STATE SPACE ANALYSIS

INTRODUCTION
The analysis and design of control system are carried out using transfer functions
together with a variety of graphical techniques such as root locus plots and Nyquist plots
based on the input-output relations of the system. They are applicable only to linear time
invariant systems having a single input and single output (8180). Hence a new approach to
control system analysis and design 1s evolved. which can be applied to the design of optimal
and adaptive control system, which are mostly time varying and/or non-linear multiple inputs
and multiple outputs(M1MO). This new approach is based on the concept of state, which
includes the initial conditions in the design.
Advantages of state-space technique:
1) It 1s possible to analyse time-varying or time-invarying linear or non-linear, single or
multiple input-output systems.
2) State equations are highly compatible for simulation on analog or digital computer.

3) It 1s possible to optimise the system useful for optimal design.
4) State space analysis gives us the information about the internal behaviour of the

system,
as well as the input and output behaviour.
CONCEPT OF STATE, STATE VARIABLES & STATE VECTOR

State: The state of a dynamic system is the smallest set of variables. called state variables
such that the knowledge of these variables at t = t, together with the input for t=t,.
Completely determine the behaviour of the system for anytime t> t,.

Note that in dealing with linear time invariant systems. we usually choose the
reference time to be zero.
State Variables: The state variables of a dynamic system are the smallest set of variables
which determine the state of the dynamic system. If at least n variables x;(k). x(k).-----------
Xq(k) are needed to completely describe the behaviour of a dynamic system. then such n
variables x;(k). x5(k).----------- Xa(k) are called a set of state variables.
State Vector: If n state variables are needed to completely describe the behaviour of a given
system then these n state variables can be considered to be the n components of a vector x(t).
Such a vector is called a state vector.

State Space: The n-dimensional space whose coordinate axes consists of the x;- axis. X»-axis.



---- Xp-axis is called a state-space. Any state can be represented by a point in the state-space.
STATE SPACE EQUATIONS
In the state space analysis we are concerned with three types of variables that are
mvolved in the modelling of dynamic systems: input variables. output variables and state
variables.
For time varying (linear and non-linear) discrete time systems. the state equations may be

written as
x(k+1)= flx(k).u(k).k]
and the output equations as
v(k) = glx(k).u(k).k]
For linear time varying discrete time systems. the state equation and output equation may be
simplified to

x(k +1) = G(k)x(k)+ H(k)u(k)
y(k) = C(k)x(k) + D(k)u(k)

Where.

X (k) = n-vector (state vector)

y (k) = m-vector (output vector)

u (k) = r-vector (state vector)

G (k) = n*n matrix (state vector)

H (k) = nxr vector (input vector)

C (k) = m*n matrix (output matrix)

D (K) = m»r matrix (direct transmission)
For linear time mvarying discrete time systems, the state equation and output equation may
be simplified to

x(k +1) = Gx(k) + Hu(k)

y(k) = Cx(k) + Du(k) }
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Block-diagram of a LTI discrete time system in state space
DISCRETE TIME STATE-SPACE EQUATINS

In state variable formulation, the state variables are generally represented by x;(K).
X(K), - Xa(K): inputs by wi(k), w(k), ------- u,(k): and the outputs by yi(k). ya(k). -------
Vq(K). as shown in fig.(4.2).
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Structure of general discrete time system



The mput vector u(k). output vector y(k) and state vector x(k) are:

1y (k) | [y, (k)] , (k)
HE)= sz(k) . y(k)= _1'2:(1")‘ x(k) = xz:(k)
1, (k). | 7,(5)] x (k)

The dynamics of an LTI system is described by the following set of equations

Xy (k +1) = g1, (k) + g1y, (k) +-+ + g3, %, (K) + Iygaay (K) + hygpay (R) + <<+ by, () W

X, (k+1) = g%, (F) + gy, (k) 4+ + g9, X, (k) + hogtty (k) + hogtiy (k) ++-++ g, (k)

X, (k+1) = g%, (k) + g%, (k) +++ + g3, (k) + Ity (K) + Bygtiy (K) + -+t (k)

Vi (K) = ¢y, (k) +cppx, (k) +-+- + ¢, (k) +dyyuy (k) + dyytiy (R) + -+ dy (k) \
(k) = ey, (k) + ey (k) +-- + 05, x, (k) + dott, (R) + d iy (k) ++-+ d u (K)

1p7p

Vulk)=cyxy (k) +cpx, (k) ++-+c % (k)+dqlul(k)+dq2112(k)+---+dqpup(k)

gn’'n

Where the coefficients g; hy. ¢;; and d; are constants

In vector form above equations can be represented as

x(k+1)=Gx(k)+ Hu(k)
y(k) = Cx(k) + Du(k)

Where

J



SELECTION OF STATE VARIABLES

The state variables of a given system are not unique. There are infinitely many
choices for any given system. Following are the some of the guide lines to choose the state
variables of a given system.

e Ifa physical system such as an electrical system. the number of state variables needed
to represent the system must be equal to the number of energy storing elements
present in the system.

e If a system 1is represented by a linear difference equation. then the number of state
variables needed to represent the system must be equal to the order of the difference
equation.

o If a system is represented by a pulse transfer function. then the number of state
variables needed to represent the system must be equal to highest power of ‘z’ in the

denominator of the pulse transfer function.

