
	Unit-1
	 DATA STRUCTURES[image: unnamed]

 (
UNIT-I: ARRAYS
Abstract Data Type, The Array as an Abstract Data Type, The Polynomial Abstract Data type-Polynomial Representation- Polynomial Addition. Spares Matrices, Introduction- Sparse Matrix Representation- Transposing a Matrix- Matrix Multiplication, Representation of Arrays.
)

Introduction: [image: C:\Users\user\Downloads\download.jpg]
Data Structures: - A data structure is logical model of a particular organization of data. Data structure is a particular way of storing and organizing huge amount of data so that it can be used efficiently.
	Eg: English Dictionary, City map.

Categories:
1. LINEAR DATA STRUCTURE
· Elements form sequence in which one data element can directly be reached.
· Have unique successor and predecessor.
· E.g. Arrays, Stacks, Queues, Linked lists

2. NON LINEAR DATA STRUCTURE
· Elements do not form any sequence - Every data item is attached to several other data items.
· No unique successor and predecessor
· E.g. Trees and Graphs.

ARRAYS:-
· An array is collection of homogeneous data elements referred by single name. [image: Image result for 1-d ARRAY EXAMPLE]
· Each individual elements of an array is referred by subscript variable, formed by affixing to the array name a subscript or index enclosed in brackets.
· Types of Array
· Single Dimensional Array
· Multi-Dimensional Array

STACKS
· A stack, also called a last-in-first-out (LIFO) system. [image:]
· It is a linear list in which items may be inserted or removed only at one end called the top of the stack
· Eg: Stack of coins, stack of books etc.
· Terminology
· "Push" is the term used to insert an element into a stack.
· "Pop" is the term used to delete an element from a stack.
QUEUES[image: q2.png]
· A queue is a linear structure also called First-In-First-Out. (FIFO)
· In it element may be inserted at one end called the rear, and the deleted at the other end called the front.
· Eg: Queue in a ticket counter.

LINKED LISTS
· It is a linear collection of data elements, called nodes, where the linear order is given by means of pointers.
· Each node is divided into two parts:
· first part contains the information of the element
· second part, contain address of the next element.
· There are three types of linked lists
· linear linked lists
· doubly linked lists and
· circular linked lists.[image: C:\Users\user\Downloads\Untitled.png]
Eg: Train

TREES:
· A tree is as data structure that represents hierarchical relationship between various elements.
· A binary tree is a tree that can have utmost two child node.
[image: Image result for trees in data structures clip art]
GRAPHS:
· A graph G consists of two sets V and E.
· The set V is set of elements called nodes or vertices in graph terminology.
· The set E is a set of pairs of vertices, these pairs are called edges.
· Graph G can be represent a set of G =(V,E)
[image: C:\Users\user\Downloads\Untitled.png]

Operations:
· TRAVERSAL: Accessing each element in order to process it.
· SEARCHING: Finding the location of an element.
· INSERTION: Adding a new element in structure.
· DELETION: Removing an existing element from the structure.
· SORTING: Arranging elements of the structure in some logical order like ascending or descending order.
· MERGING: Combining the elements of two similar sorted structure into single structure.

Why Data structures?
· Solves a problem fast by occupying optimum memory
· Checking the correctness of the algorithm i.e, how efficient it is called as the analaysis of the algorithm.

Data Structures
	Advantages
	Disadvantages

	Allows easier processing of data
	It is applicable only for advanced users.

	These are necessary for designing an efficient algorithm.
	If any issue occurs it can be solved only by experts.

	It is secure way of storage of data
	Slow access in case of some data types

	Graphs models real life problems
	-

Abstract data Type: An abstract data type (ADT) is a data type (data type is a collection of objects and operations on objects) and organized such that specification objects and operations is separated from representation of objects and implementation of operations.
– Operations specify how the ADT behaves, but does not reveal how they are implemented.[image:]
· Programming languages support for ADT.
· The class supports the ADT construct C++, Java, C#, python etc.
· Abstract means hides the data or implemention details i.e, it provides interface details.
· Eg:- Television, Computer, Car etc..
· Eg:- [image:]

Advantages:
· Code is easier to understand.
· Implementations of ADTs can be changed without requiring changes to the program that uses the ADTs.
· ADTs can be reused in future programs.

