
STACKS AND QUEUES
UNIT-II
STACK:
A stack is an important tool that is extensively used in programming languages. It is one of the most essential linear data structure.
Def: A stack is an ordered collection of data item in which data items are inserted and deleted at one end (same end). The end where the insertion or deletion operations are carried out is called as ‘Top’.
This data structure operates on ‘Last- In – first –Out’ (LIFO) technique i.e the element inserted last is deleted first. It can also be known as ‘First-In-last-Out’ (FILO).
One of the best applications where stack can be viewed is, Shipment in Cargo. For the shipment of goods, they have to be loaded into a cargo. While for unloading they are unloaded in opposite sequence of loading. That is, the last goods loaded should be unloaded first.
Examples: Stack of plates, Stack of coins, vending machine, Trains, Map coloring, pile of bread slices.[image:][image:][image:]

Stack Related Terms:
PUSH: The operation of inserting an element onto top of the stack is called as ‘PUSH’.
POP: The operation of deleting an element from the top of the stack is known as ‘POP’.
STACK UNDERFLOW: When there is no element in the stack and no more elements can deleted, such status of the stack is known as stack underflow (stack empty).
STACK OVERFLOW: When the stack contains elements equal to its capacity and no more elements can be added, such status of the stack is known as Stack Overflow (Stack Full).
Example: To show how the stack operations are performed[image:]
[image:]
[image:]
STACK ADT
AbstractDataType stack
{
Instances:
 	Linear list of elements; one end is called the bottom, the other is the top;
Operations:
	isempty(): return true if the stack is empty; return false otherwise.
	isfull(): return true if the stack is full; return false otherwise.
	size(): return number of elements in the stack.
	peek()/top(): return top element of the stack.
	pop(): remove the top element from the stack.
	push(x): add element ‘x’at the top of the stack.
}
STACK REPRESENTATION:
Stack can be represented in two ways.
1) Sequentially using arrays: Such stacks are known as ‘Static stack’ in which size of the size is fixed.
2) Dynamically using pointers (using Linked List): Such stacks are known as ‘Dynamic stacks’ in which size of the stack is not fixed.
Implementation of Stack Using Arrays:
	A stack can be implemented using array by declaring array with size ‘MAX’ and using a variable ‘TOP’ to point the last element inserted into stack. i.e top always specifies the position where the last element is inserted (or) the position where the first element is to be deleted
	The locations in stack vary from 0 to MAX-1. So, initially when stack is empty, top=-1 and when stack is full, top=MAX-1.
Implementation of PUSH Operation:
The procedure of push operation is,
1) First verifies whether the stack is full or not.
2) If stack is full, then it displays the message that stack is full and no element can be added onto it.
3) Otherwise i.e if the stack is not full, then increment the value of TOP by 1 and inserts an element onto TOP of the stack.

Algorithm: PUSH an element into a stack
Procedure PUSH()
Declare global stack[], top & MAX
Step 1: if top== MAX-1 then
	print ‘Stack Overflow’
	return
Step 2: top ← top+1
Step 3: read or take an element onto stack[top]
Step 4: return
Implementation of POP operation:
Procedure for Pop operation is,
1) First it verifies whether the stack is empty or not.
2) If stack is empty, then it displays the message that Stack Underflow and no element can be deleted from it.
3) Otherwise, deletes the top element from the stack and decrements the value of TOP by 1
Algorithm: POP an element from stack
Procedure POP()
Declare Satck[], top, MAX
Step 1: if top== -1 then
	print ‘Stack Underflow’
	return
Step 2: retrieve the element from stack[top]
Step 3: top ← top-1
Step 4: return
Implementation of DISPLAY operation:
	Display operation means viewing all elements in the stack. Procedure of display is,
1) First verifies whether the stack is empty or not.
2) If stack is empty, then it prints the message that stack is empty and no elements are there to view.
3) Otherwise prints the element from the starting (0) to top of the stack.