STATE-SPACE REPRESENTATIONS OF DISCRETE-TIME SYSTEM
Many techniques are available for obtaining state-space representation of discrete-
time system. Consider the discrete —time system described by
y(k)+ay(k-1)+a,y(k -2)+..a,y(k—n) = byu(k) +bulk —1) + byu(k —2) +---+ b u(k —n)
The above equation can be written in the form of pulse transfer function as
Y2) Byrbztebzteegbs™
U(z) 1+(71."l —mg:’2 +-+a,z"

(or)

Y(z) by=" 4Bz 40y 44D, “9)
Uiz) "+az""+a,2" 4+ +a, '

There are many ways to realize state-space representations for the discrete time system
described by above equation.

a) Controllable canonical form/direct programming method

b) Observable canonical form/nested programming method

¢) Diagonal canonical form/ Jordan canonical form /partial fraction expansion method



(a) Controllable canonical form:

[ x,(k+1) ] 0 1 0 .« = O %) [0
x,(k +1) 0 0 1 .0 || xy (k) 0
= ) . . e . + | . |u(k)
X,-1(k+1) 0 0 0 s 2 o8 A || 2,e0E) 0
X (A T) | =&, —d .y —ll a, || x,(k) | [1]
[ x,(k) ]
x, (k)
yk)=[b,-ab, b_-a_b, . . . b-ab]| . |+byuk)
.\’”_1(1\')
| x, (k) |

(b) Observable canonical form

[ %Gk+D] [0 0 .. 0 0 —-a,[Jx®] [ b—-ab, |
x,(k+1) 1 0. .0 0 —a_| x(k) b, ,—a, b,
=[x @ o8 @ a : : - . u(k)
x, k+D| [0 0 . . 1 0 -a, |x_ (k) :
5 Gk+D) | |T 0 : 2 01 =a §x(k ]| | b—ab |
- x, (k) ]
%, (k)
yy=[o o . . . 1| . |+buk)
xn—l(k)
| x, (k) |




(c) Diagonal canonical form
If the poles of the pulse transfer function given by above equations  are all distinct,

then the state-space representation may be put in the diagonal form as follows:

XI(i:ll) p, 0 ... 0] x‘(g 1]
x2( ) 0 2 '\’2( 1
B el b
WD, O
| xk+D) | - "-_xn(k)_ e
[ x, (k) i
x, (k)
v =le, o . .. oe)l . |+bu(k)
x, (k)
| x, (k) |

Jordan canonical form: If the pulse transfer function given by above equations involves a
multiple pole of order m at z = p; and all other poles are distinct. then the state equation and

output equation may be given as follows:

[ x&+D) ] [pp 1 0 - 0 0 - Ol x® 1] [0
x,(k+1) 0 p, 1 - 0 0 - 0/ k)| |0
x,k+)|={0 0 O - p 0 - 0| x,(k) |+|]1|ukk)
x, k+D| |0 0 0 - 0 p., - O0]|lx, | |1
| x,(k+D) ] {0 0 0 -~ 0 0 - p.|l x| [1]




Problem-1: For the given pulse transfer function, LI 5 i . obtain the state-
U(z) z°+13z+04

space representation in

1) Controllable canonical forny/direct programming method/phase variable form
11) Observable canonical form/nested programming method

111) Diagonal canonical form/partial fraction expansion method/Jordan canonical form

Solution:
i) Controllable canonical form/direct programming method

Y(z) z+1 3 (7 +1)
U(z) z2+13z+04 z2(1+13z7+04z7)
Y(2) ’ 214272
U(z) 1+13z7104z7
Y(z) Ul(z)

—=0(2)

e B e
Ui(z) = (1+£13z™ £0427)0(2)

= 0(2) =-1.3z"'0(2) —0.4z°0(2) + U(2) sy

Y(z)=(z"+27)Q(2)

Y(z2)=z"0(z)+z70(z) -~ (2)
et

220(2) = X, (2)

270 = X,(2) = 0(2) =zX,(2)
X)) =212 ==250)—=X(2)
= x,(k+1) = x, (k) —(3)
From eqn.(1)
2X,(2)=—-1327"2X,(2)—04X (z)+TU(=)

x5 (k+1)=—0.4x,(k)—1.3x, (k) +u(k) =i (1)



From eqn.(2)
Y(z2)=X,(2)+X,(2)
v(k)=x,(k)+x,(k) —=15)

sk + D) =x,(k)
X, (k+1) =-04x,(k)—1.3x,(k)+u(k)
y(k) =x, (k) +x, (k)