Common examples of ADTs
· Built-in types: boolean, integer, real, array
· User-defined types: stack, queue, tree, list
Built-in ADTs
1. boolean
	Values: true and false
	Operations : and, or, not, etc.
2. integer
	Values: Whole numbers between MIN and MAX values
	Operations: add, subtract, multiply, divide, etc.
3. Arrays
	Values: Homogeneous elements,i.e.,array of X... (X can be any data type)
	Operations: initialize, store, retrieve, copy,etc
User-defined ADTs
1. stack
	Values: Stack elements, i.e., stack of X ...(X can be any data type)
	Operations: create, destroy/dispose, push, pop,isempty,isfull,etc.
2. Queue
	Values: Queue elements, i.e., queue of X ...
	Operations: create, destroy/dispose, enqueue, dequeue,isempty, isfull,etc.
3. tree search structure
	Values: Tree elements, i.e. ,tree of X ...
	Operations: insert, delete, find, size, traverse (inorder,post-order, pre-order, level-order), etc.

Array ADT:-
Array is a set of pairs <index, value>. Each defined index has an associated value (this association is called mapping index to value). Each index is unique. Usually array is implemented as a set of consecutive memory locations. Operations include setting and retrieving a value for a given index.
	Eg: int a[10];[image:]

If a linear array has 'n' elements then elements of linear array are referenced respectively by a set of 'n' consequtive numbers called index set.
	Lower bound = Smallest Index
	Upper bound = Largest Index

· Values: Homogeneous elements, i.e.,array of X... (X can be any data type)
· Operations: Initialize, store, retrieve, copy,etc

Size or length of linear array:- Number of elements in a linear array.
			Length = Upper bound -Lower bound + 1
				= 4-0 = 4
Representation of a linear array:-
· Base address is the address or memory location of the first element in the linear array.
· if score is a one-dimensional array, its base address is the address of score[0].[image: Image result for base address of array in c]
· When we pass an array as a parameter, the base address of the actual array is passed to the formal parameter
 score == score[0] == Base address
· Calculation of address of the kth element.
 LOC(LA[K]) = Base(LA) + w(K – LB)[image:]
 Where, Base(LA) is the base address of 'LA'
 w is the number of words per memory cell of 'LA'
Example: Find the address for LA [6]. Each element of the array occupy 1 byte
		LOC(LA[K]) = Base(LA) + w(K – lower bound)
		LOC(LA[6]) = 200 + 1(6 – 0)
			 = 206
· A collection of 'A' of data element is said to be indexed if any element of A called Ak can be located and processed in time that is independent of k.
	Functions
	Definition

	Array Create (j, list)
	return an array of j dimensions where list is a j-tuple whose ith element is the size of the ith dimension. Items are undefined.

	Item Retrieve (A,i)
	if (iindex) return the item associated with index value i in array A
else return error

	Array Store(A,i,x)
	if (i in index)
return an array that is identical to array A except the new pair <i,x> has been inserted
else return error

[image: Related image] Advantages
· Basis for more complex data structures, such as heaps, and hash tables and can be used to represent strings, stacks and queues.
· Ordered lists such as polynomials are most efficiently handled.
· Arrays are most appropriate for storing a fixed amount of data.
· Arrays permit efficient random access in constant time O(1).
· Direct mapping between the elements and there positions
[image: Image result for disadvantages icon png] Disadvantages
· Inefficient for the applications which requires insertion and deletion.
· Arrays provide static memory management. so during execution the size can neither be grown nor shrunk.
· Different datatypes cannot be stored in array.

Applications of Arrays:-
· Two-dimensional data can be represented as Matrix and matrix operations
· Arrays form the basis for several more complex data structures, such as heaps, hash tables and can be used to represent strings, stacks and queues.
· Histograms
· Frequency Arrays
· Random number permutations.
· Examples of games include checkers, chess, tic-tac-toe, crosswords and mazes.

