STABILITY ANALYSIS

DEFINITIONS ON STABILITY

a)

Zero state response: The output response of a discrete data system, that is due to the
input only is called the zero state response: all the initial conditions of the system are set
to zero.
Zero input response: The output response of a discrete date system is due to the initial
conditions only is called the zero input response; all the inputs of the system are set to
Ze10.
From the principle of superposition, when a system is subjected to both inputs and initial
conditions, the total output response is given by

Total response=Zero state response +zero input response
Bounded input-bounded state stability: Consider a linear time invariant discrete data
system that is described by the following dynamic equations
x(k +1) = Gx(k )+ Hu(k)
(k)= Cx(k)+ Du(k) }
The system is said to Dbe Dbounded input bounded state (BIBS)

stable if for any bounded input u(k), the state x(k) s also bounded.

d) Bounded input- bounded output stability: the system described by set of equations

(6.1) 1s bounded input bounded output (BIBO) stable if for any bounded input, the output

c(k) 1s also bounded. Since the output of a system is a linear combination of the state

variables, a system that is BIBS stable must also be BIBO stable. However if the system

1s BIBO stable, it may or may not be BIBS stable.



e) Zero input stability: The system described by the dynamic equations is said to be zero

mnput stable or simply stable if the zero input response c(k). subject to the finite initial

conditions, reaches zero as k approaches infinity, otherwise , the system is unstable.

Mathematically, zero input stability requires that

lC()| <M < f]
Zilcw=v |
Where HC(A—)” =norm of a vector x(k)

M = a finite number

f) Asymptotic stability: The conditions given in equation are also the requirements

for asymptotic stability. Thus. zero input stability implies asymptotic stability.
g) Zero input stability, asymptotic stability and characteristic roots: For the linear
discrete data system described by set of equations above BIBO, Zero input and asymptotic

stability all requires that the roots of the characteristic equation be inside the unit circle

Z|=1 in the Z-plane.
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MAPPING BETWEEN THE S-PLANE AND THE Z-PLANE
In the design of a continuous time control system, the location of the poles and zeros in
the s-plane are very important in predicting the dynamic behavior of the system. Similarly, in
designing discrete time control systems, the location of poles and zero in the z-plane are very
important. Since the complex variables Z and S are related by Z =e" . the pole and zero
locations in the z-plane are related to the pole and zero locations in the s-plane. Therefore, the

stability of the linear time invariant discrete time closed loop system can be determined in terms



of the locations of poles of the closed loop pulse transfer function.
When impulse sampling is incorporated into the process, the complex variables Z and S

are related by the equation
Z 18 eTS
With reference to location of the roots of the C.E in the S-domain, the imaginary axis i.e..

jo axis in the S-plane divides stable and unstable regions and the corresponding regions in the
z-domain can be obtained by putting S =+ i equation and plotting the values of ‘Z’
thus obtained in another complex plane called z-plane.

o Z=e" =cosoTl + jsinoT

Z|=1.£Z =0T

The above equation represents a circle of unit radius in the Z-plane as shown in figure
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Fig : Mapping between s-plane and z-plane



The L.H.S of s-plane is mapped as the inside and R.H.S as outside of the unit circle in z-plane,
which is verified below.

(a) Let S =—a + jo,apomt in the L.H.S of the s-plane. The corresponding point in the z-plane
is given b
Z =9 = = (cosaT + jsineT)
s|Z|=e™ L2 =taT
As « 1s the real part of the point under consideration lies in the L.H.S of the s-plane and T being
positive ‘Z <1. Hence, the point (- + jo) with negative real part located in s-plane lies

insides the unit circle when mapped into z-plane.

(b) LetS =a + jo, a point in the R.H.S of the s-plane. The corresponding point in the z-plane is
given by

7 =" = ¢ (cos 0T 2 jsinaT)

we|=e® L2 =taT
Asa , the real part of the point under consideration lies in the R.H.S of s-plane and T being
positive Z ‘ > 1 .Hence the point (a + je) with positive real part located in s-plane lies outside
the unit circle, when mapped into z-plane.

