STATE FEEDBACK CONTROLLERS AND
OBSERVERS

POLE PLACEMENT DESIGN
The concept of controllability is the basic for the solutions of the pole placement problem
and the concept of observability plays an important role for the design of state observers. The
design method based on the pole placement coupled with state observers is one of the
fundamental design methods available to control engineers. If the system is completely state
controllable, then the desired closed loop poles in the z-plane can be selected and the system that
will give such closed loop poles can be designed. The design approach of placing the closed loop
poles in the desired locations in the z-plane is called the pole placement design technique: that is.
in the pole placement design technique we fed back all state variables so that all poles of the
closed loop system are placed at the desired locations. In practical control systems. however
measurement of all state variables may not possible: in that case. not all the state variables will
be available for feedback. To implement a design based on state feedback: it becomes necessary
to estimate the immeasurable state variables. Such estimation can be done by use of state
observers.
NECESSARY AND SUFFICIENT CONDITION FOR ARBITRARY POLE
PLACEMENT

The state equation of the open loop system is
x(k +1)=Gx(k)+ Hu(k)
Where x(k)= State vector at the k™ sampling instant
u(k)= Control signal at the k™ sampling instant
G = nxn matrix
H=nx1 matrix
If we are assuming the unbounded control signal as (k) = —Kx (k)
Where K =[kk,k;....k,]= State feedback gain matrix
Then. the system becomes closed loop control system. and its state equation becomes
x(k+1) = Gx(k)+ H x —Kx(k)
=(G - HK)x(k)

Note that we choose matrix K such that the eigen values of G — HK are the desired closed loop
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(b): Closed-loop control system
Fig : Block diagram of feed-back gain matrix

A necessary and sufficient condition for arbitrary placement of closed loop eigen values is that

the system given by eqn is completely state controllable.

Necessary Condition:
The necessary condition for the system is, if the system is not completely state
controllable, and then there are eigen values of G — HK that cannot be controlled by state

feedback. We will prove this condition now.

Suppose the system of equations is not completely state controllable, then the rank of the
controllability matrix is less than ‘n’ (or)
Rank [H:GH:..G"'H]=q<n
This means that there are °q’ linearly independent column vectors in the controllability matrix.

Lets us define such ‘q’ linearly independent column vectors as f. f5. fi.......f, .Also, let us

choose n-q additional n-vectors vV, .V, 5.V, 5-0ee- v, such that

Pzt tly B Sy Wer PWiny Donnonins :v,] is of rank n.

By using matrix P as the transformation matrix. let us define

PGP=G and PH=H
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Since we have here ‘q’ linearly independent column vectors f;, f5. f5-..... S, we can use Caley-

Hamilton theorem to express matrices Gf,.Gf,.Gf;......Gf, in terms of these *q’ vectors. i.e.

Gf, = gu/i +g2gf2 +"'+gqlfq
Gf, =8ufi+8nlfy +-+ 80/,

qu :'glqj‘l +g2qf2 +"'+gqqfq

Hence, equation can be written as

(G, 26, GG T TG s T TGV ]
-gu g2 " & &gig+1 8ig+2 7 &m |
8 82 ° 82 | &2gu 82+2 7 &
:[fl ...... Ve vn] g(‘)ll 0(;1 g(;" Egg+1 Bisr % By
gq+lq+l gq+1q+2 gq+1n
1€ O 0 0 gnq+l gnq+2 grm |

To simplify the notations, let us define

_gu g1 7 &y ]

g:21 g.zz . 6,
| 81 &2 8qq
-g 1921 81gs2 g 0

g 2-q+1 g 2;1+7 & e,
| g1 8qq+2 Ean |




gq+lq+1 gq+lq+2 R gq+ln

gq+2q+l gq+2q+2 o gq+2n

| gnq+1 gnq+2 e grm

Then eq. (8.6) can be written as follows

[Gf...- G, : Gy -+ Gy l= [fy-+ Sy Vgt ,.n]{

Thus. (A;:{G(;‘ Gl‘-’:|

- we have

(B @ 0
0 0 0
. = G,, = (n— q)x g =Zero matrix
(0 0 0]
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The characteristic equation of the closed loop system given by

|ZI -G + HK|=0

Let us define

K=kP=[K, : K]
Where K|, is a 1<q matrix and K; ,is a 1(n-q) matrix.
K=KP
KP*=KPP" =KI=K

