LINKED LISTS
UNIT-III
	In C, sequential allocation is implemented using arrays (liner list). When linear lists (are also known as ordered lists) are used, the size of an array is fixed at the time of its declaration. This size cannot be changed at runtime and operations such as insertion and deletion of arbitrary elements becomes expensive because, if we want to insert an element somewhere in the middle of the list, then we have to make shift all the further elements to right to make the insertion. When an element is deleted somewhere in the middle of the list, to avoid the vacant place, we have to shift all the elements i.e. the elements after the deleted element to one place to the left.
	To avoid these disadvantages, the alternative is “linked Lists”. To implement linked lists, the concept of structures, pointers and memory management is used.
	In linked lists, each element contains a field called a link or pointer, which contains the address of the next element in the list. Thus successive element in the list need not occupy adjacent space in the memory.
Why Linked List?
Arrays can be used to store linear data of similar types, but arrays have following limitations.
1) The size of the arrays is fixed: So we must know the upper limit on the number of elements in advance. Also, generally, the allocated memory is equal to the upper limit irrespective of the usage.
2) Inserting a new element in an array of elements is expensive; because room has to be created for the new elements and to create room existing elements have to be shifted.
Advantages over arrays
1) Dynamic size
2) Ease of insertion/deletion
Drawbacks of Linked Lists:
1) Random access is not allowed. We have to access elements sequentially starting from the first node. So we cannot do binary search with linked lists efficiently with its default implementation. 2) Extra memory space for a pointer is required with each element of the list.
3) Not cache friendly. Since array elements are contiguous locations, there is locality of reference which is not there in case of linked lists.
There are three types of linked lists:
· Singly linked list
· Doubly linked list
· Circular linked list
Implementation of Singly linked list:
	Each node is a collection of different types of fields hence a node is declared by structure.

Declaration of node:
	struct node
	{
		int value;
		struct node *link;
	};
Creation of a node:
Step 1: Declare a structure of type node.
Step 2: Declare a pointer to structure variable.
Step 3: Allocate memory to structure variable and assign to its pointer.
	Eg : struct node *t;
	 t=(struct node*)malloc(sizeof(struct node));
Step 4: Assign data to this node.

SINGLY LINKED LIST:
	A Singly linked list is a collection of elements, called nodes where each node consists of address of next node in order to keep track of node in the linked lists and data field to store data i.e. “each node is divided into two parts: the first part contains information (data) of the element, and the second part, called the link field or next field, contains the address of the next node in the list. “
[image:]
	The link of the last node contains a special value, called the ‘NULL’ pointer and the address of the starting node is stored in one pointer known as “head”.
Singly linked list is represented as,
[image: https://www.geeksforgeeks.org/wp-content/uploads/gq/2013/03/Linkedlist.png]
Operations on Linked lists:
a) Insertion: A node can be inserted at three positions.
· at beginning
· at ending
· at the specified position(middle)
b) Deletion: A node can be deleted from three positions.
· at beginning
· at ending
· at the specified position(middle)
c) Traversal: Given the address of the first node, entire linked list can be traversed.

Inserting a New Node in a Singly Linked List:

a) Inserting a node at the beginning of a Linked List:
(i) Allocate memory for the new node
	struct node *temp;
	temp = (struct node*) malloc (sizeof(struct node));
(ii) Take the data of that node
	read temp→data;
(iii) Assign the address of starting node to the link field of new node
	temp→link = head;
(iv) Assign new node to head
	head = temp;
(v) End;
Example: Consider a linked list shown in the below figure. Suppose we want to add a new node with data 20 and add it as the first node of the list. Then the following changes will be done in the linked list.
[image:]
Allocate memory for the new node and initialize its data to 20.
[image:]
Add the new node as the first node of the list by making the link field of new node pointing to first node of the list.
[image:]
Now make head to point to the new node.
[image:]
b) Insert node at the ending:
(i) Create a new node
	struct node *temp;
	temp = (struct node*) malloc (sizeof(struct node));
(ii) Take the data of that node
	read temp→data;
(iii) Assign ‘NULL’ to the link field of new node
	temp→link = NULL;
(iv) Traverse the list up to the last node
	cur = head;
	while(cur→link != NULL)
		cur = cur→link;
(v) Assign the address of new node to the link field of last node.
	cur→link = temp;
Example: Consider a linked list shown in the below figure. Suppose we want to add a new node with data 20 and add it as the last node of the list. Then the following changes will be done in the linked list.
[image:]
Allocate memory for the new node and initialize its data to 20 and set link field to NULL.
[image:]
Take a pointer variable ‘cur’ which points to head. Move ‘cur’ so that it points to last node of the list.
[image:]
Store the address of new node in the link field of the cur node.
cur→link = temp;
[image:]
c) Inserting node at specified position:
	To insert a node between ith node and (i+1)th node i.e. at position “p”.
(i) Create a new node
	struct node *temp;
	temp = (struct node*) malloc (sizeof(struct node));
(ii) Take the data of that node
	read temp→data;
(iii) Traverse the list up to ith position
	i=1; cur= head;
	while (i < p-1)
	cur = cur→link & i= i+1;