In view of the above analysis it is concluded that for the sampled data system to be stable

all the roots of the Z-transformed characteristic equation, 1+ GH(Z)=0 . should be located

inside the unit circle centered at the origin in the z-plane and in case any root is located outside

the unit circle centered at the origin in z-plane makes the system unstable.



PRIMARY STRIP AND COMPLEMENTARY STRIPS
We know that ZZ = @T the angle of Z varies from — o to +% as @ varies from - to

» . Consider a representative point on the jo axis in the s-plane. As this point moves from

i i 9.5 ) . .
—']E(OS to j>o, on the joaxis, where o, = T is the sampling frequency, we have‘Z [ =1,

and /Z varies from -7 to 7 in the counter clockwise direction in the z-plane. As the

-

, ; e | 3 ; ; : -
representative point moves from e, to j>o, on the jo axis, the corresponding point in the

z-plane traces out the unit circle once in the counter clockwise direction. Thus, as the point in the
s-plane moves from — oo to = on the je axis, we trace the unit circle in the z-plane an infinite
number of times. From this analysis, 1t is clear that each strip of width @, in the left half of the s-

plane maps mto the inside of the unit circle in the z-plane. This implies that that the left half of

the s-plane may be divided into an infinite number of periodic strips as shown in figure (6.3).

: : : 1 g .
The primary strip extends from jo= - j 5(05 o jo,. The complementary strips extend from

jl(os tojéms, ji(os to jéfos. --------- and from —jl(r)s to—jzms, —jE(os to—jéo)s.
2 2 2 2 2 2 2 2
In the primary strip, if we trace the sequence of points 1-2-3-4-5-1 in the s-plane as
shown by the numbers in figure above, then this path is mapped into the unit circle centered at
the origin of the z-plane, as shown in figure «(b). The corresponding points 1.2,3.4 and 5 in the

z- plane are shown by the numbers in figure (b).
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Fig : Periodic strips in the s-plane and the corresponding region(unit circle
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The area enclosed by any of the complimentary strips is mapped into the same unit circle
in the z-plane. This means that the correspondence between the z-plane and s-plane is not
unique. A point in the z-plane corresponds to as infinite number of points in the s-plane, although
a point in the s-plane corresponds to a single point in the z-plane. Since the entire left half of the

s-plane 1s mapped into the interior of the unit circle in the z-plane, the entire right half of the s-
plane 1s mapped into the exterior of the unit circle in the z-plane. As mentioned earlier, the jo

axis 1n the s-plane maps into the unit circle in the z-plane.
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Fig: Diagrams showing the correspondence between the primary strip in the s-plane
and the unit circle in the z-plane (a) A Path in s-plane (b) The corresponding path in the z

plane



METHODS FOR TESTING STABILITY
The following three tests are used for analyzing the stability of a discrete time control

system.

o Bilinear transformation or extended RH criterion.
o Jury’s stability test.
¢ Schur-chon criterion.
Bilinear Transformation
By the bilinear transformation, it was found that the stability of a discrete time systems
can be determined without finding the actual numerical values of the roots of the characteristic
equation.
One such transformation defined by
7 kn'+1
w-1
Which, when solved for w, gives

_Z+1
Z-1

w

maps the inside of the unit circle in the z-plane into the left half of the @-plane. This can be seen
as follows. Let w=a + jf

Since the inside of the unit circle in the z-plane is

z| =

11‘+1|_ a'+j,3+l|<1
11‘—1|_ a+j,8—1|

-
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Thus, the inside of the unit circle in the z-Plane (]Z | <1) corresponds to the left half of the

w-plane. The unit circle in the z-plane is mapped into the imaginary axis in the w-plane, and the
outside of the unit circle in the z-plane is mapped into right half of the w-plane.