S>K=KP'=[K, : K,JP"
Then the characteristic equation for the closed loop system can be written as follows

|21 -G+ HK|= |P?||2I - G + HK||P|
i ,ZI = PG P“HKP\

:‘ZI—&+ HEK

7 I‘] 0 . ! Gll GIZ e Hll [K K
0 Z..| 18 &.1718 F2 &

By substituting

‘Zl-éﬁflf(




a,-G6,+H,K, -Gy, +H11K12-}
0 I, -G,

n-q

- |ZI -G Hkl = |z, -G, + Bk, |2, , -6,

A
Equation  shows that matrix K =K P~ has control over the ‘q” eigen values of G,, + H,,K,, .

but not over the n — geigen values of G, , That is, there are (n-q) eigen values of [G-HK] that
do not depend on matrix K. Hence, we have proved that complete state controllability is a
necessary condition for controlling all eigen values of matrix [G-HK].

Sufficient Condition:

The sufficient for the system is, if the system is completely state controllable then there
exists a matrix K that will place the eigen values of [G-HK] or closed loop poles at the desired
locations.

The desired eigen values of [G-HK] are p,. 1, . j;.......1t, any complex eigen values are to
occur as congugate pairs. Noting that the characteristic equation of the original system is

Z1-G|=Z"+a,2"" +...+a,Z+a,=0
We define the transformation matrix (T) as follows
T =MW
Where M=|H : GH i - i G"'H|

‘Which is of rank n. and where

n-1 an—l al 1
n-2 an—3 ]' O
W= :
a, 1 == @ 0
[ @ § == & 90

We can get



[0
0
G=T"'GT = :
0
|7 a,
and
T
0
H=T'H=|0
._1_
Next we define
K = KT = [511 5n-1
o
0
HK=|0|[s, &,
Ll_.

The characteristic equation of the system is

|ZI—G+HK]=‘ZI—(A?+IA{1A<

T
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Z -1 0

0 Z 0

0 0 o |
a,+o, a,,+0,, - - Z+a +0

=Z"+(a, +8)Z" ' +..+(a,, +6, )Z+a,+5,=0
The characteristic equation with desired eigen values is given by
Z-w)Z-pus) Z—p)=Z" +0,Z" +...+a,,Z+a, =0

On comparing equations

From equations

K=KT"
=[5" O,y v 51]]"—1
:[C(n—(]"; a,,_l—an_IE al_al]T_l

Where a,’s and ¢, 's known co-efficients and T is the known matrix. Hence we have determined

the required feedback gain matrix K in terms of known co-efficients and a known matrix of the
system. This proves the sufficient condition.

ACKERMAN’S FORMULA
Consider the discreet time system defined by
x(k+1)=Gx(k)+ Hu(k)
It is assumed that the system is completely controllable.

By using the feedback, u(k)=-Kx(k). we wish to place closed loop poles at
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Let us define

A

G=G-HK

Since the Caley-Hamilton Theorem states that G satisfies its own characteristic equation.

! <)
Al A n-l A -2 A X

G+a,G +a,G +-ta, Gra l=0(G)=0

We shall utilize this last equation to derive Ackermann’s formula.

Consider the following identities

I=1

G=G-HK

A

G'=(G-HK) =(G - HK)(G - HK)

=G’ -GHK -HKG+H’K* = G’ -GHK - HK(G - HK)

ie G} =G -GHK - BK G
3 bl

G =(G-HK) = G* - G*HK - GHK G- HK G

Al an-l

G =(G-HK) = G" -G™HK - GHK G- HKG



Multiplying the proceeding equation in order by «, ., ,......., a,(where a,=1) respectively

and adding the result we obtain
al+a,, 5% 8oy B Lol al+a, G+a, G
A A Bl
+..+4G"-a, HK —a, ,GHK -, ,HKG...-G"'HK ...-HK G
A -l

= §(6) = $(G) -, HK ~ at, 1GHK ~a, ,HK G-+~ HKG -G HK

An—l—

o, K+a_,KG+....+KG

=¢(G)—1H } G B e s SG"'lHJ an—2K+an_3KG'+ ...... +KG

Note that ¢(CA?) =0

The above equation can be written as

. K+a, ;KGr..... +KG

: : : (an-1 o, K+ca, ;KG+...... el &
#G=F : GH i - .. G™H] :

K
Since the system is completely state controllable. the controllability matrix
7 i e : - o iG™H]
is of rank ‘n” and its inverse exists.

