

Website: www.jntuk.edu.in
E-mail: registrar@jntuk.edu.in

Phone: Off: 0884-2300900
Fax: 0884-2300901

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
Kakinada-533003, Andhra Pradesh, India
(Established by A.P Act.30 of 2008)

Letter No. DAP/DNRCE&T(9P)/BoS/2024

Date: 15.07.2024

Dr. L. SUMALATHA
M. Tech., Ph.D.,
REGISTRAR

To
The Principal
DNR College of Engineering and Technology (Autonomous)
Bhimavaram.

Sir,

Sub: JNTU Kakinada – Academic Planning – Board of Studies (BoS) Members to
“DNR College of Engineering and Technology (Autonomous), (CC:9P),
Bhimavaram – Reg.

Ref: Note orders of the Vice-Chancellor, JNTUK, Kakinada dated 15.07.2024.

With reference cited above, the Hon'ble Vice-Chancellor JNTUK, Kakinada is pleased to nominate the following members for Board of Studies (BoS) of “DNR College of Engineering and Technology, (CC:9P), (Autonomous), Bhimavaram” for three academic years i.e. 2024-25, 2025-26 and 2026-27

S. No.	Name of the Department	Name of the BoS Members
1	Civil Engineering	Prof. P Subba Rao Professor, CE Department UCEK, JNTUK, Kakinada
2	EEE Department	Prof. K. Ravindra Professor, EEE Department UCEK, JNTUK, Kakinada
3	ME Department	Dr. D. Linga Raju Assoc., Professor, ME Department UCEK, JNTUK, Kakinada
4	ECE Department	Prof. B. T. Krishna Professor, ECE Department UCEK, JNTUK, Kakinada
5	CSE Department	Prof. N. Ramakrishnaiah Professor, CSE Department UCEK, JNTUK, Kakinada
6	Artificial Intelligence and Data Science	Prof. ASN. Chakravarthy Professor, CSE Department UCEK, JNTUK, Kakinada
7	Artificial Intelligence and Machine Learning	Prof. D. Haritha Professor, CSE Department UCEK, JNTUK, Kakinada

8	Information Technology	Prof. N. Ramakrishnaiah Professor, CSE Department UCEK, JNTUK, Kakinada
9	MBA Department	Prof. P. Uma Maheswari Devi Professor, Dept. of Commerce and Management Studies AKNU, Rajamahendravaram
10	Mathematics Department	Prof. K. Ravindranath Professor, Mathematics Department UCEK, JNTUK, Kakinada
11	English Department	Prof. K. Sree Ramesh Professor, Dept. of English AKNU, Rajamahendravaram
12	Physics Department	Prof. G. Padmaja Rani Professor, Physics Department UCEK, JNTUK, Kakinada
13	Chemistry Department	Dr. S. Satya Veni Asst., Professor, Chemistry Dept., UCEK, JNTUK, Kakinada
14	NSS/NCC/Scouts & Guides/Community Service Health and Wellness, Yoga and Sports	Dr. G. Syam Kumar Assoc., Professor, Dept. of Physical Education UCEK, JNTUK, Kakinada

Yours Sincerely,

REGISTRAR
REGISTRAR
J.N.T. University Kakinada
Kakinada-533003

Copy to all the above Members
Copy to the Secretary to the Honorable Vice Chancellor, JNTU Kakinada
Copy to the Director, Academic Planning, JNTU Kakinada.

**D.N.R. COLLEGE OF ENGINEERING & TECHNOLOGY
AUTONOMOUS**

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC & Accredited by NBA (B. TECH – CSE, ECE & EEE)
Ph: 08816-221238 Email: dnrcet@gmail.com website: <https://dnrcet.org>