(iv) Assign the link field value of ith node to the link field of new node
	temp→ link= cur→ link;
(v) Assign the address of new node to the link field of ith node.
	cur→link = temp;
Example: Consider a linked list shown in the below figure. Suppose we want to add a new node with data 40 and add it at 3rd position in the list. Then the following changes will be done in the linked list.
[image:]
Allocate memory for the new node and initialize its data to 40
[image:]
Take a pointer variable ‘cur’ which points to head. Move ‘cur’ so that it points to (p-1)th node of the list.
[image:]
Assign the address of pth node to the link field of new node.
	temp→link = cur→link;
[image:]
Store the address of new node in the link field of ‘cur’ node.
[image:]
Deleting a Node from a Linked List:

a) Deletion at beginning:
(i) If head = NULL deletion is not possible and return.
(ii) Assign head to temp
	temp = head;
(iii) Assign the address of second node to head
	head = head→ link;
(iv) Deallocate the starting node.
	free (temp);
Example: Consider a linked list shown in the below figure. Suppose we want to delete a node from beginning of the list, then the following changes will be done in the linked list.

[image:]
Store the address of first node in temporary pointer variable and make head to point to the next node in sequence.
[image:]
De-allocate memory of the first node.
[image:]
b) Deletion at ending:
(i) If head = NULL deletion is not possible.
(ii) Traverse the list up to last but one node
	cur = head;
	while(cur→link→link != NULL)
	cur = cur→link;
(iii) Assign last node address to temp.
	temp = cur→link;
(iv) Make the link field of last but one node to ‘NULL’.
	cur→link = NULL;
(v) Deallocate last node
	free (temp);
Example: Consider a linked list shown in the below figure. Suppose we want to delete a node from ending of the list, then the following changes will be done in the linked list.
[image:]
Take a pointer variable ‘cur’ which initially points to head.
[image:]
Move ‘cur’ such that cur points to last but one node in the list, store the address of last node in temp and set the link field of ‘cur’ node to NULL.
[image:]

c) Deletion at any position: To delete a node at position ‘p’
(i) If head = NULL deletion is not possible
(ii) Traverse the list up to (p-1)th position
	i = 1; cur = head;
	while (I < p-1)
	cur = cur→ link and i = i+1;
(iii) Assign address of pth node to temp.
	temp = cur→link;
(iv) Assign the link field of temp to (p-1)th node link filed.
	cur→link = temp→link;
(v) Deallocate pth node.
	free (temp);	
Example: Consider a linked list shown in the below figure. Suppose we want to delete a node from 3rd position of the list, then the following changes will be done in the linked list.
[image:]
Take a pointer variable ‘cur’ which initially points to head, move ‘cur’ such that cur points to the address of (p-1)th node in the list and store the address of pth node in temp.
[image:]
Set the link field of cur node to point to (p+1)th node of the list
[image:]
De-allocate temp
[image:]

Traversal (Displaying Elements):
	Traversing a linked list means accessing the nodes of the list in order to perform some processing on the them.
(i) If head = NULL then list is empty.
(ii) Assign cur = head;
(iii) Repeat step (iv) until ‘cur’ points to NULL
(iv) Display cur→data and set cur = cur→ link;
[image:]
Output will be: 8 5 1 7 20