In the stability analysis using the bilinear transformation coupled with the Routh Stability

- ’ . w+l . - .
criterion, we first substitute 1 for Z in the characteristic equation
W—
P(z)=a,2"+aZ"™" +——————~ +a,_Z+a, =
as follows
‘w+1Y w1 w+1
a, +a, o 3. +a, =0
w-—1 w—1 w—1
= 0(@)=bw" +bW" " 4 +b _w+b =0

Once we transform P(z)=0 into Q(w)=0, it is possible to apply the Routh’s stability
criterion in the same manner as in continuous time systems.

It is noted that the bilinear transformation coupled with the Routh’s stability criterion will
indicate exactly how many roots of characteristic equation lie in the right half of the w-plane and
how many lie on the imaginary axis.

Problem-1: Analyze the stability of the following systems by using bilinear transformation.
(@) P(z)=2Z° +3.3Z* +3Z+08=0

Put Z= s

w—1

+1Y +1)’ +1
[“ ] +35 ) +3 25 14+08=0
w—1 w-1 w-—1

(w+1)> +33(w+1)*(w=1)+3 (w+1)w-1)> +0.8(w-1)> =0

W+ 143w +3w+3.300" = Dw+1)+ 30w =1)(w—=1)+0.8(w* —1.3w* +3w) =0

O(w) =8.1w* +0.9w* —0.93w—-0.1=0



w (8.1 =09
w09 -0.1
w0

0
W

«Routh’s test breaks down

Alw)=0.9w" -0.1

%=1.8w

w81 -09
w09 -0.1
w[18 0
w'l-01 0

Since one sign change occurs in the first column of Routh’s tabulation, the characteristic

equation has one root in the right half of -plane (or) P(z) has one root outside the unit circle in
the z-plane.
) P(2)=Z’+Z* +Z+1=0

The roots of P(z) are at Z=1,Z=] and Z=-). which are all on the unit circle, thus the system is

unstable.
The Jury Stability Test

In applying the Jury stability test to a given characteristic equation P(z)=0, we construct a

stable whose elements are based on the coefficients of P(z). Assume that the characteristic
equation P(z) is a polynomial in Z as follows:
Pla) =il $a % e +a,..244,

Where a, > 0. Then the Jury table becomes as given below
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Where
The first two rows consists of the coefficients of P (z) arranged in ascending order of
powers of Z in first row and in reverse order in next row.
All even numbered rows are the reverse of the preceding row.

Elements of row three through (2n-3) are calculated as

g Bl gy
Ay Apy
b, b,

SR Rl P (7 S— ,n-2



Pz P
pO pk+1

qk: sk:()-. ].-, 2

Procedure is continued until (211-3)rd row 1s reached which contains exactly three

elements.

The system is said to be stable if it satisfies the following conditions.

i a,|<]a)
i. P(z), >0
i P2 {> 3o
=1|< 0 for n odd
iv.  |b,|> [bo]
a2 >|"0|
2| > “10’

Problem-2: Analyze the stability of the following systems by using Jury’s stability test
(@) P(z)=2"-1252*-1375Z-025=0
Solution: P(z)=Z’-1252°-1.3752-025=0  ---(1)

From the given characteristic equation

a, =l,a, =-125,a, =-1.375,a, =-0.25



i).'aS‘ < ‘aoli.e\— 0.25

<[y
if) P(1)=1-125-1.375-0.25=-1.875<0
iit). P (-1) =-1-1.25+1.375-0.25<0 for n-odd

Since P(1) 1s negative, not all the roots of equation(1) are inside the unit circle, and the system is

unstable. So there 13 no need to carry out the Jury’s tabulation.
(b) P(z)=Z"-12Z°+0.07Z* +0.3Z-0.08=0

Solution: P(z)=Z*-12Z°+0.07Z* +03Z-0.08=0 ---(2)
From the given characteristics equation

a,=1a,=-12,a,=0.075,a, =03,a, =-0.08

1) '(74 < ao‘ ie |—0.08‘ <"1|
it) P (1) = 1-1.240.07+0.3-0.08= 0.09>0
ii1) P (-1) = 1+1.240.07-0.3-0.08= 1.89>0, n=4=even

The first three conditions for stability are satisfied, we have to check for the fourth condition.