(ii) Observable canonical form

Y(z) - =7
U(z) 141327140427

A+1.3z7 404z (D) = (=7 +z27)U(2)
¥(z) =-1.3z7%(2) —04z72Y () + z7'U(2) + 272U (2)
=zU(2) -1.3Y(2)] + z 2 [U(2) — 0.4Y(2)]
Y(2)=zY{[U(2)-1.3Y(D)]+ ="' [U(z) - 04Y (D]} --- (1)
Let Y(2)=X,(2)
= X,(2) = 2 {U(2) - 137 ()] + = '[U(z) —0.4¥ ()]}
X,(2)=:"U(2)-1.37(2) + X, (.-)]} —(3)
X;(2) =27 [U () —0:4Y(2)]
From eqn.(2)
zX,(2) =U(2)=13X,(2)+X;(z)
= x,(k+1) =u(k) —1.3x,(k) + x,(k) - (3)
ZX, (2) =U(2) —0.4X;(2)



= x, (k +1) =u(k)—1.3x, (k) + x, (k) - (3

D
-

X, (2)=U(2)-04X,(2)

x,(k+1) =u(k)—0.4x,(k) — (1)
From eqn.(1)
y(k) =x,(k) - (5)

sx(k+1D) =u(k)—0.4x,(k)
x,(k+1) =u(k)—1.3x,(k)+ x, (k)
30 = %, (k)

In state-space form

{\'l(k + 1)} [0 1 }[.\', (k)} H
= +|  |u(k)
qu

yk)=[0 1] . ()

(iii) Diagonal canonical form/partial fraction expansion method/Jordan canonical form

7 =
I(z) s+l T+l B }3 . 73

UG) 224132404 (+05)z+08) (z405) (z+08)
ro)=3U0 2 UO)

3(z40.5) 3(z+0.8)

5 2
= y(k)= o (k) -3 (k) - (1)

Where



U(z)

X,(z)= T
z2X,(2)=u(z)-0.5X,(2)

= x;(k+1)=-5x, (k) +u(k) - (2)
— (:[+((-).)8)

zZX,(z2)=U(z)-0.8X,(z)

x,(k+1) =-0.8x, (k) +u(k) --(3)

cox(k+1)=—5x, (k) + u(k)
x, (k+1) =-0.8x, (k) +u(k)

5 2
SOESSNOEEENG

In state-space form
nk+D]_[-05 0 Tk ’ 1”(]‘,)
X, (k+1) 0 -08[x,(k)]| |1
5 -2 x,(k)
Ry | = =1
v L 3 L(k)}

SOLUTION OF LINEAR TIME INVARIANT DISCRETE TIME STATE
EQUATION
Recursion Procedure
In general, discrete time equation is easier to solve than differential equations because
the former can be solved easily by means of recursion procedure. The recursion procedure is

quite simple and convenient for digital computations.



Consider the following state equation and output equation
x(k+1)=Gx(k)+ Hu(k)
v(k)=Cx(k)+ Du(k)
Put k=0
x(1) = Gx(0) + Hu(0)
For k=1
x(2) = Gx(1) + Hu(l)
= G[Gx(0) + Hu(0)] + Hu(l)
= G’ x(0) + GHu(0) + Hu(l)
For k=2
x(3) =Gx(2)+ Hu(2)
= G[G*x(0) + GHu(0) + Hu(1)]+ Hu(2)

= G*x(0) + G Hu(0) + GHu(l) + Hu(2)

=1
x(k) =G*x(0)+ D> G Hu(j).k =1.23....

Jj=0
Let (k) =G"
k-1
x(k) = ©(k)x(0)+ > (k- j —1)Hu(j)
Jj=0
Clearly. x(k) consist of two parts, one representing the contribution of the initial state x(0)
and the other the contribution of the input u(j).
The output y(k) 1s given by
k-1
y(k) = CG*x(0)+CD_ G Hu(j)+ Du(k)
Jj=0

Here ®@(k)=G*= State Transition Matrix (STM) or Fundamental Matrix



Z-Transform Method
Consider the discrete time system described by
x(k+1)=Gx(k)+ Hu(k)
Taking Z-transforms on both sides
z X(2)- zx(0)=G X(z)+HU(2)
[zZI-G] X(z)= z x(0)+HU(2)
Pre-multiplying both sides with [zI-G]™

On comparing above equations we will obtain
@ (k=G=Z" [(Z-G)'7]=S.TM

k-1
S G Hu(j) = 2! [(2-G) ' HU@)], k=1.2,30mmmeneme

j=0
Notice that the solution by the Z-transform method involves the process of mverting the
matrix (zI-G), which may be accomplished by analytical means or by use of a computer. The
solution also requires the inverse Z-transforms of (2-G)'z and (Z1-G)'HU(2)
Problem-2: Obtain the state transition matrix of the following discrete time system
x(k+1)=Gx(k)+ Hu(k)
y(k) = Cx(k)
Where

0 1 1
G= H=| Le=]1 1]
-0.16 -1 1
Then obtain the state x(k) and the output y(k) when the mput u(k)=1 for k=0.1.2.----.

x,(0 1
Assume that the initial state 1s given by x(0) = {Yl ((Oﬂ = { J
.’(' ) B



Solution: Given that
0 1

H
[—0.16 —1]

.