DOUBLY LINKED LIST:
	A doubly linked list is a collection of elements called nodes where each node consists of two address fields i.e. “each node is divided into three parts, one part consists the value of the element, the second part called previous pointer holds the address of previous node and the third part, called the next pointer holds the address of the next node in the list.
[image:]
	The next pointer of the last node and the previous pointer of the first node contain a special value, called the ‘NULL’. The address of the starting node is stored in one pointer known as “head”.
	Doubly linked list is represented as,
[image:]
	In this, we can traverse in any direction i.e. left to right (using next pointer) or right to left (using previous pointer).

Implementation of Doubly Linked List:
	Each node is a collection of different types of fields. Hence a node is declared by structure.
	Each node is a collection of different types of fields. Hence a node is declared by structure.
Declaration of node:
	struct node
	{
 		 int value;
		struct node * prev, *next;
	};

Creation of a node:
(i) Declare a structure of type node.
(ii) Declare a pointer to the structure variable.
(iii) Allocate memory to structure variable and assign to its pointer.
	struct node *temp;
	temp = (struct node *) malloc (sizeof(struct node));
(iv) Assign data to this node.

Operations on doubly linked list:
a) Insertion: A node can be inserted at three positions.
· at beginning
· at ending
· at the specified position(middle)
b) Deletion: A node can be deleted from three positions.
· at beginning
· at ending
· at the specified position(middle)
c) Traversal: Given the address of the first node, entire linked list can be traversed.

Insertion Operation:

a) Inserting a node at the beginning:
(i) Allocate memory for the new node.
 	struct node *temp;
	temp = (struct node *) malloc (sizeof(struct node));
(ii) Take the data of that node.
	read temp→data
(iii) Assign the address of starting node to the next field of new node and assign NULL to the previous field of new node.
	temp→next = head;
	temp→prev = NULL;
(iv) Assign new node address to previous field of first node.
	head→prev = temp;
(v) Assign new node to head;
	head = temp;
Example: Consider a linked list shown in the below figure. Suppose we want to add a new node with data 20 and add it as the first node of the list. Then the following changes will be done in the linked list.
[image:]
[image:]
[image:]

b) Inserting node at the ending:
(i) Allocate memory for the new node.
 	struct node *temp;
	temp = (struct node *) malloc (sizeof(struct node));
(ii) Take the data of that node.
	read temp→data
(iii) Assign NULL to next field of temp(New node).
	temp→next = NULL;
(iv) Traverse the list up to the last node.
	cur = head;
	while (cur→next != NULL)
	cur = cur→next;
(v) Assign the address of new node to the previous field of ‘cur’ (last node) and assign ‘cur’ to the previous field of temp (new node).
	cur→next = temp;
	temp→prev = cur;
Example: Consider a linked list shown in the below figure. Suppose we want to add a new node with data 20 and add it as the ending node of the list. Then the following changes will be done in the linked list.
[image:]
[image:]

[image:]
[image:]
c) Inserting a node at the specified position:
	To insert a node at specified position ‘p’
(i) Create a new node.
 	struct node &temp;
	temp = (struct node *) malloc (sizeof(struct node));
(ii) Take the data of that node.
	read temp→data
(iii) Traverse the list up to the last ith position
	i = 1; cur = head;
	while (i < p-1)
	cur = cur→next and i = i+1;
(iv) Assign the next field of ‘cur’ node to the next filed of new node,
 assign the address of new node (temp) to the previous field of node ‘p’,
 assign the address of ‘cur’ to the previous field of new node and
 assign new node to the next field of ‘cur’.
	temp→next = cur→next;
	cur→next→prev = temp;
	temp→prev = cur;
	cur→next = temp;
Example: Consider a linked list shown in the below figure. Suppose we want to add a new node with data 20 and add it as the 3rd node of the list. Then the following changes will be done in the linked list.
[image:]
[image:]
[image:]
[image:]