Row Z° 7z} 7= 73 Z*
1 —0.08 0.3 0.07 1.2 1
2 1 % . 0.07 03 —-0.08
- b3 bz bl bo

-0994 1.176 -0.0756 -0.204
4 -0204 -00756 1.176 -0.9%4

5 0946 —-1.184 0.315



b, =1.2%0.08-0.3x1=—0.204
b, =-0.07x0.08-0.07 = -0.0756
b, =-0.08x0.3+12x1=1.176
b, =0.08° —1° = 0.99%4

V) [by|> [by| ie.[0.994] >{0.204]

e3> |eq| ie.0.946] > 0.315]

Thus fourth condition is satisfied. Since all conditions for stability are satisfied, the given

system is stable, or all roots lie inside the unit circle in the z-plane.

(c) P(z)=Z°+33Z*+4Z+08=0
Solution: P(z)=Z°+33Z°+4Z+08=0 --(3)
From the given characteristics equation

ay=1,0,=33,a; =44, =08

i) |ay| < |ag| i 0.8 <[l

ii) P (1) = 1+3.3+4+0.8= 9.1>0

iii) P (-1) = -1+3.32-4+8=-0.9<0. n=3=odd

The first three conditions for stability are satisfied, we have to check for the fourth condition.

Bow 7% 72 72 P

| 0.8 4 33 |
2 | 33 4 08
- b2 bl b01

)

=036 =01 <136
4 -136 -0.1 -036



<|1.36| . Thus fourth condition is not satisfied. So equation.3 has at

iV) [b,| > [by| but 0.36

least one root outside the unit circle.

Problem-3: Consider the discrete time unity-feedback control system. whose open loop pulse

K(0.3679Z +0.2642)
(Z-03679)Z -1)

transfer function is given by G(z) =

Determine the range of gain K for stability by use of the Jury’s stability test.
Solution: The characteristic equation of the system is
P(z)=14G (z)H(z)= 0
i K(0.3679Z +0.2642 _ 0
(Z-0.3679Z)(Z -1)

=77 -1.3679Z +0.3679+ K(0.3679Z +0.2642) = 0
= P(z)=Z* +0.3679K -1.3679)Z +(0.3679 + 0.2642K) = 0
Since this is a second order system, the Jury’s stability conditions may be written as follows:
1)
i) P (1)>0
1) P (-1)>0, n=2=even

a,|

<
.

i

We shall now apply the first condition for stability. Since a, =0.3679+0.2642K and a, =1,



the first condition for stability becomes

0.3769+0.2642K| < 1

1.e.0.3769+0.2642K<+1

: 1-0.3649 —1-0.3649
ie. K=——(or)
0.2642 0.2642

=2.3925 (or) -5.775

The second condition for stability becomes

P (1)=1+(0.3679K-1.3679) +0.3679+0.2642K=0
— 0.6321K >0

= KZ0

The third condition for stability becomes

P (-1) =1-(0.3679K-1.3679) + 0.3679+0.2642K>0
— 2.7358—-0.1037K >0

2.735
0.1037

.. For stability, the constant K is 0 < K < 2.3925

=K< < 26.374

Problem-4: Consider the system described by

y (k) - 0.6y (k-1)-0.81y (k-2) +0.67y (k-3) - 0.12y (k-4) =x (k)

where x (k) is the input and y (k) is the output of the system. Determine the stability of the
system.