Je=h 9]

0] [1
Initial state, X(O):rl() ={ }
x(0)] [-1
z 0 0 1 = Y |
zI -G = — )
{0 :] [—0.16 —1} {0.16 :+1}
z+1 1
(:I_G)—l: ]. +
z(z+1)+0.16/-0.16 2
i -+1 1 g

(z+08)(z+02) (z+0.8)(z+0.2)
~0.16

2

| (z+0.8)(z+0.2) (z+0.8)(z+0.2) |

4 1 ¥ 5
3(z+02) 3(z+08) 3(z+0.2) 3(z+0.8)
~0.8 0.8 | 4

O(k) = 2| -6)'z]= 2

4z

-
-

5z 5z

- ~
3(z+02) 3(z+0.8) 3(z+02) 3(z+0.8)

3(z+02) 3(z+0.9)

-0.8z

3(z+02) 3(z

0.8z 4z

+0.8)

+
13:402)  3(z+0.8)

+
3(:402) 3(z+08) |



i(—0.2)’r —1(—0.8)" §(—0.:).)" —5(—0.8)"
3 3 3 3

P
J

Z[x(F)]=X(2)=GEI-G) " zx(0) + (zI —-G) ' HU(2)

= (zI = G)[zx(0) + HU(2)]

Since u(k) =1=U(z) = ==

ZX(O)+H-C](:):|: £ :jl LS

- —
- -

X(2)=(I-G)[=zx(0) + HU(2)]

g A | 1
(z+0.2)(z+0.8) (=z+0.2)(=+0.8)
- -0.16 z

- — o
‘} z-=1 |-

| (2+0.2)(z+0.8) (240.2)(z+0.8) |

(2% 2)z -17z

227

i

L (-0.2)* +g(—0.8)" ?(—o.z)k +§(—0.8)’r
| Z |

25z

B (—z% +1.84:): 34:

17.6z

(z+02)(z+0.8)(z-1) 6(z+0.2) " 9(z+0.8) s 18(z-1)

7z

| (z+0.2)(z+0.8)(z-1)

x(k)=Z7[X(2)] = 176

9

34 k
—(-0.2)" -
- (-0.2)

[ =37 22 a5 ]
e O e T
z (-0.2) 9( ) 18()

sk . R
(-08) +-- () -

6(z+02) 9(z+028) T )



The output is given by

y(k) = Cx(k)
—_17( = 0. 2)* —2(—0.8)k+£(1)k
=[L © 17.6 o
—( —0.2)" ==& 0.8)" —(1)"
A7

=—— (02" +——< —0.8)" +—<1)

Clearly @ (k)=G*=Z"'[(zI-G)'z]
Thereforea (v)is called as State Transition Matrix or also called as Fundamental Matrix.
Properties of State Transition Matrix:
(i) ®(0) =1
@ (k)=G*.0(0)=G" =1
(1) D(k, +k,) =D(k,) (k)
Ok, +ky) = G**™ = G" x G" = Dk, )D(k,)
(i) @ (k=0 (k)
@ (-k=G™=(G =0 (k)
(iv) @ (nk)=D@"(k)
@ (nk)= G™= (G"*= ®"(k)
Method of computing STM
The state transition matrix is given by
o) =G* =z |(zI-G)™ =]
The following two methods are used to find STM

(1) The Caley-Hamilton Theorem

(11) The z-transform method



(i) The Caley-Hamilton Theorem

The theorem states that every square matrix must satisfy its own characteristic

equation. For example. the characteristics equation of the matrix G(n»n) 1 written as

B e +a,2+a, =0

Then

G"+a G +a G +———————— +a,G+a,] =0

= SIM =G* =-{a,_G" +a_,G"" +-——————- +a,G+a,]]

(ii) The z-transform method

In z-transform method. the STM 1s given by

o) =2"|¢z1-6)"z

Method for computing (zI-G)™:

The method presented here is based on the expansion of adjoint of (=7 —G) .The inverse of
(21 - G) can be written in terms of adjoint of (z7 - G)). as follows:

_adj(zI -G)

2I-G)' =
( ) det(z] - G)

Note that the determinant |zI-G| may be written as follows
ZI-G|=z"+a, ;=" +a, 2"+ ———————— +a,z +a,
The adjoint of (ZI-G) can be given by

adi(zl - @) =" + Bz " * s H,z2" 4 cc b H

Where



H =G+al 3
H,=GH,+a,l

H, ., =GH,,+a,.I
H =GH,_+al

Note that a,.a,....a, are the coefficients appearing in the determinant

The a,’s can also be given by use of the trace. as follows:

0y =~ [GH, )

o

G=ioOR]

J

as = SHRHE T
1

since a,.H,.a,.H, ....a,,.H,, can be easily computed sequentially.