Deletion Operation:

a) Deletion at Beginning:
(i) if head = NULL deletion is not possible otherwise,
(ii) Assign head to temp
	temp = head;
(iii) Assign the address of second node to head
	head = head→next;
(iv) Assign NULL to previous field of head.
	head→prev = NULL;
(v) Deallocate temp.
	free(temp);
Example: Consider a linked list shown in the below figure. Suppose we want to delete a node from beginning of the list, then the following changes will be done in the linked list.
[image:]
[image:]
b) Deletion at Ending:
(i) if head = NULL deletion is not possible otherwise,
(ii) traverse the list up to last but one node.
	cur = head;
	while(cur→next→next !=NULL)
	cur = cur→next;
(iii) assign last node to temp.
	temp = cur→next;
(iv) assign NULL to the next pointer of ‘cur’.
	cur→next = NULL:
(v) Deallocate temp.
	free(temp);
Example: Consider a linked list shown in the below figure. Suppose we want to delete a node from ending of the list, then the following changes will be done in the linked list.
[image:]
[image:]
[image:]
c) Deletion at specified position:
(i) if head = NULL deletion is not possible otherwise,
(ii) traverse the list up to (p-1)th position.
	i = 1; cur = head;
	while(i <p-1)
	cur = cur→next and i = i+1;
(iii) assign pth node to temp
	temp = cur→next;
(iv) assign the next field of temp to next field of cur.
	cur→next = temp→next;
(v) assign ‘cur’ to previous field of temp→next.
	temp→next→prev = cur;
(vi) Deallocate pth node.
	free(temp);
Example: Consider a linked list shown in the below figure. Suppose we want to delete a node from 3rd of the list, then the following changes will be done in the linked list.
[image:]
[image:]
[image:]
[image:]
Traversal from left to right:
(i) if head = NULL list is empty otherwise,
(ii) assign cur = head;
(iii) repeat step (iv) until ‘cur’ points to NULL
(iv) display cur→value and set cur = cur→next;
[image:]
Output: 10 40 50 70
Traversal from right to left:
(i) if head = NULL list is empty otherwise,
(ii) traverse the list up to last node.
	cur = head;
	while(cur→next != NULL)
	cur = cur→next;
(iii) repeat step (iv) until ‘cur’ points to NULL
(iv) display cur→value
	and set cur = cur→prev;
Example: Take a pointer variable ‘cur’ and initialize it to head. Move ‘cur’ towards ending of the list using next link. Now use the previous link and move towards head by displaying data at each node.
[image:]
Output: 70 50 40 10

CIRCULAR LIST: 	
Circular linked list is a linked list where all nodes are connected to form a circle. There is no NULL at the end. A circular linked list can be a singly circular linked list or doubly circular linked list.

[image: https://cdncontribute.geeksforgeeks.org/wp-content/uploads/CircularLinkeList.png]
Circular Singly Linked List
[image:]
Advantages of Circular Linked Lists:
1) Any node can be a starting point. We can traverse the whole list by starting from any point. We just need to stop when the first visited node is visited again.
2) Useful for implementation of queue. Unlike this implementation, we don’t need to maintain two pointers for front and rear if we use circular linked list. We can maintain a pointer to the last inserted node and front can always be obtained as next of last.
3) Circular lists are useful in applications to repeatedly go around the list. For example, when multiple applications are running on a PC, it is common for the operating system to put the running applications on a list and then to cycle through them, giving each of them a slice of time to execute, and then making them wait while the CPU is given to another application. It is convenient for the operating system to use a circular list so that when it reaches the end of the list it can cycle around to the front of the list.
4) Circular Doubly Linked Lists are used for implementation of advanced data structures like Fibonacci Heap.
Basic Operations
Following are the important operations supported by a circular list.
a) Insertion: A node can be inserted at three positions.
· at beginning
· at ending
b) Deletion: A node can be deleted from three positions.
· at beginning
· at ending
c) Traversal: Given the address of the first node, entire linked list can be traversed.

