Graphs

    
A graph is a non linear data structure. There is no hierarchical relationship between the adjacent elements. Graph consists of following two components:
                     1. A finite set of vertices also called as nodes.
                     2. A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered because (u, v) is not same as (v, u) in case of directed graph

Def:  A graph G consists of a set V of vertices (refered as nodes in case of trees) and a set E of edges. Graph can be denoted as,

      G=(V,E), V is a finte and non-empty set of vertices
                      E is a set of edges i.e set of pair of vertices.

     An edge e=(u,v) is a pair of verices and joins two vertices u&v.

Graphs are used to represent many real life applications: Graphs are used to represent networks. The networks may include paths in a city or telephone network or circuit network. Graphs are also used in social networks like linkedIn, facebook. For example, in facebook, each person is represented with a vertex (or node). Each node is a structure and contains information like person id, name, gender and locale. This can be easily viewed by http://graph.facebook.com/vishnul.society where vishnu.society is the profile name.

Graph Storage representations:
    Graph is a mathematical structure and finds its application in many areas of interest in which problems need to be solved using computers. Thus, this mathematical structure must be represented in some kind of data structure. Two such representtions are commonly used. They are,
· Adjacency Matrix representation
· Adjacency List representation

Adjacency Matrix Representation:
       A graph containing N vertices can be represented by a matrix with N rows and N columns. i.e. The adjacency matrix A for a graph G=(V,E) with N vertices is an N X N array such that 
           A[i][j] = 1,   if there is an edge from vi to vj
                = 0 , if there is no edge from vi to vj 
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· The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric.
· For a weighted graph, 
     A[i][j] = Weight of the edge, if there is an edge from vi to vj
          = 0 , if there is no edge from vi to vj 
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· In this representation we require n2 elements to represent a graph with n nodes. The adjacency matrix is a simple way to represent a graph but it has two disadvantages.
· It takes O(n2) space to represent a graph with n vertices.
· It takes O(n2) time to solve most of the graph problems.
Adjacency List Representation:
 	In this representation, we store a graph as a linked structure. We store all the vertices in a linked list (node list) and then for each vertex, we have a linked list of its adjacent vertices (edge list).
	The number of vertices in a graph forms a doubly linked node list. Each node has a separate linked list, with nodes equal to the number of edges connected from the corresponding vertex.
Graph Traversals:  Traversing a graph means visiting all the nodes in the graph. In many practical applications, traversing a graph is important, such that each vertex is visited once systematically by traversing through minimum number of paths. The two important graph traversal methods are,
· Depth-First Traversal (or) Depth First Search (DFS)
· Breadth  First Traversal(or) Breadth First Search (BFS)
     The BFS will use Queue as an auxiliary structure to hold nodes for future processing whereas, the DFS uses stacks.

Depth First Search (DFS):  
   The procedure of DFS is
1. Select an unvisited node x, visit it, and treat as the current node 
2. Find an unvisited neighbor of the current node, visit it, and make it the new current node; 
3. If the current node has no unvisited neighbors, backtrack to the its parent, and make that parent the new current node; 
4. Repeat steps 3 and 4 until no more nodes can be visited. 
5. If there are still unvisited nodes, repeat from step 1. 
     The Depth First Traversal of a graph is much similar to preorder traversal of an ordered tree. The DFS of a graph start at any arbitrary node, say A. Suppose B, C, D and E be the nodes adjacent to A then, we will next visit B and keep C, D and E waiting. After visiting B, we traverse all the vertices to which it is adjacent before returning to traverse C,D and E.
· In DFS, we backtrack on a path once it reached the end of that path.

Implementation procedure for DFS:
1. All nodes are initialized to ‘unvisited’ state and initialize stack to empty.
2. Start with any node which is in unvisited state and push it into stack. mark the status of that node as visited.
3. Repeat steps 4 thru 6 until stack is empty.
4. POP a node N from stack and process it.
5. PUSH all the adjacent nodes of N which are in unvisited state into stack.
6. Mark the status of those nodes to ‘visited’.
7. If the graph still contains nodes which are in ‘unvisited’ state then goto step 2.
8. Return
· The step7 in the above procedure handle those nodes which does not have a path from starting node to them. (i.e. if the graph is an unconnected graph).
· Stack data structure is used to implement DFS.