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Mrs. I. Pavani, (Roll No.169P1A0423) Batch:2016-20	Member (College Alumni)	Attended on-line.
Dr. Nekkanti Venkata Rao Professor ECE Department	Member (Faculty in the Dept)	<i>MS</i>
Dr A.Purna Ramesh Professor ECE Department	Member(Faculty in the Dept)	<i>AR</i>
Dr.S. Ravi Chand Professor ECE Department	Member(Faculty in the Dept)	<i>RC</i>
Dr.R.Gayathri Associate Professor ECE Department	Member(Faculty in the Dept)	<i>R.Gayathri</i>
Mr. Kurma Sekhar Babu Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Sekhar Babu</i>
Mr.Kopalli Venkanna Naidu Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Naidu</i>
Mr.K S Satish Kumar Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Satish Kumar</i>
Mrs.N Mary Leena Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Leena</i>
Mr.M. Venu Assistant Professor ECE Department	Member (Faculty in the Dept)	<i>Venu</i>
Mr.P. Gopala Swami Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Gopala Swami</i>
Mrs.B. Nagamani Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Nagamani</i>
Mrs.K Indira Priyadarshini Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Indira Priyadarshini</i>
Mrs.B Vaisalini Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Vaisalini</i>
Mr.B Sudhakar Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Sudhakar</i>
Mrs. Rosey Sharon Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Sharon</i>
Mrs.P.Srivalli Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Srivalli</i>
Mr.Rakesh Patnaik Assistant Professor ECE Department	Member (Faculty in the Dept)	<i>Rakesh Patnaik</i>
Mr.K Subbaiah Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Subbaiah</i>
Mrs.K Vanaja Assistant Professor ECE Department	Member(Faculty in the Dept)	<i>Vanaja</i>

At the onset of the meeting, the Principal of DNR CET presented his gratitude to the university nominee and other members of BoS and handed over the session to the HOD of the ECE department & Chairman of BOS, **Dr. K. Venu Gopal** and the following resolutions are made in the BoS meeting:

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Email: dnrcet@gmail.com, web: www.dnrcet.org
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Date: 20/07/2024.

CIRCULAR

This is to inform all the members that the 1st Board of Studies (BOS) meeting of the Department of ECE, DNR College of Engineering & Technology, Bhimavaram will be held on 24-07-2024 (Wednesday) at 11:00 AM in VLSI Laboratory of the department. All the BOS members are invited to attend the meeting.

Agenda:

1. Welcome speech by the chairperson
2. Introducing the members of the board of studies.
3. To discuss and finalize the scheme and syllabi for the first year of DR24 B. Tech (ECE) course curriculum & DR24M.Tech (DECS) course curriculum.
4. Ratification of Course Objectives and Course Outcomes for the proposed subjects
5. Finalization of Model Paper and List of Paper Setters.
6. Any other item with the permission of the chairman.

K Venugopal
Head of the Department &

BOS Chairman.
Head
Department of ECE
D.N.R. College of Engg. & Tech
BHIMAVARAM-534 202

Copy to

1. The members of BOS
2. The Principal, DNRCET
3. The Dean, Academics
4. Office file

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTU K, Kakinada
Accredited with A⁺⁺ Grade by NAAC
Accredited by NBA (B. Tech - CSE, ECE & EEE)
Balusumudi, Bhimavaram - 534 202, A.P., Dist., (A.P.)
Email: dnrcet@gmail.com, web: www.dnrcet.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Date 20/07/2024

To

Dr. B. T. Krishna,
Professor of ECE,
UCEK, JNTU Kakinada,
Kakinada-533 003

Dear Sir,

Sub DNR College of Engineering & Technology, ECE Department-Board of Studies Meeting-
Reg

We take the privilege of inviting you to the Board of Studies Meeting of the Department of Electronics and Communication Engineering, D.N.R. College of Engineering and Technology, Bhimavaram as an Expert Nominated by the Vice-Chancellor. It is proposed to discuss and finalize the scheme and syllabi for the 1st year of DR24 B. Tech (ECE) course curriculum.

In this regard, you are requested to attend the meeting scheduled to be held on 24.07.2024 at 11.00 AM in the VLSI Laboratory of the ECE Department.

Kindly accept our invitation and make it convenient to attend the Board of Studies meeting.