Insertion Operation:
a) Inserting node at Beginning:
(i) Create a new node.
 	struct node *temp;
	temp = (struct node *) malloc (sizeof(struct node));
(ii) Take the data of that node.
	read temp→data
(iii) Assign the address of first node to the link field of new node.
	temp→link = head;
(iv) Traverse the list up to last node
	cur = head;
	while(cur→next != head)
	cur = cur→next;
(v) Assign the address of new node to the link field of last node.
	cur→link = head;
(vi) Make the new node as head node.
	head = temp;
Example: Consider a linked list shown in the below figure. Suppose we want to add a new node with data 40 and add it as the first node of the list. Then the following changes will be done in the linked list.
[image:]
[image:]
[image:]
[image:]
b) Inserting node at Ending:
(i) Create a new node.
 	struct node *temp;
	temp = (struct node *) malloc (sizeof(struct node));
(ii) Take the data of that node.
	read temp→data
(iii) Assign the address of first node to the link field of new node.
	temp→link = head;
(iv) Traverse the list up to last node
	cur = head;
	while(cur→next != head)
	cur = cur→next;
(v) Assign the new node to the link field of last node of the list.
	cur→link = temp;
Example: Consider a linked list shown in the below figure. Suppose we want to add a new node with data 40 and add it as the last node of the list. Then the following changes will be done in the linked list.

[image:]
[image:]
[image:]
[image:]
[image:]

Deletion Operation:
a) Deletion at Beginning:
(i) if head = NULL deletion is not possible otherwise,
(ii) Assign head to temp
	temp = head;
(iii) Traverse the list up to last node
	cur = head;
	while (cur→next != head)
	cur = cur→next;
(iv) Assign the address of second node to the link field of last node
	cur→link = head→link;
(v) Assign the address of second node to head
	head = head→next;
(v) Deallocate temp.
	free (temp);
Example: Consider a linked list shown in the below figure. Suppose we want to delete a node from beginning of the list, then the following changes will be done in the linked list.
[image:]
[image:]
[image:]

b) Deletion at Ending:
(i) if head = NULL deletion is not possible otherwise,
(ii) Traverse the list up to last but one node
	cur = head;
	while(cur→next→next != head)
	cur = cur→next;
(iii) Assign the address of last node to temp.
	temp = cur→next;
(iv) Assign the address of first node to the link field of last but one node
	cur→link = head;
(v) Deallocate temp.
	free (temp);
Example: Consider a linked list shown in the below figure. Suppose we want to delete a node from ending of the list, then the following changes will be done in the linked list.
[image:]
[image:]
[image:]

Traversal:
(i) if head = NULL list is empty otherwise,
(ii) cur = head;
(iii) display cur→value;
(iv) set cur = cur→next;
(v) repeat steps (iii) to (v) until cur != head;
[image:]
Output will be: 8 5 1 10 7

LINKED STACKS:
Stack Representation using Linked Lists
	We have seen how a stack is created using an array. This technique of creating a stack is easy but the drawback is that the array must be declared to have some fixed size. In case the stack is a very small one or its maximum size is known in advance, then the array implementation of the stack gives an efficient implementation. But if the array size cannot be determined in advance, then the other alternative, i.e. linked representation, is used.
	The storage requirement of linked representation of the stack with n elements is O(n).
	In a linked stack, every node has two parts – one that stores data and another that stores the address of the next node. The head pointer of the linked list is used as TOP. All insertions and deletions are done at the node pointed by TOP. If TOP = NULL, then it indicates that the stack is empty.
	The linked list representation of stack is shown in the below figure.
[image: Image result for stack using linked list]

Operations on a Linked Stack:
	A linked stack supports all the three operations, that is, push, pop and peek.
Push Operation:
	The push operation is used to insert an element into the stack. The new element is added at the topmost position of the stack. Consider the linked stack show in the figure.
[image:]
	To insert an element with value 6, we first check if TOP = NULL. If this is the case, then we allocate memory for a new node, store the value in its Data part and NULL in its NEXT part. The new node will then be called TOP. However if TOP != NULL, then we insert the new node at the beginning of the linked stack and name this new node as TOP. Thus, the updated stack becomes as shown in the below figure.
[image:]

Algorithm for Push Operation:
(i) Allocate memory for the new node
	struct node *temp;
	temp = (struct node*) malloc (sizeof(struct node));
(ii) Take the data of that node
	read temp→data;
(iii) Assign the address of starting node to the link field of new node
	temp→link = TOP;
(iv) Assign new node to TOP
	TOP = temp;
(v) End;