Algorithm: DISPLAY all the elements of the stack
Procedure DISPLAY ()
Declare global Stack[], top & local i
Step 1: if (top==-1) then
	Print ‘Stack Underflow’
	return
Step 2: for i=0 to top
	print stack[top]
Step 3: return
Program for implementing stack operation:
#include<stdio.h>
#define MAX 5
 int stack[MAX],top=-1;
void push(void);
void pop(void);
void display(void);
int main()
{
 int choice;
 printf("\n\t STACK OPERATIONS USING ARRAY");
 printf("\n\t--------------------------------");
 printf("\n\t 1.PUSH\n\t 2.POP\n\t 3.DISPLAY\n\t 4.EXIT");
 do
 {
 printf("\n Enter the Choice:");
 scanf("%d",&choice);
 switch(choice)
 {
 case 1:
 {
 push();
 break;
 }
 case 2:
 {
 pop();
 break;
 }
 case 3:
 {
 display();
 break;
 }
 case 4:
 {
 printf("\n\t EXIT POINT ");
 break;
 }
 default:
 {
 printf ("\n\t Please Enter a Valid Choice(1/2/3/4)");
 }

 }
 }
 while(choice!=4);
 return 0;
}
void push()
{
 int x;
 if(top==MAX-1)
 {
 printf("\n\tSTACK is over flow");
 }
 else
 {
 printf(" Enter a value to be pushed:");
 scanf("%d",&x);
 stack[++top]=x;
 }
}
void pop()
{
 if(top==-1)
 {
 printf("\n\t Stack is under flow");
 }
 else
 {
 printf("\n\t The popped elements is %d",stack[top]);
 top--;
 }
}
void display()
{
 int i;
 if(top>=0)
 {
 printf("\n The elements in STACK \n");
 for(i=0; i<=top; i++)
 printf("\n%d",stack[i]);
 }
 else
 {
 printf("\n The STACK is empty");
 }
 }

QUEUES:
	Queue is a linear data structure. A queue is an ordered collection of data items in which items may be inserted at one end and items may be deleted from other end.
	This data structure operates on a ‘First- In - First - Out’ (FIFO) technique i.e the first element inserted into a queue is the first element to be deleted. The end where the insertion operations carried out is known as ‘rear ‘and the end where the deletion operation carried out is known as ‘front’.
	Examples of a queue abound in the real world. A line at a bank or at a bus and a group of cars waiting at a tollgate are all familiar examples of queues.
Diagrammatically it is shown as,
[image:]
Queue ADT
AbstractDataType Queue:
{
Instances: Ordered list of elements; one end is called the front; the other is the rear.
Operations:
	 isempty(): return true if the queue is empty, return false otherwise.
	isfull(): return true if the queue is full, return false otherwise.
	size(): return the number of elements in the queue.
	front(): return the front element of the queue.
	rear(): return the last element of the queue.
	delete(): remove an element from the front of the queue.
	insert(x): add element ’x’ at the back of the queue.
}
Queue Representation:
	Queues can be represented in two ways
1) Sequentially using arrays (Static Queues)
2) Dynamic using Pointers (Dynamic Queues)
Implementation of Queue using Array:
	A queue can be implemented using array by declaring an array (que) with size ‘MAX’ and taking two variables ‘ front’ and ‘rear’ to perform deletion and insertion operations.
FRONT: Front always specifies the position where we can delete the element.
REAR: Rear always specifies the position where the last element is inserted.
	Since the location in queue vary from 0 to MAX-1, initially when queue is empty, set front = rear= -1 and queue is full rear = MAX-1
Example: to show how the queue operation are performed
[image:]