Yours Sincerely,

Dr. K. Venu Gopal

Head of the Department

*Head
Department of ECE
D.N.R. College of Engg. & Tech
BHIMAVARAM-534 202*

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with 'A+' Grade by NAAC
Accredited by NBA (B. Tech - CSE, ECE & EEE)
Balasunudi, Bhimavaram - 534 202, W.G. Dist., (A.P.)
Email: dnrcet@gmail.com, web: www.dnrcet.org

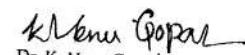
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Date 20/07/2024

To

Dr. N. Udaya Kumar,
Professor & HOD, ECE Dept,
SRKR Engineering College (Autonomous),
Bhimavaram-534202.

Dear Sir,


Sub: DNR College of Engineering & Technology, ECE Department-Board of Studies Meeting-
Reg.

We take the privilege of inviting you to the Board of Studies Meeting of the Department of Electronics and Communication Engineering, D.N.R. College of Engineering and Technology Bhimavaram as an Expert Nominated by the Vice-Chancellor. It is proposed to discuss and finalize the scheme and syllabi for the 1st year of DR24 B. Tech (ECE) course curriculum.

In this regard, you are requested to attend the meeting scheduled to be held on 24.07.2024 at 11.00 AM in the VLSI Laboratory of the ECE Department.

Kindly accept our invitation and make it convenient to attend the Board of Studies meeting.

Yours Sincerely,

Dr. K. Venu Gopal

Head of the Department

*Head
Department of ECE*
D.N.R. College of Engg. & Tech
BHIMAVARAM-534 202

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech - CSE, ECE & EEE)
Balusumudi, Bhimavaram - 534 202, W.G. Dist., (A.P.)
Email: dnrect@gmail.com, web: www.dnrect.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Date 20/07/2024

To

Dr. P. Srinivasa Rao,
Assoc. Professor,
ECE Department,
St. Anna's College of Engineering & Technology (Autonomous),
Chirala-523187.

Dear Sir,

Sub: DNR College of Engineering & Technology, ECE Department-Board of Studies Meeting-Reg.

We take the privilege of inviting you to the Board of Studies Meeting of the Department of Electronics and Communication Engineering, D.N.R. College of Engineering and Technology Bhimavaram as an Expert Nominated by the Vice-Chancellor. It is proposed to discuss and finalize the scheme and syllabi for the 1st year of DR24 B. Tech (ECE) course curriculum.

In this regard, you are requested to attend the meeting scheduled to be held on 24.07.2024 at 11.00 AM in the VLSI Laboratory of the ECE Department.

Kindly accept our invitation and make it convenient to attend the Board of Studies meeting.

Yours Sincerely,

Dr. K. Venu Gopal

Head of the Department

Head

Department of ECE
D.N.R. College of Engg. & Tec!
BHIMAVARAM-534 202

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC

Accredited by NBA (B.Tech - CSE, ECE & EEE)
Balusumudi, Bhimavaram - 534 202, W.G. Dist., (A.P.)

Email: dnrect@gmail.com, web: www.dnrect.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Date 20/07/2024

To

Mr. Sriramulu Govada,
Design. Technical Officer 'A',
DRDO, Visakhapatnam.

Dear Sir,

Sub: DNR College of Engineering & Technology, ECE Department-Board of Studies Meeting-
Reg.

We take the privilege of inviting you to the Board of Studies Meeting of the Department of
Electronics and Communication Engineering, D.N.R. College of Engineering and Technology
Bhimavaram, as an Expert Nominated by the Vice-Chancellor. It is proposed to discuss and
finalize the scheme and syllabi for the 1st year of DR24 B. Tech (ECE) course curriculum.

In this regard, you are requested to attend the meeting scheduled to be held on 24.07.2024 at
11.00 AM in the VLSI Laboratory of the ECE Department.

Kindly accept our invitation and make it convenient to attend the Board of Studies meeting

Yours Sincerely,

Dr. K. Venu Gopal

Head of the Department

Head
Department of ECE
D.N.R. College of Engg. & Tech
BHIMAVARAM - 534 202

**D.N.R. COLLEGE OF ENGINEERING & TECHNOLOGY
AUTONOMOUS**

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC & Accredited by NBA (B. TECH – CSE, ECE & EEE)
Ph: 08816-221238 Email: dnrcet@gmail.com website: <https://dnrcet.org>

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Ref: DNRCET/ECED/2024-25/BOS-MOM/1

Bhimavaram,
26/07/2024.