POP Operation:
	The POP operation is used to delete the topmost element from a stack. However before deleting the value, we must first check if TOP = NULL, because is stack is empty no more deletions can be done. In the case TOP!= NULL, then we will delete the node pointed by TOP, and make TOP point to the second element of the linked list.
Example:
[image:]
Delete operation remove an element from top of the stack. The below figure represent the status of stack after deletion.
[image:]

Algorithm for POP Operation:
(i) If TOP = NULL Display Stack Underflow and return.
(ii) Assign TOP to temp
	temp = TOP;
(iii) Assign the address of second node to TOP
	TOP = TOP→ link;
(iv) Deallocate the starting node.
	free (temp);

LINKED QUEUE:
Queue Representation using Linked Lists
	We have seen how a Queue is created using an array. This technique of creating a queue is easy but the drawback is that the array must be declared to have some fixed size. In case the queue is a very small one or its maximum size is known in advance, then the array implementation of the queue gives an efficient implementation. But if the array size cannot be determined in advance, then the other alternative, i.e. linked representation, is used.
	The storage requirement of linked representation of the queue with n elements is O(n).
[image:]
	In a linked queue, every node has two parts – one that stores data and another that stores the address of the next node. The head pointer of the linked list is used as FRONT, another pointer called Rear, which store the address of the last element in the queue. All insertions will be done at the REAR end and all the deletions will be done at the FRONT end. If FRONT = REAR = NULL, then it indicates that the queue is empty.

Operations on Linked Queues:
	A Queue has two basic operations: insert and delete. The insert operation adds an element to the end of the queue, and the delete operation removes an element from the front of the queue.
Insert Operation:
	The insert operation is used to insert an element into a queue. The new element is added as the last element of the queue. To insert an element with value 9, we first check FRONT =REAR =NULL. If the condition holds, then the queue is empty. So, we allocate memory for a new node, store the value in its data part and NULL in its NEXT part. The new node will then be called both FRONT and REAR. However, if FRONT! =NULL, then we will insert the new node at the rear end of the linked queue and name this new node as REAR.
Example:
[image:]
The insert operation inserts the new element at rear. The below figure represent the status of queue after inserting 9.
[image:]

Algorithm to Insert an element in a Linked Queue:
(i) Create a new node
	struct node *temp;
	temp = (struct node*) malloc (sizeof(struct node));
(ii) Take the data of that node
	read temp→data;
(iii) if front = NULL
	set front = rear =temp;
	set front→next=NULL;
(iv) else
	set rear→next=temp;
	set rear=temp;
	set rear→next=NULL;
 end if;
(v) End

Deletion Operation:
	The deletion operation is used to delete the element that is first inserted in a queue, i.e., the element whose address is stored in FRONT. However, before deleting the value, we must first check if FRONT=NULL, because no more deletion can be done if the queue is empty.
	To delete an element, we first check if FRONT=NULL. If the condition is false, then we delete the first node pointed by FRONT. The FRONT will FRONT will now point to the second element of the linked queue.

Algorithm to Delete an element in a Linked Queue:
(i) If front = NULL display queue is underflow and return.
(ii) Assign front to temp
	temp = front;
(iii) Assign the address of second node to front
	front = front→ link;
(iv) Deallocate the starting node.
	free (temp);
Example:
[image:]
The delete operation removes the first element from the queue. The below figure represent the status of the queue after deletion operation.
[image:]
image41.png

image45.png

image50.png

image48.png

image55.png

image51.png

image53.png

image56.png

image57.png

image59.png

image61.png

image63.png

image64.png

image65.png

image66.png

image26.png

image28.png

image30.png

image32.png

image33.png

image35.png

image36.png

image11.png

image37.png

image10.png

image13.png

image14.png

image16.png

image17.png

image18.png

image19.png

image20.png

image2.png

image1.png

image3.png

image4.png

image5.png

image6.png

image7.png

image44.png

image46.png

image47.png

image49.png

image52.png

image54.png

image58.png

image60.png

image62.png

image38.png

image43.png

image23.png

image24.png

image25.png

image27.png

image29.png

image31.png

image34.png

image22.png

image21.png

image40.png

image8.png

image9.png

image12.png

image15.png

image39.png

image42.png