Polynomial ADT:-
A polynomial p(x) is the expression in variable x which is in the form (axn + bxn-1 + …. + jx+ k), where a, b, c …., k fall in the category of real numbers and ‘n’ is non negative integer, which is called the degree of polynomial.[image:]
An important characteristics of polynomial is that each term in the polynomial expression consists of two parts:
· Coefficient
· Exponent

Eg: Polynomial of a single variable like a(x) = 3x2 + 2x - 4 can be represented using ordered list. In term 3x2, 3 is coefficient and 2 is the exponent. The degree of a polynomial is largest exponent of non zero term.

Representation of a polynomial:
We can arrange the terms of the polynomial in decreasing order of exponent.
A polynomial thus may be represented using arrays. A single dimensional array is used for representing a single variable polynomial. The index of such array can be considered as an exponent and coefficient can be stored at that particular index. The array representation for the above polynomial expression is given below:
		P(x) = 4x3+6x2+7x+9 is represented as
	Coef
	4
	6
	7
	9

	Index
	0
	1
	2
	3

A polynomial may be represented using array or structure. A structure may be defined such that it contains two parts – one is the coefficient and second is the corresponding exponent. The structure definition may be given as shown below:
 (
#define MAX_DEGREE 101
typedef
struct

{
float
coef[MAX_DEGREE]
;
int
exponent
;
}
 polynomial
;
)

The standard mathematical definition for the sum and product of polynomials are and .
 Then, 	
		
Now if 'a' is of type polynomial and n < MAX_DEGREE, then the polynomial would be represented as and .

	Functions
	Definitions

	Polynomial Zero()
	return the polynomial , P(x) = 0

	Boolean IsZero(poly)
	if(poly) return FALSE
else return TRUE

	Coefficient Coef(ploy,expon)
	if (exponpoly) return its coefficient
else return zero

	Exponent LeadExp(poly)
	return the largest exponent in poly

	Ploynomial Attach(poly,coef,expon)
	if (exponpoly) return error
else return the polynomial poly with the term <coef,expon> inserted

	Polynomial Remove(ploy,expon)
	if (exponpoly) return the polynomial poly with the term whose exponent is expon deleted
else return error

	Polynomial SingleMult(poly,coef,expon)
	return the polynomial

	Polynomial Add(poly1,poly2)
	return the polynomial poly1 + poly2

	Polynomial Mult(poly1,poly2)
	return the polynomial poly1 . poly2

Addition of two polynomials:-
The SUM method merges the terms of the two polynomials by comparing the exponents. While terms exist in both polynomials, coefficients are added when exponents are same. Otherwise, larger term is appended to result as the polynomials are ordered in descending order of exponent. When terms of anyone of the polynomial are exhausted, terms of other polynomial are appended to result polynomial.
[image: C:\Users\user\Downloads\how-to-add-subtract-polynomial.png]

Algorithm Addition of two polynomials
Assume that there are two polynomials P and Q. The polynomial result is stored in third array SUM.
Step 1: While P and Q are not null, repeat step 2.
Step 2: If powers of the two terms are equal then
 		If the terms do not cancel then
			insert the sum of the terms into the SUM Polynomial
			Advance P
			Advance Q
 		Else if the power of the first polynomial> power of second Then
			insert the term from first polynomial into SUM polynomial
			Advance P
		Else insert the term from second polynomial into SUM polynomial
			Advance Q
Step 3: Copy the remaining terms from the non empty polynomial into the SUM polynomial.
Step 4: Print Sum
Step 5: Exit

To preserve space an alternative representation that uses only one global array, terms, to store all polynomials. The c declarations needed as:
	MAX_TERMS 100[image: C:\Users\user\Downloads\Capture4.PNG]
	typedef struct
	{
		float coef;
		int expon;
	}polynomial;
	polynomial terms[MAX_TERMS];
	int avail = 0;

