();
Caller ob1 = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");
// wait for threads to end
try {
ob1.t.join();
ob2.t.join();
ob3.t.join();
} catch(InterruptedException e) {
System.out.println("Interrupted");
}
}
}

 Inter Thread Communication: Threads are created to carry out light-weight process independently. In certain problems, two or more threads may use an object as a common resource. In order to avoid mix-up of the task of one thread with that of another thread, the resource object is synchronized. When one thread is using the synchronized object, the monitor is locked and another thread needing to use this object has to keep waiting. A synchronized object may have more than one synchronized method. One thread may need to use one synchronized method, while another thread may need another synchronized method of the same object. But when a synchronized object is used by one thread, it cannot be accessed by any other thread, even if a different method of the shared object is needed. It may happen that only after an action has taken place in one thread, the other thread can proceed. If the currently running thread can proceed only after an action in another non-running thread, the running thread has to keep waiting infinitely. To avoid such problem, java provides inter-thread communication methods, which can send messages from one thread to another thread, which uses the same object. The methods used for inter-thread communication are:
· wait() : This method makes the calling thread to give up the monitor and go to sleep until some other thread wakes it up.
· notify(): This method wakes up the first thread which called wait() on the same object.
· notifyAll():This method wakes up all the threads that called wait() on the same object.
All the three methods can be called only inside a synchronized code and are applicable to threads that share the same object.

// A correct implementation of a producer and consumer problem:
class Q {
int n;
boolean valueSet = false;
synchronized int get() {
while(!valueSet)
try {
wait();
} catch(InterruptedException e) {
System.out.println("InterruptedException caught");
}
System.out.println("Got: " + n);
valueSet = false;
notify();
return n;
}
synchronized void put(int n) {
while(valueSet)
try {
wait();
} catch(InterruptedException e) {
System.out.println("InterruptedException caught");
}
this.n = n;
valueSet = true;
System.out.println("Put: " + n);
notify();
}
}
class Producer implements Runnable {
Q q;
Producer(Q q) {
this.q = q;
new Thread(this, "Producer").start();
}
public void run() {
int i = 0;
while(true) {
q.put(i++);
}
}
}
class Consumer implements Runnable {
Q q;
Consumer(Q q) {
this.q = q;
new Thread(this, "Consumer").start();
}
public void run() {
while(true) {
q.get();
}
}
}
class PCFixed {
public static void main(String args[]) {
Q q = new Q();
new Producer(q);
new Consumer(q);
System.out.println("Press Control-C to stop.");
}
Here is output for program, which shows the clean synchronous behavior:
Put: 1
Got: 1
Put: 2
Got: 2

I/O Package:
