 AWT Class Hierarchy: The AWT provides many classes, which can even be used inside applets, for programmers to use. It is the connection between our application and the native GUI. The AWT hides the complexities of the GUI on which our application will be running on.
The positive point of AWT is that it preserves the native look-and-feel of the platform on which the AWT application is running, because the components are implemented using the native GUI toolkit. On the other hand, the drawback is that the applications will have different look-and-feel, when executed on different platforms.
The java.awt contains all classes used for creating graphical user interfaces, painting graphics, images, colors and fonts. The Component class is the superclass of the AWT components.
[image:]
Fig: AWT Class Hierarchy
 Component: At the top of the AWT hierarchy is the Component class. Component is an abstract class that encapsulates all of the attributes of a visual component. All user interface elements that are displayed on the screen and that interact with the user are subclasses of Component. It defines over a hundred public methods that are responsible for managing events, such as mouse and keyboard input, positioning and sizing the window, and repainting.
A Component object is responsible for remembering the current foreground and background colors and the currently selected text font.
 Container: The Container class is a subclass of Component. It has additional methods that allow other Component objects to be nested within it. A container is responsible for laying out (that is, positioning) any components that it contains.
 Panel: The Panel class is a concrete subclass of Container. It doesn’t add any new methods; it simply implements Container. A Panel may be thought of as a recursively nestable, concrete screen component. Panel is the superclass for Applet. When screen output is directed to an applet, it is drawn on the surface of a Panel object.
Panel is a window that does not contain a title bar, menu bar, or border. This is why you don’t see these items when an applet is run inside a browser. When you run an applet using an applet viewer, the applet viewer provides the title and border.
Other components can be added to a Panel object by its add() method (inherited from Container). Once these components have been added, you can position and resize them manually using the setLocation(), setSize(), setPreferredSize(), or setBounds() methods defined by Component.
 Window: The Window class creates a top-level window. Atop-level window is not contained within any other object; it sits directly on the desktop. Generally, you won’t create Window objects directly. Instead, you will use a subclass of Window called Frame.
 Frame: Frame encapsulates what is commonly thought of as a “window.” It is a subclass of Window and has a title bar, menu bar, borders, and resizing corners.
 User Interface Components:
 Labels: A label is an object of type Label, and it contains a string, which it displays. Labels are passive controls that do not support any interaction with the user. Label defines the following constructors:
· Label() throws HeadlessException
· Label(String str) throws HeadlessException
· Label(String str, int how) throws HeadlessException
The first one creates a blank label. The second one creates a label that contains the string specified by str. This string is left-justified. The third one creates a label that contains the string specified by str by using the alignment specified by how. The value of how must be one of these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER.
You can set or change the text in a label by using the setText() method. You can obtain the current label by calling getText(). These methods are shown here:
· void setText(String str)
· String getText()

UNIT VI			AWT

DNRCET-CSE		 Page 1

Example:
import java.awt.*;
import java.applet.*;
/*<applet code="Labels" width=300 height=200>
</applet>*/
public class Labels extends Applet
{
public void init()
{
setBackground(Color.cyan);
Label l1 = new Label("One");
Label l2 = new Label("Two");
Label l3= new Label("Three");
// add labels to applet window
add(l1);
add(l2);
add(l3);
}
}

Output:
D:\Seshu\Applets>javac Labels.java
D:\Seshu\Applets>appletviewer Labels.java

[image:]
 Button: A push button is a component that contains a label and that generates an event when it is pressed. Push buttons are objects of type Button. Button defines these two constructors:
· Button() throws HeadlessException
· Button(String str) throws HeadlessException
The first one creates an empty button. The second one creates a button that contains str as a label. After a button has been created, you can set its label by calling setLabel(). You can retrieve its label by calling getLabel(). These methods are as follows:
· void setLabel(String str)
· String getLabel()
Here, str becomes the new label for the button.
Handling Buttons: An action event is generated each time when a button is pressed this is sent to any listeners that previously registered in receiving action event notifications from that component.
Each listener implements the ActionListener interface. This interface defines the actionPerformed() method which is called when an event occurs. An ActionEvent object is supplied as argument to this method. It contains both a reference to the button that generated the event and a reference to the action command string associated with the button.