Algorithm for DFS:
DFS(input: Graph G)
{
	Stack S; Integer x, t; 
   	while (G has an unvisited node x)
{
		visit(x); push(x,S); 
		while (S is not empty)
                      { 
			t := pop(S); 
			if (t has an unvisited neighbor y){    	visit(y); push(y,S); }
			else   	pop(S); 
		}
	}
}


  /*   Program for non-recursive implementation of DFS */
	#include<stdio.h>
#define MAX 20
int Adj[MAX[[MAX],n,Stack[MAX],  
     top=-1, visited[MAX]={0};
void DFS(int);
void push(int);
int pop();
int stkempty()
{
    if(top==-1)
      return 1;
   else 
      return 0;
}
main()
{
    int i,j;
    printf(“Enter the no. of vertices of Graph”);
    scanf(“%d”,&n);
   printf(“Enter the Adjacency Matrix:”);
   for(i=0;i<n;i++)
    for(j=0;j<n;j++)
      scanf(“%d”,Adj[i][j]);
   printf(“\n The Depth First Traversal is:”);
   for(i=0;i<n;i++)
     if(visited[i]==0)
       DFS(i);
 }
	void DFS(int v)
{
    int i,x;
    push(v);
    visted[v]=1;
     while(!stkempty())
     {
        x=pop();
        printf(“  %d”, x);
       for(i=;i<n;i++)
          if(Adj[x][i]==1&&visited[i]==0)
          {
              push(i);
              visited[i]=1;
           }
     }
 }
void push(int v)
{
   Stack[++top]=x;
}
int pop()
{
   int v;
  v=stack[top--];
  return v;
}





Breadth First Search:  
It is another graph traversal technique. It is also known as level order traversal. The procedure for BFS is,
1. Select an unvisited node x, visit it, have it be the root in a BFS tree being formed. Its level is called the current level. 
2. From each node z in the current level, in the order in which the level nodes were visited, visit all the unvisited neighbors of z. The newly visited nodes from this level form a new level that becomes the next current level. 
3. Repeat step 2 until no more nodes can be visited. 
4. If there are still unvisited nodes, repeat from Step 1.
The Breadth First Traversal of a graph is much similar to level by level traversal of an ordered tree. BFS operates by processing nodes in layers. The BFS can begin at any arbitrary node. The nodes which are adjacent to the start node are processed first, and proceed to adjacent nodes of the node that just visited. This process continues until all the nodes are visited.
· Queue data structure is used to implement BFS.
Implementation procedure for BFS:
1. All nodes are initialized to ‘unvisited’ state and initialize queue to empty.
2. Start with any node which is in unvisited state and insert it into queue. Mark the status of that node as visited.
3. Repeat steps 4 thru 6 until queue is empty.
4. Delete a node N from queue and process it.
5. Insert all the adjacent nodes of N which are in unvisited state into queue.
6. Mark the status of those nodes to ‘visited’.
7. If the graph still contains nodes which are in ‘unvisited’ state then goto step 2.
8. Return
Algorithm for BFS:
BFS(input: graph G) 
{
  	Queue Q;    Integer x, z, y; 
	while (G has an unvisited node x) 
         {
		visit(x); Enqueue(x,Q); 
		while (Q is not empty)
                     {
			z := Dequeue(Q); 
			for all (unvisited neighbor y of z){					                                         visit(y); Enqueue(y,Q);   }
		}
	}
}
  /*   Program for non-recursive implementation of BFS */
	#include<stdio.h>
#define MAX 20
int Adj[MAX[[MAX],n,Que[MAX],  
     rear=-1, front=-1, visited[MAX]={0};
void BFS(int);
void enque(int);
int deque();
int queempty()
{
    if(front==-1)
      return 1;
   else 
      return 0;
}
main()
{
    int i,j;
    printf(“Enter the no. of vertices of Graph”);
    scanf(“%d”,&n);
   printf(“Enter the Adjacency Matrix:”);
   for(i=0;i<n;i++)
    for(j=0;j<n;j++)
      scanf(“%d”,Adj[i][j]);
   printf(“\n The Breadth First Traversal is:”);
   for(i=0;i<n;i++)
     if(visited[i]==0)
       BFS(i);
 }


	void BFS(int v)
{
    int i,x;
    enque(v);
    visted[v]=1;
     while(!queempty())
     {
        x=deque();
        printf(“  %d”, x);
       for(i=0;i<n;i++)
          if(Adj[x][i]==1&&visited[i]==0)
          {
              enque(i);
              visited[i]=1;
           }
     }
 }
void enque(int v)
{
   if(rear==-1)
     front=0;
  que[++rear]=x;
}
int deque()
{
   int v=q[front];
   if(front==rear)
     front=rear=-1;
 else
   front++;
return v;
}


      

Minimum Spanning Tree:

A minimum spanning tree is a tree formed from a graph which consists the subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.