Minutes of Meeting (MOM) of the Board of Studies (BOS)

A.Y. 2024-25

The Board of Studies (BoS) of the Electronics Communication Engineering (ECE) Department was held on 24-07-2024 at 11:00 A.M in the VLSI Laboratory of the ECE Department in online mode (Zoom online meeting platform) to discuss the proposed agenda and to adopt resolutions.

Meeting link:

<https://us06web.zoom.us/j/82315042952?pwd=vjKYU4vP9K1aEDI0CGtUqKef2mp6pr.1#success>

Agenda:

1. Welcome speech by the chairperson
2. Introducing the members of the board of studies.
3. To discuss and finalize the scheme and syllabi for the first year of DR24 B. Tech (ECE) course curriculum & DR24 M.Tech (DECS) course curriculum
4. Ratification of Course Objectives and Course Outcomes for the proposed subjects.
5. Finalization of Model Paper and List of Paper Setters.
6. Any other item with the permission of the chairman.

The following members attended the meeting:

Name(s) of the Member(s)/Nominee(s)	Designation in Committee	Signature
Dr. K. Venu Gopal Associate Professor & Head, Dept of ECE	Chairperson	<i>K. Venu Gopal</i>
Dr. B. T Krishna Professor ECE dept, JNTUK, Kakinada-533003, AP	Member (University Nominee)	<i>Attended on-line</i>
Dr. N. Udaya Kumar, Professor & HOD, ECE Dept, SRKR Engineering College (Autonomous), Bhimavaram-534202.	Member (Subject experts from outside the parent University)	<i>Attended on-line</i>
Dr. P. Srinivasa Rao, Assoc. Professor, ECE Department, St. Anna's College of Engineering & Technology (Autonomous), Chirala-523187.	Member (Subject experts from outside the parent University)	<i>Attended on-line</i>
Mr. Sriramulu Govada, Design. Technical Officer 'A', DRDO, Visakhapatnam.	Member (Industrial Expert)	<i>Attended on-line</i>

D.N.R. COLLEGE OF ENGINEERING & TECHNOLOGY AUTONOMOUS

Approved by AICTE, New Delhi & Permanently Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC & Accredited by NBA (B. TECH – CSE, ECE & EEE)
Ph: 08816-221238 Email: dnrcet@gmail.com website: <https://dnrcet.org>

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Resolutions:

Agenda Point- 1: Welcome speech by the chairperson

Resolution: The chairman of BoS, **Dr. K. Venu Gopal**, welcomed internal and external BOS members

Agenda Point- 2: Introduction of members

Resolution: The Chairman of BoS, **Dr. K. Venu Gopal** welcomed all the members and introduced internal BoS members to external BoS members. The meeting began with the presentation of the B.Tech curriculum for semesters I & II.

Agenda Point-3: To discuss and finalize the proposed I B. Tech. I & II Semester ECE (Theory and Lab) courses of DR24 B.Tech (ECE) Regulations & DR24 M.Tech (DECS) course curriculum.

Resolution: After clearly discussing every unit of theory courses namely, Basic Electrical & Electronics Engineering (BEEE), and Network Analysis (NA), the university nominee and all the other BoS members finalized the syllabus of the proposed I B. Tech. I & II Semester courses of DR24 Regulations including labs namely the Electrical & Electronics Engineering workshop same as the JNTUK R23 Regulation. BoS has approved the syllabi for new regulations DR24 B.Tech (ECE) & DR24 M.Tech (DECS) and the details are mentioned in Annexure-A (**Enclosed Annexure-A**).

Agenda Point- 4: Ratification of Course Objectives and Course Outcomes for the proposed subjects.