Example:
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/* <applet code="ButtonDemo" width=250 height=150>
</applet> */
public class ButtonDemo extends Applet implements ActionListener {
String msg = "";
Button yes, no, maybe;
public void init()
{
setBackground(Color.green);
yes = new Button("Yes");
no = new Button("No");
maybe = new Button("Undecided");
add(yes);
add(no);
add(maybe);
yes.addActionListener(this);
no.addActionListener(this);
maybe.addActionListener(this);
}
public void actionPerformed(ActionEvent ae)
{
String str = ae.getActionCommand();
if(str.equals("Yes"))
{
msg = "You pressed Yes.";
}
else if(str.equals("No"))
{
msg = "You pressed No.";
}
else
{
msg = "You pressed Undecided.";
}
repaint();
}
public void paint(Graphics g)
{
g.drawString(msg, 6, 100);
}
}
Output:
D:\Seshu\Applets>javac ButtonDemo.java
D:\Seshu\Applets>appletviewer ButtonDemo.java

[image:]
 Check Box: A check box is a control that is used to turn an option on or off. It consists of a small box that can either contain a check mark or not. There is a label associated with each check box that describes what option the box represents. You change the state of a check box by clicking on it. Check boxes can be used individually or as part of a group. Check boxes are objects of the Checkbox class.
To retrieve the current state of a check box, call getState(). To set its state, call setState(). You can obtain the current label associated with a check box by calling getLabel(). To set the label, call setLabel(). These methods are as follows:
·
· boolean getState()
· void setState(boolean on)
· String getLabel()
· void setLabel(String str)

Handling Check Boxes Each time a check box is selected or deselected, an item event is generated. This is sent to any listeners that previously registered an interest in receiving item event notifications from that component. Each listener implements the ItemListener interface. That interface defines the itemStateChanged() method. An ItemEvent object is supplied as the argument to this method.

Example:
import java.awt.*;
import java.applet.*;
/*<applet code="CheckboxTest.class" width = 200 height = 150>
</applet>*/
public class CheckboxTest extends Applet
 {
Checkbox c1 = new Checkbox ("Java",true);
Checkbox c2 = new Checkbox ("XML",false);
Checkbox c3 = new Checkbox ("VB",false);
Checkbox c4 = new Checkbox ("Oracle",false);
Checkbox c5 = new Checkbox ("SQL",false);
Checkbox c6 = new Checkbox ("ASP",false);
public void init()
{
setBackground(Color.magenta);
add(c1); add(c2); add(c3); add(c4); add(c5); add(c6);
}
}
Output
D:\Seshu\Applets>javac CheckboxTest.java
D:\Seshu\Applets>appletviewer CheckboxTest.java

[image:]
 CheckboxGroup: This is similar to Checkbox. The only difference is, only one check box should be selected from a CheckboxGroup at a time.

import java.awt.*;
import java.applet.*;
/*<applet code= "ChkGroup.class" width = 200 height = 200></applet>*/
public class ChkGroup extends Applet{
CheckboxGroup cbgr = new CheckboxGroup();
Checkbox c1 = new Checkbox ("America Online", cbgr, false);
Checkbox c2 = new Checkbox ("MSN", cbgr, false);
Checkbox c3 = new Checkbox ("NetZero", cbgr, false);
Checkbox c4 = new Checkbox ("EarthLink", cbgr, false);
Checkbox c5 = new Checkbox ("Bellsouth DSL", cbgr, true);
public void init() {
setBackground(Color.gray);
add(c1); add(c2); add(c3); add(c4); add(c5);
}}
Output:
D:\Seshu\Applets>javac ChkGroup.java
D:\Seshu\Applets>appletviewer ChkGroup.java

[image:]