Problem-3: The state equation of a digital control system is defined by
x(k+1)=Gx(k)+ Hu(k)

0 1 0
Where | 0 0 1 |. Determine State transition matrix (STM)?
-6 —-11 -6
Solution:
(I -G = Adj(zI — G)
|-I-G|
z 00 g 1 @ 2=l 0
A=[-I-Gl=[0 = 0[-[0 0 1|=[0 = -1l
0 0 zf |-6 -11 -6 6 11 z+6
=z(z* +62+11)+6
=2 4622 +112+6

+D)(z+2)(z+3)

3 2
o ) ol B

= =00, sl =0
Adi(zl-G)=E* + Hz+ H,

0 1 0 010 6 1 0
Hy=G+al=|0 0 T |+00 2= 0 & 1
—6 11 -6 00 T| |=6 11 0

0 1 o6 1 0] [010] 1l 6 1
H,=GH,+aJ={0 0 1[0 6 1[+110 0 1|=[-6 0 0
—6 -11 -6|-6 -11 0| |0 0 1| |0 -6 0



z 0 0 z z 0 11 6 1
AdiGGI -G)=F*+Hz+H;=|0 22 0} 0 z zZl#|—-6 0 ©
0 0 Z*| |-6z —11z 0] |0 —6 ©
z°+6z+11 Z+6 1
- 22 2246z z
-6z =11z=6 z>
[ z246z+11 z+6 1
(z+D(z+2)(z+3) (CE+DE+2)(=z+3) (+D(E+2)(=z+3)
(-G Adi(zI-G) _ -6 22462 z
|:I - Gl (z+D(=+2)(z+3) (CE+DE+2)(=z+3) (+D(E+2)(=z+3)
-6z —11z2-6 z?
| G+DE+2)(z+3) (z+D(z+2)(z+3) (z+1)(z+2)(z+3) |
3 3 1 25 4 15 05 1 05
z+1 z+2 z+3 z+1 z+2 z+3 z+1 z+2 z+3
o) —3+ 6 N 3 -25 8 3 -0.5 2 1.5
z+1 z+2 z+3 z+1 z+2 z+3 z+1 z+2 =z+3
3 1 8 25 16 135 U5 4 45
| z+1 z+2 z+3 z+1 z+2 =z+3 z+1 z+2 =43
State transition matrix is given by
$(T)=Z|(zI-G)*z]
(32 32 z 252 4z 152 052 z 05z ]
- - - - - -
t+l z+2 z+3 z4l z+2 z+3 0 z+l z+2 43
a-3z 6z 3z -25: 8 3z -05z 2z 15z
=4 - - - - -
z+l 42 43 z+l z42 43 z+l z+2 43
3z y 122 y 9z 2.5:_ 162 Jr13.5: 0.5:_ 4z +4.5:
|24 242 z43 z4l z+#2 z43  z#l z42 z+43 |
3(-DF-3(=20 +(=3)F  25(-D)F -4(-2)" +1.5(-3)F  0.5(-1)F —(-2)" +0.5(-3)"
= =3=DF +6(=2)" +3(=3)F  -25(=DF+8(=2) +3(=3)"* -0.5(-1)" +2(=2)F +1.5(=3)
3D +12(=2)F =93 2.5(=1)F -16(=2) +13.5(=3)F  0.5(=1) —4(=2)" +4.5(=3)*




DISCRETIZATION OF CONTINUOUS TIME STATE-SPACE EQUATIONS
Review of Solution of Continuous time state-space equations

The state equation of the continuous time system 1s
x(t) = Ax(t) + Bu(r)

¥(0)— 4x(r) = Bu(?)
Premultiplying both sides with e™
e"“[.;'(r) - Ax(1)] = %[e"’"u(r)] = e Bu(r)

Integrating the above equation between the limits 0 and t

r[ e ' x(f)]dr = Jf‘“Bu(r)

0 0

e x(t)+x(0) = j e *"Bu(r)dr
0

x(t) = e*x(0) + J e‘i("r)Bu(z')d r

0

Note that the solution of the state equation starting with the initial state x(ty) 1S
xt) = ™ ’°)\'(ro) I N Bule Mt

Discretization of continuous time state space equations

Consider the continuous time state equation and output equation

.;‘(t) = Ax(r) + Bu(t)
y=Cx+Du



In the following analysis to clarify the presentation, we use the notation kT and

(k+1)T mstead of k and k+1. The discrete time representation of eqn.(4.73) will be in the

form

[(k +1)7])= G(T (kT )+ H (T (kT )
Note that the matrices G and H depend on the sampling period “T". Once the sampling period
T 1s fixed. G and H are constant matrices.

To determine G(T) and H(T). We assume that the input u(t) is sampled and fed to

zero-order hold so that all the components of u(t) are constant over the interval between any
two consecutive sampling instants , or

ult)=ulkT) for kT <t <kT +T

Since

. (k+1)T
.\’[(/\'-i-l)T]: eA(.k+l.V3{0) + eA(k+1)1' [ e 47Bu(r)dr
0

And
kT

X(l\"T)z e.4ka(0) + eAkTJ‘BH(THZ_

0

Eq3)- ¢l x eq)

(k+1)T i
= k+1)1] - e*'AkT) = VT je"‘“Bu (M _ p0E [ e Bu @)
0 0
AT A(k+1)T agr -Ar
x(k+D)T =p" x(kT )+ je Bu(r Mt

kT
Since from eqn.(7). u(t) = u(kT) for kT <t <kT +T . we may substitute u(r)=u(kT)=

const. 1n this last equation . Hence we may write



0
.\’[(/\’+1)T]= QAT .\‘[I\'T] + eAT je_ATBu (AT )dt
0

T
= AT (k1) + [ ™ Bu(kT YA
2

Where A =T-t
If we define
G(T) =e?*
= L

H(T)z[

[e™da ‘]B
x|(k+1)]= G(T)x(kT)+ H(T Ju(kT)
WkT)= Cx(kT )+ Du(kT)

Where matrices C and D are constant matrices and do not depend on the sampling period T.