PRIM’s Algorithm:

Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.
The algorithm continuously increases the size of a tree, one edge at a time, starting with a tree consisting of a single vertex, until it spans all vertices.
Algorithm:
· Input: A non-empty connected weighted graph with vertices V and edges E (the weights can be negative). 
· Initialize: Vnew = {x}, where x is an arbitrary node (starting point) from V, Enew = {} 
· Repeat until Vnew = V: 
· Choose an edge (u, v) with minimal weight such that u is in Vnew and v is not (if there are multiple edges with the same weight, any of them may be picked) 
· Add v to Vnew, and (u, v) to Enew 
· Output: Vnew and Enew describe a minimal spanning tree 

Kruskal's algorithm:
 Kruskal's algorithm is used to find a minimum spanning tree for a connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.
Algorithm:
· Create a forest F (a set of trees), where each vertex in the graph is a separate tree. 
· create a set S containing all the edges in the graph 
· while S is nonempty and F is not yet spanning 
· remove an edge with minimum weight from S 
· if that edge connects two different trees, then add it to the forest, combining two trees into a single tree 
· Otherwise discard that edge. 
At the termination of the algorithm, the forest has only one component and forms a minimum spanning tree of the graph
WARSHALL’s Algorithm:
  Warshall’s algorithm is used to find the transitive closure of the graph.
Transitive closure (definition): Let G = (V, E) be a graph, where  x → y, y → z (x, y, z €V). Then we can add a new edge  x →z. A graph containing all of the edges of this nature is called the transitive closure of the original graph.
· The best way to represent the transitive closure graph (TCG) is by means of an              adjacency matrix. To generate the TCG, we can use the Warshall's algorithm:
	Warshall’s algorithm: 
             Input:  A – Adjacency Matrix (A[x,y] =1 if there is an edge from x → y)
for y := 1 to NumberOfNodes 
{
         			for x := 1 to NumberOfNodes
{
              if A[x,y] then {
                  				 for z := 1 to NumberOfNodes 
                        				 if A[y,z] then A[x,z] := True    } 
}
 }
Efficiency:   Warshall's algorithm solves the transitive closure problem in O(N3) time. Where, N is the number of nodes.
Dijkstra's algorithm:  Dijkstra's algorithm is used to solve the single source shortest problem. For a given source vertex (node) in the graph, the algorithm finds the path with lowest cost (i.e. the shortest path) between that vertex and every other vertex.

Algorithm:
Let the node at which we are starting be called the initial node. Let the distance of node Y be the distance from the initial node to Y. Dijkstra's algorithm will assign some initial distance values and will try to improve them step by step.
· Assign to every node a tentative distance value: set it to zero for our initial node and to infinity for all other nodes. 
· Mark all nodes except the initial node as unvisited. Set the initial node as current. Create a set of the unvisited nodes called the unvisited set consisting of all the nodes except the initial node. 
· For the current node, consider all of its unvisited neighbors and calculate their tentative distances. For example, if the current node A is marked with a distance of 6, and the edge connecting it with a neighbor B has length 2, then the distance to B (through A) will be 6+2=8. If this distance is less than the previously recorded distance, then overwrite that distance. Even though a neighbor has been examined, it is not marked as visited at this time, and it remains in the unvisited set. 
· When we are done considering all of the neighbors of the current node, mark the current node as visited and remove it from the unvisited set. A visited node will never be checked again; its distance recorded now is final and minimal. 
· The next current node will be the node marked with the lowest (tentative) distance in the unvisited set. 
· If the unvisited set is empty, then stop. The algorithm has finished. Otherwise, set the unvisited node marked with the smallest tentative distance as the next "current node" and go back to step 3. 
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