 Choice: The Choice class is used to create a pop-up list of items from which the user may choose. Thus, a Choice control is a form of menu. When inactive, a Choice component takes up only enough space to show the currently selected item. When the user clicks on it, the whole list of choices pops up, and a new selection can be made. Each item in the list is a string that appears as a left-justified label in the order it is added to the Choice object.
To determine which item is currently selected, you may call either getSelectedItem() or getSelectedIndex(). These methods are shown here:
· String getSelectedItem() : returns a string containing the name of the item.
· int getSelectedIndex() : returns the index of the item. By default the first item is at index 0.
Methods are shown here:
· int getItemCount() : To obtain the number of items in the list.
· void select(int index) : set the currently selected item with a zero-based integer index
· void select(String name) : set the currently selected item with a string that will match a name in the list
Given an index, you can obtain the name associated with the item at that index by calling getItem(), which has this general form:
· String getItem(int index) : Here, index specifies the index of the desired item.
Handling Choice Lists: Each time a choice is selected, an item event is generated. This is sent to any listeners that previously registered an interest in receiving item event notifications from that component. Each listener implements the ItemListener interface. That interface defines the itemStateChanged() method. An ItemEvent object is supplied as the argument to this method.

Example:
import java.awt.*;
import java.applet.*;
/*<applet code= "ChoiceTest.class" width = 200 height = 150> </applet>*/
public class ChoiceTest extends Applet
{
Choice shoplist = new Choice();
public void init()
{
setBackground(Color.red);
shoplist.addItem("Bed And Bath");
shoplist.addItem("Furniture");
shoplist.addItem("Clothing");
shoplist.addItem("Home Appliance");
shoplist.addItem("Toys and Accessories");
add(shoplist);
}
}
Output:
D:\Seshu\Applets>javac ChoiceTest.java
D:\Seshu\Applets>appletviewer ChoiceTest.java

[image:]
 List: The List class provides a compact, multiple-choice, scrolling selection list. Unlike the Choice object, which shows only the single selected item in the menu, a List object can be constructed to show any number of choices in the visible window. It can also be created to allow multiple selections.
For lists that allow only single selection, you can determine which item is currently selected by calling either getSelectedItem() or getSelectedIndex(). These methods are shown here:
· String getSelectedItem() : returns a string containing the name of the item. If more than one item is selected, or if no selection has yet been made, null is returned.
· int getSelectedIndex() : returns the index of the item. The first item is at index 0. If more than one item is selected, or if no selection has yet been made, –1 is returned.
Lists that allow multiple selection are either getSelectedItems() or getSelectedIndexes(), shown here, to determine the current selections:
· String[] getSelectedItems() : returns an array containing the names of the currently selected items.
· int[] getSelectedIndexes() : returns an array containing the indexes of the currently selected items.

Example:
import java.applet.*;
import java.awt.*;
/*<applet code="ListEx" width=200 height=200> </applet>*/
public class ListEx extends Applet
{
public void init()
{
 setBackground(Color.magenta);
 List l = new List(5);
 l.add("One");
 l.add("Two");
 l.add("Three");
 l.add("Four");
 l.add("Five");
 l.add("Six");
 l.add("Seven");
 add(l);
}
}
Output:
D:\Seshu\Applets>javac ListEx.java
D:\Seshu\Applets>appletviewer ListEx.java

[image:]
 Scroll Bar: Scroll bars are used to select continuous values between a specified minimum and maximum. Scroll bars may be oriented horizontally or vertically. A scroll bar is actually a composite of several individual parts. Each end has an arrow that you can click to move the current value of the scroll bar one unit in the direction of the arrow. The current value of the scroll bar relative to its minimum and maximum values is indicated by the slider box (or thumb) for the scroll bar.
The slider box can be dragged by the user to a new position. The scroll bar will then reflect this value. In the background space on either side of the thumb, the user can click to cause the thumb to jump in that direction by some increment larger than 1.
Handling Scroll Bars: To process scroll bar events, you need to implement the AdjustmentListener interface. Each time a user interacts with a scroll bar, an AdjustmentEvent object is generated. Its getAdjustmentType() method can be used to determine the type of the adjustment. The types of adjustment events are as follows:
· BLOCK_DECREMENT: A page-down event has been generated.
· BLOCK_INCREMENT: A page-up event has been generated.
· TRACK: An absolute tracking event has been generated.
· UNIT_DECREMENT: The line-down button in a scroll bar has been pressed.
· UNIT_INCREMENT: The line-up button in a scroll bar has been pressed.