; ; . ; I's 1 ;
Problem- 4 : Consider the continuous time system given by G(s)= L) =——. Obtain the
Uls) s+a
continuous time state space representation of the system. Then discretized the state equation

and output equation and obtain the discrete time state space representation of the system.

Solution: Given that

_Y(s) 1
U(s) s+a

(s+a)Y(s)=U(s)

Take inverse L.Ts on both sides

% .



Let us choose y=x. state variable

X=—ax-+u
y=x
65 )=¢ 2F
—ai ¥ aT
A OARE S o I
L0 0 =N &

Hence. the discretized version of the system equation is

x[(k + 17| = G(T)x(kT)+ H(T Ju(kT)

sl = ) % u(k)
$(6) = x(8)
CONCEPT OF CONTROLLABILITY AND
OBSERVABILITY
INTRODUCTION

Controllablity is concerned with the problem of whether it s possible to steer a system
from a given initial state to an arbitrary state. A system is said to be controllable if it is possible
by means of an unbounded control vector to transfer the system from any initial state to any

other state in a finite number of sampling periods.



Observability is concerned with the problem of determining the state of a dynamic
system from the observation of the output and control vectors in a finite number of sampling
periods. A system is said to be observable if, with the system in state x(0), it is possible to

determine this state from the observation of the output and control vectors over a finite number

of sampling periods.

The concept of controllability and observability were introduced by R.E.Kalman. They

play an important role in the optimal control of multivariable systems.

CONTROLLABILITY

A control system is said to be completely state controllable if it is possible to transfer the
system from any arbitrary initial state to any desired state in a finite time period. That is. a
control system is controllable if every state variable can be controlled in a finite time period by
some unconstrained control signal. If any state variable is independent of the control signal, then
it is impossible to control this state variable and therefore the system is uncontrollable.

Complete State Controllability
Consider the discrete time control system defined by
X[(k+1)T]=Gx(kT)+ Hu(kT)
y(kT) = Cx(kT) + Du(kT) }

The system described by equ.(5.1) is said to be completely state controllable or simply state
controllable . if for any initial time KT=0, there exists a set of a unconstrained control signal

W(KT), which transfers the state x(KT) from any initial state x(0) to final state x(N) for some

finite time N.



Complete Output Controllability
The system described by eqn.(5.1) 1s said to be completely output controllable, if for any
initial time kT=0, there exists a set of unconstrained control signal u(kT), k=0,1,2......N-1, such

that any final output y(N) can be reached from arbitrary initial states in a finite time N.
THEOREMS ON CONTROLLABILITY
1 Complete State Controllability
A(k+1)T]=Gx(kT) + Hu(kT)}
y(kT) = Cx(kT)+ Du(kT)
The system described by eqn.(5.2) is completely state controllable if and only if, the matrix
Q=[GH:GH:GH: .......... : G*'H] is of rank n. The matrix Q. is called State

Controllability Matrix.
Proof: The solution of the state equation is

n-1

x(nT)=G"x(0)+ ) G"""Hu(jT)
j=0
=G"x(0) + G"'Hu(0) + G HU(T) + ..o +Hu[(n-1)T]
Cu(n-1)T |
u(n-2)T

XnT)-G"x(0)=[HGH ... G*'H]

I 1(0) }
If the rank of matrix Q. =[HGH .............. G"'H] is n. then the matrix Q. is called the
Controllability matrix. Thus, if the rank of the Controllability matrix is n, then for an arbitrary
state X(nT) = x¢, there exists a sequence of unbounded control signals u(0), u(T),..................,
uf(n-1)T] that satisfies eqn.(5.3). Hence, the condition that the rank of the controllability matrix

be ‘n’ gives a sufficient condition for Complete State Controllability.



-Complete output controllability
x[(k +D)T] = Gx(kT)+ Hu(kT)
y(kT) = Cx(kT) + Du(kT) }
The system described by is completely output controllable if and only if the
following matrix is of rank p, where p is the dimension of the output vector y(kT).
Qco=[B:: CH YCGH % sivune ' CGV'H]
The matrix Qco is referred to as the output controllability matrix.
Proof:

The solution of the above state equation is

n-1
x(T) =G x(0) + Y G"Hu(jT)

Jj=0

y(nT) = Cx(nT) + Du(nT)

=C[G"x(0) + nZ_I:G""HHu( jT)]+Du(T)

y(@T) - CG"x(0)={CG*'Hu(0) + CG** HuT) + .......... CG'H u[(n-1)T]} + Du(nT)
u(nT) |
ul(n-1)T]
y(@T)-CG"x(0)=[D:CG'H: CGH: ....... : CG™'H]

u(0)

Thus. a necessary and sufficient condition for the system defined by completely output
controllable 1s that the mx(n+1)r matrix

[D:CG’H:CGH: .......: CG*'H]

Be of rank ‘m’.