Solution:

y (k) - 0.6y (k-1)- 0.81y (k-2) +0.67y (k-3) - 0.12y (k-4)=x (k)

By taking Z-transforms on both sides



Y(2)-0.6Z7" Y(2)-0.81 Z* Y(2)+0.67 Z” Y(2) -0.12 Z* Y(2) =X(2)
Y(z) 1
Xilz) I1=06Z"=0817 *3:0.67Z 0127 "

Z4
70622 —0817%+067Z2-0.12

The characteristic equation of the system 1is
P(z)=Z*-0.6Z>-0.81Z> +0.67Z-0.12=0
From the above equation
a, =1l.a, =-0.6.a, =-0.8l.a, =0.67,a, =-0.12
1) |a4| < [ao‘ ie )0.12| < Il]
i) P (1) =1-0.6-0.81+0.67-0.12 = 0.14>0
ii1) P (-1) = 140.6-0.81-0.67-0.12 =0
The condition is not satisfied. P (-1) = 0 implies that there is one root at Z = -1
The first three conditions for stability are checked. We have to test for the fourth condition.
Row  Z° v 7 Z z*
1 -012 067 -081 -06 |
2 1 -06 -081 067 -0.12
3 -0985 052 0907 -0.598
4 -0598 0907 052 -0.9856
5
6

0.614 0.03 -0.583
-0583 003 00614

V) |by| > [b,|i.e. |- 0.9856] > |-0.59§
e3> [eg| ie.[0.614] > |- 0.5834]

Thus the fourth condition is satisfied.

From the preceding analysis, we can conclude that the characteristic equation P(z) =0



involves a root at Z = -1 and the other three roots are in the unit circle centered at the origin of
the z-plane. So the system is critically stable.

Problem-5: Consider the following characteristic equation
Pz)=Z"-132"-0082-024=0
Determine whether or not any of the roots of the characteristic equation lie outside the unit circle

in the z-plane. Use the bilinear transformation and the Routh stability criterion.

Solution: Let Z = Wl

w-1
The given characteristic equation becomes

w+lY LY )
(‘—j -1.3(‘—) -0.08(“ J+0.24=0

w—1 w-1 w-1

(w+1)* =1.30w+1)*(w—=1)-0.08(sw+ 1) w—1)* +0.24(w—1) =0

w414 3w + 3w =130 = 1fow+1)-0.08(2 — 1Jow—1)+ 024(* —1-3w” + 3)= 0
~0.14%* +1.06w* +5.1w+1.98 =0

W' =7.57w* —36.43w-14.14=0

The Routh array for the above equation is

w| 1 -3643
w?|-7.57 -14.14
« signchange
w'[-38.30
w|-14.14

There is one sign change in the first column of Routh’s array and hence there is one root
in the right half of the w-plane. This means that the original characteristic equation has one root

outside the unit circle in the z-plane. So the system is unstable.



Problem-6: A discrete time system

1 a
X(k+1)=Ax(k) +Bu(k) has the system matrix 4 = L 7} . For what value ‘a’ is the system

- —

stable ?

Solution: The characteristic equation of the system is

ZI-G|=0

z o] [1 a_
& Z| |2 @5
MACE | =& |
-2 Z-0.5

(Z-1)(Z-0.5)-2a=0
WP(z)=2"-15Z+05-2a=0
=a,=1la =-15,a,=05-2a

Since this is a second order system, the Jury’s stability conditions may be written as follows.
i) |a,] <]a|

i) P (1)=0

ii1) P (-1)>0, n=2=even

The first condition for stability becomes
0.5-24| <1

0.5-2a<+1

0.5-2a<-1 (or) 0.5-2a<1

-2a<-1.5 (or) -2a<0.5

A<0.75 (or) a>-0.25



The second condition for stability becomes
P(1)=1-1.5+0.5-2a=0
—>-2a>0 = a<0
The third condition for stability becomes
P (-1) = 1+1.5+0.5-2A>0
—>3—-2a>0
—>2a>-3=>a<l.5

.. The condition for stability is -0.25<a<0