IMPLEMENTATION OF QUEUE USING ARRAYS:
	A queue can be implemented using array by declaring array with size ‘MAX’ and using two variable ‘rear’ and ‘front’. The end where the insertion operations carried out is known as ‘rear’ and the end where the deletion operations carried out is known as front end.
Implementation of INSERTION Operation:
	The procedure of insertion operation is
1) First verifies whether the queue is full or not.
2) If queue is full, then it displays the message that queue is full and no element can be inserted.
3) Otherwise, the rear is incremented by one and the element is inserted at rear.
Algorithm: Insert an element into a Queue
Procedure INSERT ()
Declare global que[MAX], rear, front
Step 1: if (rear == MAX -1) then
	print ‘ Queue is full’
	return
Step 2: if (rear == -1) then front ←0
Step 3: rear ← rear + 1
Step 4: read an element into que[rear]
Step 5: rerun
Implementation of DELETION operation:
	Procedure for deletion operation is,
1) First it verifies whether the queue is empty or not.
2) If queue is empty, then it displays the message that queue is empty so no elements can be deleted.
3) Otherwise, delete the element from the position of front i.e que[front].
4) If front= rear then sets the rear and front position to starting of the queue i.e rear = front = -1.
5) Otherwise front is incremented by 1.
Algorithm: Delete an element from Queue.
Procedure DELETE ()
 Declare global que[MAX], rear, front
Step 1: if (front == -1) then
	print ‘ Queue is empty’
	return
Step 2: retrieve the element que[front].
Step 3: if (front == rear) then
	front ← -1
	rear ← -1
	return
Step 4: front ← front + 1
Step 5: return
Implementation of DISPLAY Operation:
	Display operation means viewing all the elements in the queue. Procedure of display is,
1) First verifies whether the queue is empty or not.
2) If queue is empty, then it displays the message that queue is empty and no elements are there to view.
3) Otherwise, displays the elements from the position of front to rear.
Algorithm: Display all the elements if queue
Procedure DISPLAY ()
Declare Global que[MAX], front, rear and Local i
Step 1: If front == -1 then
	print ‘ Queue is empty’
	return
Step 2: for i = front to rear
	print que[i]
Step 3: return
Program to implement Queue operations:
/*
 * C Program to Implement a Queue using an Array
 */
#include <stdio.h>

#define MAX 50
int queue_array[MAX];
int rear = - 1;
int front = - 1;
main()
{
 int choice;
 while (1)
 {
 printf("1.Insert element to queue \n");
 printf("2.Delete element from queue \n");
 printf("3.Display all elements of queue \n");
 printf("4.Quit \n");
 printf("Enter your choice : ");
 scanf("%d", &choice);
 switch (choice)
 {
 case 1:
 insert();
 break;
 case 2:
 delete();
 break;
 case 3:
 display();
 break;
 case 4:
 exit(1);
 default:
 printf("Wrong choice \n");
 } /*End of switch*/
 } /*End of while*/
} /*End of main()*/
insert()
{
 int add_item;
 if (rear == MAX - 1)
 printf("Queue Overflow \n");
 else
 {
 if (front == - 1)
 /*If queue is initially empty */
 front = 0;
 printf("Inset the element in queue : ");
 scanf("%d", &add_item);
 rear = rear + 1;
 queue_array[rear] = add_item;
 }
} /*End of insert()*/

delete()
{
 if (front == - 1 || front > rear)
 {
 printf("Queue Underflow \n");
 return ;
 }
 else
 {
 printf("Element deleted from queue is : %d\n", queue_array[front]);
 front = front + 1;
 }
} /*End of delete() */
display()
{
 int i;
 if (front == - 1)
 printf("Queue is empty \n");
 else
 {
 printf("Queue is : \n");
 for (i = front; i <= rear; i++)
 printf("%d ", queue_array[i]);
 printf("\n");
 }
} /*End of display() */

APPLICATIONS OF STACK:
	Stack can be used in various applications such as
1) Reversing a list
2) Infix to postfix transformation
3) Evaluating arithmetic expression
4) Recursive program implementation
1) Reversing a List: Very easy application is to reverse the order of a given array of items.
Algorithm: Reversing a List
Step 1: Read the characters & push onto the stack
Step 2: Repeat step1 until all the elements were complete
Step 3: Display or POP the top element
Step 4: Repeat step3 until stack is empty
Step 5: end
Ex: Let us reverse the string ‘STACK’
Read the characters and push onto the stack
[image:]
Pop the elements from the stack
[image:]
The output will be ‘KCATS’
2) Infix to postfix transformation:
	Stacks place a major role in evaluating an arithmetic expression. Combination of operator and operands. An arithmetic expression can be represented in 3 different notations.
1. Infix expression[image:]
2. Prefix expression
3. Postfix expression
Algorithm: Infix to Postfix transformation
Step 1: Scan the infix expression from left to right
Step 2: Initialize stack to empty
Step 3: If the scanned character is operand then add it to postfix expression
Step 4: If the scanned character is an operator
	4.1: If the stack is empty
Push the character onto the stack.
		else
	Case a: If the scanned character is an operator and stack is not empty compare the precedence of the character with the element on top of the stack.
	Case b: If Top of the stack has higher precedence over the scan character pop the stack and push the scan character onto the stack.
Step 5: If stack is not empty add the top most element of the stack to postfix string and pop the stack. Repeat this step until the stack is empty.
Example:
1) a+ b*c
Since ‘a’ is an operand add it to postfix expression. Push ‘+’ onto stack
[image:]
Output: abc*+
2) 3*(4+5)/2
	Add 3 to postfix expression and add ‘*’ onto the stack
[image:]
Pop the elements form the stack and added to postfix expression.
Output: 345+*/
[image:]