Resolution: After thorough discussion, the BoS approved the course objectives and course outcomes for the proposed courses based on the modifications made to the theory and labs as discussed in agenda point -3.

Agenda Point- 5: Finalization of Model Paper and List of Paper Setters

Resolution: The BoS members suggested properly mentioning the COs in order per the given questions and advised replacing BL (Bloom's Level) in place of KL(Knowledge Level). They also advised the distribution of marks for a few long-answer questions, such as 4 and 6 out of 10 marks. The same has been done accordingly, verified the Course Objectives (COs), Bloom Taxonomy levels and marks distribution in the proposed model Question papers for external examinations of theory courses and ratified. The BoS members also approved the list of paper setters for B.Tech I & II semester courses with no changes. (**Enclosed Annexure -B**).

Agenda Point- 6: Any other item with the permission of the chairman, BoS.

Resolution: Finally, the Chairman summarized all the agenda and resolutions, thanked all the BoS members for their kind cooperation, and ended with a Vote of Thanks.

Note: The entire BoS meeting discussions are recorded in the Zoom platform and stored in the Department

Chairman, BoS

Annexure - A

L	T	P	C
3	0	0	3

BASIC ELECTRICAL & ELECTRONICS ENGINEERING
(Common to All branches of Engineering)

Course Objectives

To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field.

Course Outcomes: After the completion of the course students will be able to

- CO1. Describe fundamental laws, operating principles of motors/generators, MC/MI instruments.
- CO2. Demonstrate the working of electrical machines, measuring instruments and power generation stations.
- CO3. Apply mathematical tools and fundamental concepts to derive various equations related to electrical circuits and machines.
- CO4. Calculate electrical load and electricity bill of residential and commercial buildings.

PART A: BASIC ELECTRICAL ENGINEERING

UNIT I DC & AC Circuits

DC Circuits: Electrical circuit elements (R, L and C), Ohm's Law and its limitations, KCL & KVL, series, parallel, series-parallel circuits, Super Position theorem, Simple numerical problems.

AC Circuits: A.C. Fundamentals: Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference, average value, RMS value, form factor, peak factor, Voltage and current relationship with phasor diagrams in R, L, and C circuits, Concept of Impedance, Active power, reactive power and apparent power, Concept of power factor (Simple Numerical problems).

UNIT II Machines and Measuring Instruments

Machines: Construction, principle and operation of (i) DC Motor, (ii) DC Generator, (iii) Single Phase Transformer, (iv) Three Phase Induction Motor and (v) Alternator, Applications of electrical machines.

Measuring Instruments: Construction and working principle of Permanent Magnet Moving Coil (PMMC), Moving Iron (MI) Instruments and Wheat Stone bridge.

UNIT III Energy Resources, Electricity Bill & Safety Measures

Energy Resources: Conventional and non-conventional energy resources; Layout and operation of various Power Generation systems: Hydel, Nuclear, Solar & Wind power generation.

Electricity bill: Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. Definition of “unit” used for consumption of electrical energy, two-part electricity tariff, calculation of electricity bill for domestic consumers.

Equipment Safety Measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits. Personal safety measures: Electric Shock, Earthing and its types, Safety Precautions to avoid shock.

Textbooks:

1. Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition
2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013
3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition

Reference Books:

1. Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Mc Graw Hill, 2019, Fourth Edition
2. Principles of Power Systems, V.K. Mehta, S.Chand Technical Publishers, 2020
3. Basic Electrical Engineering, T. K. Nagsarkar and M. S. Sukhija, Oxford University Press, 2017
4. Basic Electrical and Electronics Engineering, S. K. Bhattacharya, Person Publications, 2018, Second Edition.

Web Resources:

1. <https://nptel.ac.in/courses/108105053>
2. <https://nptel.ac.in/courses/108108076>

PART B: BASIC ELECTRONICS ENGINEERING

Course Objectives:

- To teach the fundamentals of semiconductor devices and its applications, principles of digital electronics.