Example:
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*<applet code="SBDemo" width=300 height=200>
</applet>*/
public class SBDemo extends Applet
{
public void init()
{
setBackground(Color.yellow);
Scrollbar s1 = new Scrollbar(Scrollbar.VERTICAL,0, 1, 0,0);
Scrollbar s2 = new Scrollbar(Scrollbar.HORIZONTAL,0, 1, 0,0);
add(s1);
add(s2);
}
}
Output:
D:\Seshu\Applets>javac SBDemo.java
D:\Seshu\Applets>appletviewer SBDemo.java

[image:]
 TextField: The TextField class implements a single-line text-entry area, usually called an edit control. Text fields allow the user to enter strings and to edit the text using the arrow keys, cut and paste keys, and mouse selections. TextField is a subclass of TextComponent.
TextField (and its superclass TextComponent) provides several methods that allow you to utilize a text field. To obtain the string currently contained in the text field, call getText(). To set the text, call setText(). These methods are as follows:
· String getText()
· void setText(String str)
· Also, you can select a portion of text under program control by using select().
Handling a TextField Since text fields perform their own editing functions, your program generally will not respond to individual key events that occur within a text field. However, you may want to respond when the user presses ENTER. When this occurs, an action event is generated.

Example:
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*<applet code="textfield" width=380 height=150> </applet> */
public class textfield extends Applet
{
public void init()
{
setBackground(Color.gray);
setForeground(Color.red);
Label l1 = new Label("Name: ", Label.RIGHT);
Label l2 = new Label("Password: ", Label.RIGHT);
TextField t1 = new TextField(12);
TextField t2= new TextField(8);
t2.setEchoChar('*');
add(l1);
add(t1);
add(l2); add(t2);
}
}
Output:
D:\Seshu\Applets>javac TFDemo.java
D:\Seshu\Applets>appletviewer TFDemo.java

[image:]
 TextArea: Sometimes a single line of text input is not enough for a given task. To handle these situations, the AWT includes a simple multiline editor called TextArea.

import java.awt.*;
import java.applet.*;
//<applet code="textarea" width=300 height=250></applet>
public class textarea extends Applet
{
public void init()
{
setBackground(Color.magenta);
String val ="Object Oriented Programing through JAVA.\n" +"Data Base Management System.\n";
TextArea t1 = new TextArea(val, 10, 30);
add(t1);
}
}
Output:
D:\Seshu\Applets>javac TADemo.java
D:\Seshu\Applets>appletviewer TADemo.java

[image:]
 Canvas: A Canvas is an user interface component which can be used to draw graphics and enable user interaction. When we create and display a canvas object, it appears as a blank space inside the container. Very few functions like setting a color and size and getting events allow us to manipulate the events.

Example:
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
/* <applet code="CDemo" width=200 height=200> </applet>*/
public class CDemo extends Applet implements ItemListener
{
Canvas cv;
Choice c1;
public void init()
{
setBackground(Color.gray);
c1 = new Choice();
c1.addItem("Red");
c1.addItem("Green");
c1.addItem("Blue");
c1.addItemListener(this);
add(c1);
cv = new Canvas();
cv.setBackground(Color.red);
cv.setSize(100, 100);
add(cv);
}
public void itemStateChanged(ItemEvent ie)
{
Color color;
if(c1.getSelectedItem().equals("Red"))
color = Color.red;
else if(c1.getSelectedItem().equals("Green"))
color = Color.green;
else
color = Color.blue;
cv.setBackground(color);
cv.repaint();
}
}
Output:
D:\Seshu\Applets>javac CDemo.java
D:\Seshu\Applets>appletviewer CDemo.java
[image:]
 Layout Manager: This is an interface which is defined in java.awt package. Java has the mechanism to specify the type of layout schemes, where components can be added to a Frame window, where this mechanism is specified by LayoutManger. The following are LayoutManager types.
· FlowLayout
· BorderLayout
· GridLayout
· CardLayout
· GridBagLayout
 FlowLayout: FlowLayout is the default layout manager. FlowLayout implements a simple layout style, which is similar to how words flow in a text editor. The direction of the layout is governed by the container’s component orientation property, which, by default, is left to right, top to bottom. Therefore, by default, components are laid out line-by-line beginning at the upper-left corner. In all cases, when a line is filled, layout advances to the next line. A small space is left between each component, above and below, as well as left and right.
· FlowLayout.LEFT
· FlowLayout.CENTER
· FlowLayout.RIGHT
· FlowLayout.LEADING
· FlowLayout.TRAILING