3) Evaluating arithmetic expression:
	To evaluate arithmetic expression, convert the expression into postfix expression and apply the following procedure.
Algorithm: Evaluating arithmetic expression
Step 1: Initialize the stack.
Step 2: Scan the postfix expression from left to right,
Step 3: If it is an operand push it into the stack.
Step 4: If it is an operator
4.1 pop the top two operands from the stack
4.2 perform the indicated operation and push the result onto the stack.
Step 5: end
Ex: 345+*2/
	
Push 3 and 4 onto the stack
	
Pop top two elements of the stack perform ‘+’ operation and push the result onto the stack.

	
Pop top two elements of the stack perform ‘*’ operation and push the result onto the stack.
	
Pop top two elements of the stack perform ‘/’ operation and push the result onto the stack.

4) Recursive program implementation:
	A recursive function is defined as a function that calls itself to solve a smaller version of its task until a final call is made which does not require a call itself. Since a recursive function calls itself, it makes use of the system stack to temporarily store the return address and local variables of the calling function. Every recursive solution has two major cases. They are
· Base case, in which the problem is simple enough to solve directly without making any further calls to the same function.
· Recursive case, in which first the problem at hand is divided into simpler sub-parts. Second the function calls itself but with sub-parts of the problem obtained in the first step. Third, the result is obtained by combining the solutions of simpler sub-parts.
	The simple idea is, whenever a function is a called its corresponding record is pushed on to the stack and whenever the function terminated its record is popped out of the stack.
	To understand recursive function, let us take an example of calculating factorial of a number. To calculate n!, we multiply the number with factorial of the number that is 1 less than that number.
		n!= n*(n-1)!
Example: Factorial program:
int factorial (int n)
{
L1: if(n==0)
L2: return 1;
L3: else
L4: return (n*factorial (n-1));
}
Call to factorial (4) will have the following sequence of steps.
[image:]
[image:]
[image:]
Limitations of Linear Queue:
	The insertion operation was unsuccessful when rear reaches to maximum size of the queue even though queue is not full.
	In order to overcome the limitation of the linear queue circular queue has been proposed.
CIRCULAR QUEUE:
	As the name indicates circular queue is not linear structure, it is circular in nature. The front and rear variables over a queue is in circular motion.
 Circular queue avoids the wastage of space in a regular queue implementation using arrays.
[image:]

As you can see in the above image, after a bit of enqueueing and dequeueing, the size of the queue has been reduced.
The indexes 0 and 1 can only be used after the queue is reset when all the elements have been dequeued.
Operations on Circular Queue:

[image:]
Implementing Circular queue operations using MOD operator:	[image:]
	The circular moment of front and rear variables is implemented using MOD function which is cyclic in nature.

Algorithm: Implementation of Insertion Operation
InsertCQ (int front, int rear, int n, int x)
{
	rear = (rear+1) mod n;
	if (front == rear)
	printf(“queue is full”);
	else
CQ[rear] = x;
}
Algorithm: Implementation of Delete operation
deleteCQ(int front, int rear, int n)
{
	if(front ==rear)
	printf(“Queue is Empty”);
	else
	{
	front = (front + 1) mod n;
	ele = CQ[front];
	printf(The deleted element is %d”, ele);
}
}