OBSERVABILITY
The system is said to be completely observable if every initial state x(0) can be
determined from the observation of y(kT) over a finite number of sampling periods. The system,
therefore, 1s completely observable if every transition of the state eventually affects every
element of the output vector.
Problem-1: Check whether the system represented by

-05 0 || x(k) 0 .
x(k+1) = +| lu(k) 15 controllable or not?
0 -2{{x,(k) 1

Solution: From the given state space representation

o3 2]

Qc=[H GH]=[(1) O}

Rank of Qc=1=1
Here we have, n=2
Hence r#n and the system 1s uncontrollable.

Problem-2: A linear dynamic time invariant system is represented by
x(k+1)=Gx (k) + Hu (k)

0 1 0 0

Where G=|0 O 1 |LH=|0
0 -2 -3 1

S D i



Find if the system 1s completely controllable or not?

Solution: For the system, n=3

6 1 976 1 0 0

GH=(0 0 1(|0 oj[=|1 O

0 -2 -3||1 0 -5 0
b I BI6 %8 1 0
GH=G(GH)= |0 0 1 i 6|=|=3 ©
0 =2 =3|[—-3 0 F D

Qc=[H GH G’H]

0 1 0O O 1 0
=10 O 1 0O -3 0
1 0 -3 0 7 O
O 1 0
Consider the determinant. [0 0 1| = 1#£0
1 0 3

Here the rank of the matrix, Q¢ = 3=n

Thus the given system i1s completely controllable.
THEOREMS ON OBSERVABILITY
2 Complete Observability

Consider the unforced discrete time system is described by
x[(k+1D)TI]= Gx(kT)
v(kT) = Cx(kT)

1s completely observable if and only if the following matrix 1s of rank ‘n’.

Q=% 677" ... . (BT



Proof:
The solution of the state equation 1s

x(kT) = G* x(0)

- y(kT) = CG*x(0)
Complete observability means that, given y(0), y(T). y2T)......, it 1s possible to determine x,(0),
x2(0), ......, Xy(0). To determine n unknowns, we need only n values of y(kT). Hence, we may
use the first n values of y(kT) or y(0). y(T)......., y[(n-1)T] for determination of x(0). x»(0).
T ()]

For a completely observable system. given
y(0) =Cx(0)
y(T) =C Gx(0)

y[(n-1)T]=CG™" x(0)

We must able to determine x;(0), X,(0). ........ X4(0).
v(0) T
y(T) cG
= : x(0)
| V[(n-DT]] | CG -t N
e
CG
CG*
The rank of the matrix Qo = (61) Qo= [0" : G § uuoww 3 (G CY] is rthen it is
_CGn_l_

observable. Here Qo 1s called the Observability matrix.



Problem-3: Check whether the system represented by

—3 I 1 01
X(k+t)=|-1 0 1{xk +|00 |uk)
0 0 1 21

(k_oo1 ¢
Y)_IIOX()

Is observable or not?

Solution: From the given state space representation

3 & ik 0 1
i |
G=l—-1 0 Il H=0 8|c=
I & 0
0 0 1 720 |
=3 = © 0 1
GT= 0 0 ©=|0 1
1 B 1. -
=3 = @lle 1 'y -
Glet=t1 o oflo 1=l I
1 i Z||E @ i 2

@Gy CF=6"G@GcH=|1 0 0
1. 2 I =i

-3 10{04 g 11

[CT GTCT (GT)Z CT]
01 0 -4 0 11
01 01 0 -4
101 2 1 -1

Qo

We are able to choose a determinant from Qo where value is not zero, which implies that, the

rank of Qo 1s 3. Here the system 1s completely observable.



RELATIONSHIP BETWEEN CONTROLLABILITY, OBSERVABLILITY AND
TRANSFER FUNCTIONS
Classical analysis and design of control system uses the concept transfer functions for
system modeling. One advantage of using transfer function is that state controllability and
observability are directly related to the minimum order of the transfer function. The following
theorem gives the relationship between controllability and observability and pole-zero
cancellation of a transfer function.
Theorem (1)-Controllability, observability and transfer functions
If the mput-output transfer functions of a linear time-invariant digital system has pole-
zero cancellation, the system will be either not state controllable, unobservable, or both,
depending on how the state variables are defined. If the input-output transfer function does not
have pole-zero cancellation, then the system can always be represented by dynamic equations as
a completely controllable and observable system.
Proof: Consider an n™ order differential equation as given below.
x(k+1) = Gx(k) + Hu(k)
v(k) = Cx(k) }

Let the matrix G be diagonalized by nxn non-singular matrix P, such that x(k) = PnAc(l\')
- Px(k+1) = GPx(k)+ H u(k)
k)= CP()
2(k+1) = PGP x(k)+ P H u(k)
y(k) = CPx(k)
sk + T = Gxlby+ B ulh)

(k) = C x(k)



Where G= PGP, H=P'H,C=CP
Since G 1is a diagonal matrix, the i @=1,2......... 1) equation
x,(k+D) =z, x:(k)+y, u(k)

A
Where z; 1s the it eigen value of G and y, 1is the i® element of G

Taking the Z-transforms by assuring zero initial conditions

2 X,(z) =2, X:i(2) 47, U(D)

=5 X.(2) = Ly

- -
- -
1

The Z-transform ., gives
Y(z)= CPX(2)
Tt == [ B

Where f; = [ ¢1+¢; zi+------- +Cy Ziu'l]

¥(z)=CP f"_p’(.—):[jq fo ot 2=z 0C)

Or 1n the transfer function form

Y(2) < S
U(z) ;:—:,.