Example:
import java.applet.Applet;
import java.awt.*;
/*<applet code="Flow" width=200 height=200>
</applet>*/
public class Flow extends Applet
{
public void init()
{
setBackground(Color.pink);
setLayout (new FlowLayout(FlowLayout.LEFT));
Label label = new Label("Name:");
add(label);
TextField tf = new TextField("Java");
add(tf);
Button b = new Button("OK");
add(b);
}
}
Output:
D:\Seshu\Applets>javac Flow.java
D:\Seshu\Applets>appletviewer Flow.java
[image:]

 BorderLayout: The BorderLayout class implements a common layout style for top-level windows. It has four narrow, fixed-width components at the edges and one large area in the center. The four sides are referred to as north, south, east, and west. The middle area is called the center.
· BorderLayout.CENTER
· BorderLayout.SOUTH
· BorderLayout.EAST
· BorderLayout.WEST
· BorderLayout.NORTH

Example:
import java.applet.*;
import java.awt.*;
/*<applet code="Border" width=200 height=200> </applet>*/
public class Border extends Applet
{
public void init()
{
setBackground(Color.magenta);
setLayout (new BorderLayout());
Label l = new Label("Welcome", Label.CENTER);
Scrollbar sb1 = new Scrollbar();
Scrollbar sb2 = new Scrollbar();
Button b1=new Button("NORTH");
Button b2=new Button("SOUTH");
add(b1,BorderLayout.NORTH);
add(b2,BorderLayout.SOUTH);
add(l, BorderLayout.CENTER);
add(sb1, BorderLayout.WEST);
add(sb2, BorderLayout.EAST);
}
}
Output:
D:\Seshu\Applets>javac BDemo.java
D:\Seshu\Applets>appletviewer BDemo.java

[image:]

 GridLayout: GridLayout lays out components in a two-dimensional grid. When you instantiate a GridLayout, you define the number of rows and columns.

// Demonstrate GridLayout
import java.awt.*;
import java.applet.*;
/* <applet code="Grid" width=300 height=200> </applet> */
public class Grid extends Applet
 {
static final int n = 4;
public void init()
{
setBackground(Color.cyan);
setLayout(new GridLayout(n, n));
setFont(new Font("SansSerif", Font.BOLD, 24));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
int k = i * n + j;
if(k > 0)
add(new Button("" + k));
}
}
}
}
Output:
D:\Seshu\Applets>javac Grid.java
D:\Seshu\Applets>appletviewer Grid.java

[image:]
 CardLayout: The CardLayout class is unique among the other layout managers in that it stores several different layouts. Each layout can be thought of as being on a separate index card in a deck that can be shuffled so that any card is on top at a given time. This can be useful for user interfaces with optional components that can be dynamically enabled and disabled upon user input.
Use of a card layout requires a bit more work than the other layouts. The cards are typically held in an object of type Panel. This panel must have CardLayout selected as its layout manager.
The cards that form the deck are also typically objects of type Panel. Thus, you must create a panel that contains the deck and a panel for each card in the deck. Next, you add to the appropriate panel the components that form each card. You then add these panels to the panel for which CardLayout is the layout manager. Finally, you add this panel to the window. Once these steps are complete, you must provide some way for the user to select between cards. One common approach is to include one push button for each card in the deck.
Program activates a card by calling one of the following methods defined by CardLayout:
· void first(Container deck)
· void last(Container deck)
· void next(Container deck)
· void previous(Container deck)
· void show(Container deck, String cardName)
//Example: Demonstrate CardLayout.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*<applet code="CLDemo" width=300 height=100>
</applet>*/
public class CLDemo extends Applet
implements ActionListener, MouseListener {
Checkbox winXP, winVista, solaris, mac;
Panel osCards;
CardLayout cardLO;
Button Win, Other;
public void init()
{
setBackground(Color.blue);
setForeground(Color.pink);
Win = new Button("Windows");
Other = new Button("Other");
add(Win);
add(Other);
cardLO = new CardLayout();
osCards = new Panel();
osCards.setLayout(cardLO); // set panel layout to card layout
winXP = new Checkbox("Windows XP", null, true);
winVista = new Checkbox("Windows Vista");
solaris = new Checkbox("Solaris");
mac = new Checkbox("Mac OS");
// add Windows check boxes to a panel
Panel winPan = new Panel();
winPan.add(winXP);
winPan.add(winVista);
// add other OS check boxes to a panel
Panel otherPan = new Panel();
otherPan.add(solaris);
otherPan.add(mac);
// add panels to card deck panel
osCards.add(winPan, "Windows");
osCards.add(otherPan, "Other");
// add cards to main applet panel
add(osCards);
// register to receive action events
Win.addActionListener(this);
Other.addActionListener(this);
// register mouse events
addMouseListener(this);
}
// Cycle through panels.
public void mousePressed(MouseEvent me) {
cardLO.next(osCards);
}
// Provide empty implementations for the other MouseListener methods.
public void mouseClicked(MouseEvent me) {
}
public void mouseEntered(MouseEvent me) {
}
public void mouseExited(MouseEvent me) {
}
public void mouseReleased(MouseEvent me) {
}
public void actionPerformed(ActionEvent ae) {
if(ae.getSource() == Win) {
cardLO.show(osCards, "Windows");
}
else {
cardLO.show(osCards, "Other"); }
} }
Output:
D:\Seshu\Applets>javac CLDemo.java
D:\Seshu\Applets>appletviewer CLDemo.java
[image:]