Implementing Circular queue operations without MOD operator:
Algorithm: Implementation of Insertion Operation
Algorithm: Insert Cque
step 1: if front =0 and rear =MAX-1 or front=rear+1
		print “Queue overflow”
		return;
step 2: if front = -1 and rear = -1
		set front := rear: = 0
	else if rear = MAX-1 and front != 0
		set rear := 0
		else
		set rear := rear + 1
		end if;
	end if;
step 3: set queue[rear] := val;
step 4: end;

Algorithm: Implementation of Delete operation
Algorithm: Delete Cque
step 1: if front = -1
	print “ Queue underflow”
	return;
step 2: set val := queue[front];
step 3: if front = rear
	set front := rear := -1
	else
		if front = MAX-1
		set front := 0;
		else set front := front + 1;
		end if;
	end if;
step 4: end;

PRIORITY QUEUE:
	A priority queue is a queue in which insertion and deletion of items from any position in the queue are done on some property (such as priority of a task).
Ex: Let ‘P’ be a priority queue with three elements a, b and c whose priority factors are 2, 1 and 1 respectively. Larger number is having the highest priority.
[image:]
Insert element‘d’ whose priority is 4
[image:]
Insert element ‘e’ whose priority is 3
[image:]
Delete an element from the queue
[image:]
The working of a priority queue may be linked to a situation when a file of patients waits for their turn in a queue to have an appointment with a doctor.
Implementation of Priority Queue:
	There are two methods to implement
1) Implementing a priority queue as a cluster of queues.
2) Implementing a priority queue by sorting queue elements.
1) Implementing a priority queue as a cluster of queues:
	Maintain as many queues, depending upon the priority factor.
Lower priority queue will be operated for deletion only when all its higher priority queues are empty.
Ex: Higher priority (2), Medium priority (1), Low priority (0)
Insert a(2), b(0), c(1), d(2), e(0)
[image:]
2) Sorting Queue Elements:
	Sort-out the elements in the queue according to descending order of priority every time an insertion takes place.
	The top priority element at the head of the queue is the one to be deleted.
ex: Initially queue
[image:]
When element ‘d’ whose priority is 2 arrives
[image:]
The choice of implementation depends on a time – space trade off based decision made by the user.
	The cluster of queue method consumes space, the time complexity of insertion is only O(1). On other hand, the second method consumes less space, since it handles just a single queue. However insertion of every element calls for sorting all the queue elements in the descending order.
Double Ended Queue:
 	A double ended queue (DEQUE) is a list in which the elements can be inserted or deleted at either ends. Elements can be added to or removed from either the front or the back end. However, no element can be added and deleted from the middle.
[image:]
	There are two variants of a double ended queue.
a) Input restricted Dequeue: Insertion can be done only at one of the ends, while the deletions can be done from both ends.
	
	

b) Output restricted Dequeue: Deletion can be done only at one of the ends, while insertion can be done on both ends.
	
	

Implementation of Queue operation using Stack:
	Queue operations can be implemented using two stacks.
Method -1:
 	Newly entered element is always at top of the stack. In ordered to implement queue operations the first element should be on top of the stack. So that de-queue operation must pop from the stack1.To put the element at top of stack1, stack2 is used.
 En-queue operation:
Algorithm: En-queue
Step 1: While satck1 is not empty, push all the elements from stack1 to stack2.
Step 2: Push new element to stack1.
Step 3: Push all the elements back to stack1.
De-queue operation:
Algorithm: De-queue
Step 1: If stack1 is empty then display no elements
Step 2: If stack1 is not empty pop an element from stack1 and return it,
Method-2:
En-queue operation:
Algorithm: En-queue
Step 1: Push element onto stack1.
De-queue operation:
Algorithm: De-queue
Step 1: If the satck1 and stcak2 are empty then error.
Step 2: If stack2 is empty
	While satck1 is not empty
	Push all the elements from stack1 to stack2.
Step 3: Pop the element from stack2.
Step 4: Push all the elements from stack2 to stack1.