Function:
void padd(int startA,int finishA,int startB,int finishB, int *startID,int *finishD)
{
	float coefficient;
	*startD = avail;
	while (startA<= finishA && startB <= finishB)
	switch(COMPARE(terms[startA].expon, terms[startB].expon))
	{
		case -1: attach(terms[startB].coef, terms[startB].expon); 		// a expon < b expon
			startB++;
			break;
		case 0: coefficient = terms[startA].coef + terms[startB].coef; 	 // Equal exponents
			if(coefficient)
				attach(coefficient, terms[startA].expon);
			startA++;
			startB++;
			break;
		case 1: attach(terms[startA].coef, terms[startA].expon);		// a expon > b expon
			startA++;
	}
	for(; startA <= finishA; startA++)					// add remaining terms of A(x)
		attach(terms[startA].coef, terms[startA].expon);
	for(; startB <= finishB; startB++)					// add remaining terms of B(x)
		attach(terms[startB].coef, terms[startB].expon);
	*finishD=avail-1;
}

[image: Related image] Advantages of polynomial using arrays:
· Good for non- sparse polynomials.
· Easy of storage and retrieval

 Disadvantages of polynomial using arrays:[image: Image result for disadvantages icon png]
· Have to allocate array size ahead of time.
· Huge array size required for sparse polynomials.
· It is time consuming
· Wastage of memory space
· We can change the size of an array

Note:- Operations that can be performed in polynomials are addition, subtraction, multiplication.

Sparse Matrices: A sparse matrix is a two–dimensional array having the value of majority elements as null. The density of the matrix is the number of non-zero elements divided by the total number of matrix elements. The matrices with very low density are often good for use of the sparse format. For example,
[image:]
i.e, if the size of the matrix is 100 X 100, then to search for a particular element, we have to scan all the 10,000 values. Instead of scanning all the 10000 elements, we have to use sparse matrix. In spare matrix we have to get the values directly that exists in that matrix.

Representation of sparse matrix:- As far as the storage of a sparse matrix is concerned, storing of null elements is nothing but wastage of memory. So we should devise technique such that only non-null elements will be stored.
Two methods of representation are three column form and linked list

Three column form:-
We represent a sparse matrix as an array of triples < row; col; value >. We store the triples in row order, triples of 1st row, 2nd row, and so on. Triples of a row are stored in column index order. i.e, the triples are ordered by row, and within row by column. We store number of rows, number of columns and number of non zero elements.[image:]

The printed output lists the non-zero elements of S, together with their row and column indices. The elements are sorted by columns, reflecting the internal data structure. In large number of applications, sparse matrices are involved. One approach is to use the linked list.

Data
Structures

Linear
Data Structures

Arrays

Stacks

Non-linear
Data Structures

Trees

Queues

Linked list

Graphs

oleObject4.bin

image43.wmf
i

i

x

b

x

B

å

=

)

(

oleObject11.bin

image44.wmf
i

i

i

x

b

a

x

B

x

A

)

(

)

(

)

(

å

+

=

+

oleObject10.bin

image45.wmf
)

)

(

.

(

)

(

).

(

å

å

=

j

j

i

i

x

b

x

a

x

B

x

A

oleObject9.bin

image33.wmf
å

=

=

n

i

i

i

x

a

x

A

0

)

(

oleObject8.bin

image34.wmf
n

ree

a

=

deg

.

oleObject7.bin

image35.wmf
n

i

0

,

]

[

.

£

£

=

-

i

n

a

i

coef

a

oleObject6.bin

image36.wmf
Î

oleObject5.bin

image38.wmf
Î

oleObject3.bin

oleObject2.bin

image57.wmf
expon

.

.

x

coef

poly

oleObject1.bin

image28.png

image23.png

image9.png

image11.png

image26.png

image62.png

image48.png

image19.png

image54.png

image69.png

image32.png

image14.png

image4.png

image31.png

image66.png

image40.png

image71.png

image6.png

image29.png

image1.png

image30.png

image24.png

image25.png

image17.png

image50.gif

image55.wmf
Î

oleObject12.bin

image42.wmf
i

i

x

a

x

A

å

=

)

(

image22.png

image65.png

image64.png

image67.png

image70.png

image68.png

image46.png

image49.png

image47.png

image51.png

image53.jpg

image52.png

image56.png

image41.png

image39.jpg

image58.png

image60.png

image59.png

image63.png

image61.png

image37.jpg