 GridBagLayout: Although the preceding layouts are perfectly acceptable for many uses, some situations will require that you take a bit more control over how the components are arranged. A good way to do this is to use a grid bag layout, which is specified by the GridBagLayout class. What makes the grid bag useful is that you can specify the relative placement of components by specifying their positions within cells inside a grid. The key to the grid bag is that each component can be a different size, and each row in the grid can have a different number of columns. This is why the layout is called a grid bag. It’s a collection of small grids joined together. The location and size of each component in a grid bag are determined by a set of constraints linked to it. The constraints are contained in an object of type GridBagConstraints. Constraints include the height and width of a cell, and the placement of a component, its alignment, and its anchor point within the cell.

Example: // Use GridBagLayout.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
//<applet code="GridBagDemo" width=250 height=200></applet>
public class GridBagDemo extends Applet
implements ItemListener {
String msg = "";
Checkbox winXP, winVista, solaris, mac;
public void init() {
GridBagLayout gbag = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
setLayout(gbag);
// Define check boxes.
winXP = new Checkbox("Windows XP ", null, true);
winVista = new Checkbox("Windows Vista");
solaris = new Checkbox("Solaris");
mac = new Checkbox("Mac OS");
// Define the grid bag.
// Use default row weight of 0 for first row.
gbc.weightx = 1.0; // use a column weight of 1
gbc.ipadx = 200; // pad by 200 units
gbc.insets = new Insets(4, 4, 0, 0); // inset slightly from top left
gbc.anchor = GridBagConstraints.NORTHEAST;
gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(winXP, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(winVista, gbc);
// Give second row a weight of 1.
gbc.weighty = 1.0;
gbc.gridwidth = GridBagConstraints.RELATIVE;
gbag.setConstraints(solaris, gbc);
gbc.gridwidth = GridBagConstraints.REMAINDER;
gbag.setConstraints(mac, gbc);
// Add the components.
add(winXP);
add(winVista);
add(solaris);
add(mac);
// Register to receive item events.
winXP.addItemListener(this);
winVista.addItemListener(this);
solaris.addItemListener(this);
mac.addItemListener(this);
}
// Repaint when status of a check box changes.
public void itemStateChanged(ItemEvent ie) {
repaint();
}// Display current state of the check boxes.
public void paint(Graphics g) {
msg = "Current state: ";
g.drawString(msg, 6, 80);
msg = " Windows XP: " + winXP.getState();
g.drawString(msg, 6, 100);
msg = " Windows Vista: " + winVista.getState();
g.drawString(msg, 6, 120);
msg = " Solaris: " + solaris.getState();
g.drawString(msg, 6, 140);
msg = " Mac: " + mac.getState();
g.drawString(msg, 6, 160);
}}
Output:
D:\Seshu\Applets>javac GBDemo.java
D:\Seshu\Applets>appletviewer GBDemo.java
[image:]

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image1.png