—

O i Ky K sz +K G
G

K
an_2K+an_3K G+ ...... +K o lH ; GH ; e s Gn—lHJ -1 ¢(G)




Pre-multiplying both sides of this last equationby [0 0 --- 1]

A /\"_1
a, . K+a, . KG+...... + K G
We obtain [0 0 1] a"-2K+a"—3KC_;+ """ +KG
d K |
oo 1|H : 6H i - - GH|T 46

Equation gives the required state feedback matrix K.

0 1 0
Problem-1: Consider the system x(k+1)=Gx(k)+Hu(k) where G:[ i J H =[J

Determine a suitable state feedback gain matrix K such that the system will have closed loop

polesat Z=0.5+j0.5 Z=0.5-;05

Solution: Given that

o< o ]

Method-1

=0, hence rank=2=n. Thus the system is completely state controllable, therefore arbitrary

QC

pole placement is possible.

Z —1
0.16 Z-11

|z — G| = =Z>+Z+0.16=0

— a, =1l.a, =0.16

The characteristic equation for the desired system is



1ZI -G + HK|=(Z - 05~ j0.5)(Z - 0.5+ j0.5)
= (Z-0.5)* +0.5°

=2'-Z+05=0

>a,=-la,=0.5

. oo da 110 1T 1] 1o
T=MW=|H i GH - = =1
1 o] |1 -1f1 0] |0 1

Notice that the original system is already in a controllable canonical form and therefore the
transformation matrix T becomes I
JK=lay-a, : aa]l

=[05-0.16 : -1-1]

=034 : -2]

According to Ackermann’s formula

k=[o 1] [H GH['¢(G)
(i1 GH]”:{O 1} » 1 [—1 —1}{1 1}
i =1 =<fl=1 @1 11 0
$(G)= G* -G +0.5]
_[-016 -1 0 1] 05 07]_[034 -2
016 084| |-0.16 1 0 05| |032 234

Thus. K =[0 1] {1 1} [0'34 _2j| =[1 0] [0'34 _2} =[034 -2]

1 0((032 234 032 234



FULL-ORDER OBSERVER

A state observer or a state estimator is a subsystem in the control system that performs

an estimation of state variables based on the measurements of the output and control variables.

v(k) ——»

u(k) ——»

STATE
OBSERVER

—

Fig: Schematic diagram of the state observer

The state observer will have y (k) and u (k) as inputs and .vAr(k) as output as shown in fig
A full order state observer means that we observe or estimate all n state variables
regardless of whether some state variables are available for direct measurement. The order of the
state observer will be same as that of the system. Observation of only the immeasurable state

variables 1s referred to as minimum order state observer or reduced order state observer.

DESIGN OF FULL-ORDER OBSERVER

Consider
x(k+1) = Gx(k)+ Hu(k)
v(k)=Cx(k)

Where x(k) = State vector
y(k) = Output vector
u(k) = Control Vector
G = nxn non-singular matrix
H = nxr matrix

C = 1 *n matrix

The system is assumed to be completely state controllable and completely observable. Thus the

iverse of [GT: GTCT: - o (GT)"—IC‘T]eXists.

The control law to be assumed as



iy K

Where x(k) is the observed state.

The system configuration is as shown in the figure

€ |

'll(k) + z X(k)
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x(k)
.
¥

Fig: Observed state feedback control system

The state observer dynamics are given by the equation

(k1) = Gx(k) - Huk)+ K e[_v(k) - _:f’(k)J

— (G- K,C)x(k) + Hu(k) + K,Cx(k)

First, we define

o=NT)"
Where
N:[CTS GTCTi o (GT)"“CT]
and
(an—l a,, - 4 ]
oy By won & B
v .
a, 1
. & 8 ]

Where a,,a,



given by

|zr-Gl=z" +a,z"" +...+a,,Z +a, =0
Next. define

x(k) =0Z&(k)
E(k+1)=07'GE(k) + O™ Hu(k)

v(k)=CO<S(k)
Where

(@ O = 0 —d

oieo=|t 9 O <o

0 0 1 —q

co=0 0 - 0 1]