UNIT I SEMICONDUCTOR DEVICES

Introduction - Evolution of electronics – Vacuum tubes to nano electronics - Characteristics of PN Junction Diode — Zener Effect — Zener Diode and its Characteristics. Bipolar Junction Transistor — CB, CE, CC Configurations and Characteristics — Elementary Treatment of Small Signal CE Amplifier.

UNIT II BASIC ELECTRONIC CIRCUITS AND INSTRUMENTATION

Rectifiers and power supplies: Block diagram description of a dc power supply, working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator. Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. Electronic Instrumentation: Block diagram of an electronic instrumentation system.

UNIT III DIGITAL ELECTRONICS

Overview of Number Systems, Logic gates including Universal Gates, BCD codes, Excess-3 code, gray code, Hamming code. Boolean Algebra, Basic Theorems and properties of Boolean Algebra, Truth Tables and Functionality of Logic Gates – NOT, OR, AND, NOR, NAND, XOR and XNOR. Simple combinational circuits—Half and Full Adders. Introduction to sequential circuits, Flip flops, Registers and counters (Elementary Treatment only)

Textbooks:

1. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021.
2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009

Reference Books:

1. R. S. Sedha, A Textbook of Electronic Devices and Circuits, S. Chand & Co, 2010.
2. Santiram Kal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India, 2002.
3. R. T. Paynter, Introductory Electronic Devices & Circuits – Conventional Flow Version, Pearson Education, 2009.

Head
Department of ECE
D.N.R. College of Engg. & Tech
BHIMAVARAM-534 202.

End examination pattern:

- i) Question paper shall be in two parts viz., Part A and Part B with equal weightage of 35 marks each.
- ii) In each part, question 1 shall contain 5 compulsory short answer questions for a total of 5 marks such that each question carries 1 mark.
- iii) In each part, questions from 2 to 4, there shall be either/or type questions of 10 marks each. Student shall answer any one of them.
- iv) The questions from 2 to 4 shall be set by covering one unit of the syllabus for each question.

L	T	P	C
0	0	3	1.5

ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP
(Common to All branches of Engineering)

Course Objectives:

To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations.

Course Outcomes:

After completion of this course, the student will be able to

- CO1.** Measure voltage, current and power in an electrical circuit.
- CO2.** Measure of Resistance using Wheat stone bridge.
- CO3.** Discover critical field resistance and critical speed of DC shunt generators.
- CO4.** Investigate the effect of reactive power and power factor in electrical loads.

Activities:

1. Familiarization of commonly used Electrical & Electronic Workshop Tools: Bread board, Solder, cables, relays, switches, connectors, fuses, Cutter, plier, screwdriver set, wire stripper, flux, knife/blade, soldering iron, de-soldering pump etc.
 - Provide some exercises so that hardware tools and instruments are learned to be used by the students.
2. Familiarization of Measuring Instruments like Voltmeters, Ammeters, multimeter, LCR-Q meter, Power Supplies, CRO, DSO, Function Generator, Frequency counter.
 - Provide some exercises so that measuring instruments are learned to be used by the students.
3. Components:
 - Familiarization/Identification of components (Resistors, Capacitors, Inductors, Diodes, transistors, IC's etc.) – Functionality, type, size, colour coding package, symbol, cost etc.
 - Testing of components like Resistor, Capacitor, Diode, Transistor, ICs etc. - Compare values of components like resistors, inductors, capacitors etc with the measured values by using instruments

PART A: ELECTRICAL ENGINEERING LAB

List of experiments:

1. Verification of KCL and KVL
2. Verification of Superposition theorem
3. Measurement of Resistance using Wheat stone bridge
4. Magnetization Characteristics of DC shunt Generator
5. Measurement of Power and Power factor using Single-phase wattmeter
6. Measurement of Earth Resistance using Megger
7. Calculation of Electrical Energy for Domestic Premises

Reference Books:

1. Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition
2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013
3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition

Note: Minimum Six Experiments to be performed.

PART B: ELECTRONICS ENGINEERING LAB

Course Objectives:

- To impart knowledge on the principles of digital electronics and fundamentals of electron devices & its applications.