Method -1: Ex: String A B C
Take two empty stacks
[image:]
Push A
[image:]
Push B : in order to insert B pop stack1 and push the elements onto stack2 until stack1 becomes empty. Push B on stack1.
[image:]
Push the elements from stack2 to stack1 until stack2 becomes empty.
[image:]
Push C:
[image:]
Method -2: Ex: String A B C
Insert A, B and C onto satck1
[image:]
Call to pop, pushes element from stack1 to stack2 until stack1 becomes empty, delete top element from stack2 and push elements back to stack1.
[image:]
[image:]
image22.png

image1.png
insertion

—I TIT

deletion deletion

image24.png
insertion insertion

STTT1T1¢

deletion

image23.png
insertion insertion

STIIT

deletion

image2.png

image44.png

image14.png

image27.png
top-—>

top=-1stack underflow push X onto stack push ¥ onto stack

image26.png
For pop(deleting)
‘operaton the last element
inserted will be deleted i.
the poped element isZ

push Z onto stack pop one element fron stack

image29.png
Deletion
Insertion

Now, the poped element is
v top—>

%
-

pop an element again
stack representation

image28.png
Insertion
Deletion

e

image33.png
rear o 12 MAX-1

SAEEEEER

queue is empty

rear

o 1 2 -

K i

T e

front
rear

ol s e

K i

T e

front

rear

0 12 MAX-1

K i H...

front

rear

1 MAX-1

* . l

:10willbe

front deleted
0

rear

MAX-1

delete: 20 will be deleted
fmm

image20.png

image31.png
Top—>

image35.png

image5.png
Pre

' ab
at(b*c) [ra*be
(atb)*c abe

image34.png
add c to postfix
add b to postfix TOP—=% - expression
expression
] [~ ree—> + |

pop the satck until the stack becomes empty and add
Push + onto stack push * onto stack the element to postfix expression.

image36.png
Top—>
add4 to postfix | ¥ [- |
Top—2>> expression -
o> [-] o7]

push + onto stack Pop element from

push / onto stack
the satck

Push * onto stack push (onto stack

image25.png
Suppose we want to convert 2*3/(2-1)+5*3 into Postfix form,

Expression Stack Output

2 Empty 2

B B 2

3 * 23

! ! 23"

(X 23

2 I 2372

- I 2372

1 I 23721

) 23721

+ 23214

5 + 2372145

- +* 23*21-/53

3 +* 23*21-/53
Empty 23%21-/53%+

So. the Postfix Expression is 23*21-/53*+

image42.png
»>[=]

since fact(4) i called, record for fact
(a)will be inserted onto the stack.

fact(4) calls fact(3), stores return address
on top of the stack and stores the local
data of fact(3) on stack and starts
executing fact(3)

image43.png

image8.png

image11.png
B

DeQueue

image37.png
FRONT REAR

-1 [1 2 3 4

Empty Queue

FRONT REAR

N
0

EnQueue first element

-1 1 2 3 4

FRONT '/REAR
-1 \0 1 2 3 4
EnQueue
FRONT REAR
™

-1 0 1 2 3

4
BB

EnQueue

-1 [} 1 2 3

DeQueue

REAR FRONT
Sy &y

-1 [1 2 3 4

EnQueue

REAR\‘ FRONT

-1 [1\3 3 4

Queue Full

image4.png
Example: Consider the following circular queue with N = 5.

1. Initially, Rear = 0, Front = 0. 4. Insert 20, Rear = 3, Front = 0.

2. Insert 10, Rear = 1, Front = 1. 5. Insert 70, Rear = 4, Front = 1.
Roar 2 :

Front

Roar—
6. Delete front, Rear = 4, Front = 2.

~2_ Front
o\

image13.png
Font rear

¥

image15.png
rear

front J[

image16.png
front rear

¥

image17.png
front rear

image18.png
front rear
v I
HEEBN

High priority queue

front rear

Medium priority quene

front rear

v ¥
(1T

Low priority quene

image21.png

image30.png
front rear

image32.png
insertion insertion

STTTTE

deletion deletion

image19.png

image38.png
stack] staclk2

image39.png
stackl

stack2

image40.png
HHH

stack] stack2 stack] stack2

image41.png
stackl

stack2

image6.png
EHEEL

stackl stack? stack] tack? stackl stack?

image7.png
stackl

stack2

image9.png
H|LE

stackl stack2 stack] stack?

image10.png
stackl staclk2

image12.png

image3.png
insertion

ST —

deletion deletion