Now define
*(k) = 0 £(k)
E(k+1) = 07 (G—K,C)OE(R) + O™ Hu(k) + 07 K,COE(R)
Ek+1)—E(k+1) =07 GOE(k) - 07 GOE(k)+ Q7 K,COE(k)— O™ K, CO&(k)

= Q'IGQ[S (k) = %(/()} +07K,C Q{LA’ (k) - 5(/\')}

-lo"60-0k.col it &)

Define

e(k) = E(k) — E(k)
Then eqn. becomes

e(k+1) = 0 (G — K_C)Qe(k)



We require the error dynamics to be stable and e(k)to reach zero with sufficient speed. The
procedure for determining matrix K, is first to select the desired observer poles (the eigen values
of[G—K,C]) and then to determine matrix K, so that it will give the desired poles. If we

require e(k)reaching zero as fast as possible, then we require the error response to be deadbeat.

so we must select all eigen values of [G — K, C] to be zero.

o= )"
—an—l n-2 al 1- [ C i
n-2 n-3 0 cG
Q7 =PWN'= : :
a, cG™
10 || eg* |
_an—l ) a, 1 € T K, j
&z 4 ; 1 0| €& || &;
07K, =| : :
a, 0 oflcG"™||K,,
10 o all e || Kk, |
K]
K2
Where K, = | :
Kn—l
L K" =

Since Q'K is an n-vector, let us write

[ @,
(Sn—l

07K, =

s



[ & | [0 0 0 4. ]
‘n-l O O (Sn-l
prreg= : |lo 0 -~ @ 1) :
| &, | 0 0 - o 5 |

07 (G-K,C)O=0"GO-07K,CO

[ Q) e @ =BT |
O O omem e g ol

= . millgaeT (‘)n-—2
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The characteristic equation of the system is 'ZI TG~ KeC)Q‘ =0

(Z0 0 0 - a,+9,

AZ @ 0 = Bgdly
0= 7" o= O gugtdy|=0
(00 0 - -1 Z+a,+6,

Z"+(a,+8,)2"" +...+(a, +5,)=0

Suppose that the desired characteristics for the error dynamics is
(Z-NZ - ty)-(Z - p,)=0

2"+ o, 2" o, 2" +a, ,Z+a,=0

Where 4, are the desired eigen values of the system.



By comparing eqns.

o, =a, + 0,

o, =a, 0,

a,=a,+90,

From the above equations we get

&l =0
( csn an s an
(Sn—l an-l K an—l
X ) -
| 6, ] | v —a, |
Hence
F an i an | F a" — an [
C(n—l L an—l an—l I an—l
—1
K,=0 =(NT)
L o, —a; | L o, —a

Equation gives the necessary observer feedback gain matrix K,

Problem-2: Consider the double integrator system given by the equation

x(k+1)=Gx(k)+ Hu(k)
y(k) = Cx(k)



o T 72
where Gz[ }Hzlz }C‘:[l 0]
0 4

1

Design a state observer for this system. It is desired that the error vector exhibit deadbeat
response.

Solution: Given that

G=B ﬂ H={T2T/2} c=[1 0]

o} Tl

5 0T
Observability matrix Q, = [C‘T 2 ge” ]={O J

on| = 0. hence rank=2=n. Thus the system is completely observable.

The characteristic equation of the system is

7 ol [o T
[Z[_G|:o zl o 1
zZ-1 -T| _,
| —Z%_274+1=0
0 Z-1

>2Z?-2Z+1=0
Comparing the characteristic equation with
Z*+a,Z+a,=0
=a =-2.a,=1
Since the deadbeat response is desired. the desired characteristic equation for the error dynamics
is Z’+o,Z+a,=Z=0
o, =0a,=0
Method -1

The feedback gain matrix K, is
o, —a, 4| =1
Ke - Q{ : ~} :( ) T) 1 { }
a, —a 2

N=[cT : GTCT]:[CI) ”
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Method-2

The feedback gain matrix K, according to Ackermann’s formula

¢ 170
ol

Where
D(G)= G +o,G+a,] =G

o 3o 1o 7]

Solution: Given that

G=A=[_Ol j H=B=[ﬂ. c=D=[2 0]



=a,=0.a,=0

The feedback gain matrix Ke is

o, —ay ' 7\l -1
-

. 2 0
N=|cT GTCT]=[ }