If the transfer function has a cancellation of pole and zero, the corresponding coefficient
on the right side of the would be zero. Assuming that the pole at z = z; is cancelled by a zero,

then
fir;=0

f;=0 ory, =0 orboth.

Smce 7 1s the | ™ element of matrix G, y ; = Owould mean that the system is uncontrollable.

On the on the other hand, if f, =0where f, is the i™ element of C, the system would be

unobservable.

Problem-5: y(k+2)+ 2y(k+1) + y(k) = u(k+1) + u(k). Test the controllability and observability?
Solution: Given that

y(k+2) + 2y(k+1) + y(k) = u(k+1) + (k)

Taking the Z-transforms on both the sides

2Y(2)+22Y(2) +Y(2) =z U(z) + U(z)

Y(2) (Z+2z+1)=(z+]) U(2)

:>Y(:) z+41  Z(+zY) 2tz
Ufz) 242241 2204250487 18227457

Controllable canonical form:

e Uig) =0(z) let

Y477 (427042
U(z) =Q(2) [1 +2z7" +z7]
Q(2) =-2z" Q(2) -z” Q(2) + U(2)
Let

22 Q(Z)=Xi(2)




7' QZ)=Xx(2) = Q@) =2Xy2)
Xi(2)=7" Xa(2)
zX1(2)=X(z2) = xi(ktl)=x5(k)
C) ="' +2) Q)
C(2)=7" Q@) +7* Q(2) = X1(2) + X5(2)
= y(k) =x1(k) + x2(k)
Q@) =-2z" Q@) -2z° Q@) + U(2)
7Xa(2) = -2X2(2) - X1(2) + U(2)
= x(k+1) = - x;(k) — 2x,(k) + u(k)

Sx1(k+1) = x0(k)
X2(k+1) = - x1(k) — 2x2(k) + u(k)

y(k) =x,(k) + x5(k)

In state space form we can write as follows

[xl(kﬂ)} {0 | jl{xl(k)} H
=| +|  |u(k)
wlerBl | <1 —2fwdy] 11

- )

x, (k)

From the above state-space representation

G:LO1 _12}.H=[(1)} el



0. =H GH]{I 1}

1. =3

0 1

1 =3

0. =0-1=-1#0

— Rank =2

. The system 1s completely state controllable.

GE _ 0 —1 o 1
1 =27 1
GTCT ol 0 141 . —1
-1 =2]1] [-1
1 =d
Qs=[CE: 6] =
1
|Qo|= 0 and hence rank, r=1#n

. The given system unobservable.

Observable canonical form:

A2z 222 (2)=(z27" .z "N (&)

Y(2)=-277¥(2) -z X (2)+z ' U(2) +27U(2)

27 [U(2) - 2Y(2)]+z " [U(2) - Y(2)]

Y(2) =z"{[U(2)-2Y(2)]+:z"'[U(2) - Y(2)]} ~==i{1)



Let Y(z)=X,(2)
= X,(2) = " {UE) - 2Y()] + 27 [U () - Y]
X.C)=5" [U(:) —2¥(2) +X; (:)]}
X,(2) = = [U () - ¥(2)]
From eqn.(2)
zZX,(2)=U(2)-2X,(2)+ X,(2)

e

= x, (k+1) =u(k)—2x,(k) +x,(k) =={3)
zX,(z) =U(2)—X,(2)
x,(k+1)=u(k)—x,(k) =)
From eqn.(1)

y(k) = x, (k) (3

sx(k+1D) =—x, (k) +u(k)
x,; (e ¥ 1) =2x,(k)—2x,(k) +ulk)
(k) = x,(k)

In state-space form, the above equations can be represented as

Ek+D|_[0 —1Tx®] [1 5
Gk+)| |1 2| x,®) 1"
—xl(k)
_xz(k)

From the above state-space representation

G:[? ;]Hzchz[o 1]

y(ky=[o 1]




an=[? 2]

s . i)
O.=|H GH|= }

=1-1=0

1 -1
0| =

I <4

—>Rank = 1#£n

. The system 1s not state controllable.

Q=[G =" ! }

‘Q0|= -1 and hence rank, 1=2=n

- The given system completely observable.

In the above problem, it is clear that for one form of state space representation the system
1s completely state controllable and unobservable and another form state space representation the
system 1s uncontrollable and completely state observable. This 1s because there is a pole-zero

cancellation in the given system transfer function.