Course Outcomes: At the end of the course, the student will be able to

- CO1: Identify & testing of various electronic components.
- CO2: Understand the usage of electronic measuring instruments.
- CO3: Plot and discuss the characteristics of various electron devices.
- CO4: Explain the operation of a digital circuit.

List of Experiments:

1. Plot V-I characteristics of PN Junction diode A) Forward bias B) Reverse bias.
2. Plot V – I characteristics of Zener Diode and its application as voltage Regulator.
3. Implementation of half wave and full wave rectifiers
4. Plot Input & Output characteristics of BJT in CE and CB configurations
5. Frequency response of CE amplifier.
6. Simulation of RC coupled amplifier with the design supplied
7. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
8. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

D.N.R. COLLEGE OF ENGINEERING & TECHNOLOGY(Autonomous)
BALUSUMUDI, BHIMAVARAM, W.G. Dist., A.P., PIN-534 202
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Tools / Equipment Required: DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

References:

1. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021.
2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009
3. R. T. Paynter, Introductory Electronic Devices & Circuits – Conventional Flow Version, Pearson Education, 2009.

k Venu Gopal
Head
Department of ECE
D.N.R. College of Engg. & Tech.
BHIMAVARAM-534 202.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Email: dnrect@gmail.com, web: www.dnrect.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Annexure –B

Paper Setting Experts list

B. Tech

S.No	Name &Designation	Contact Details	Postal Address
1.	Dr. V. Krishna Rao Kandavli Associate Professor Experience: 25 Years (National Institute of Technology - Member)	E-mail: rao@mnnit.ac.in Mobile No: 9236004345	Dr. V. Krishna Rao Kandavli, Associate Professor, Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India-211004.
2	Dr. Srinivasa Rao Yarravarapu Professor Experience: 24 Years (Govt Universities- Member)	E-mail: srinniwasarau@gmail.com Mobile No: 9966526013	Dr. Srinivasa Rao Yarravarapu Flat number:108, Anand Residency, Shivaji Palem, Shivaji Park Road, Visakhapatnam, Andhra Pradesh -530007.
3	Dr. J. Prasanth Kumar Associate Professor Experience: 15 Years (Autonomous Colleges – Member)	E-mail: prasanthkumarjsir@rcee.ac.in Mobile No: 6303418618.	Dr. J. Prasanth Kumar Associate Professor & ECE Dept, Ramachandra College of Engineering (RCE), NH-16 Bypass Road, Vatluru (V), Eluru, 534007, West Godavari Dt., A.P., India
4	Dr. Vijayakumar Kadha Assistant Professor Experience: 10 Years (Autonomous Colleges – Member)	E-mail: k_vijayakumar@av.amrita.edu Mobile No: 95335 27799	Dr. Vijayakumar Kadha Department of Electronics and Communication Engineering Amrita Vishwa

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202, W.G. Dist., (A.P.)
Email: dnrcet@gmail.com, web: www.dnrcet.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

		Vidyaapeetham, Amaravati Campus, Amaravati, Nowlur - 522503, A.P., India.
5	Dr Tathababu Addepalli Professor Experience: 14 Years (Deemed University - Member)	E-mail: babu.478@gmail.com Mobile No: 9494184194 Dr Tathababu Addepalli, Associate Professor, Department of ECE, Aditya University, Aditya Boys Hostel, Block - E, Room No: 118, Surampalem, Kakinada, Andhra Pradesh, India. Pin:533437.

Veera Gopal
HOD /ECE⁺⁺
Department of ECE
D.N.R. College of Engg. & Tech
BHIMAVARAM-534 202.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Email: dnrcet@gmail.com, web: www.dnrcet.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

M. Tech

S.No	Name &Designation	Contact Details	Postal Address
1.	Dr. V. Krishna Rao Kandanvi Associate Professor Experience: 25 Years (National Institute of Technology - Member)	E-mail: rao@mnnit.ac.in Mobile No: 9236004345	Dr. V. Krishna Rao Kandanvi, Associate Professor, Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India-211004.
2	Dr. Swapna Peravali Associate Professor Experience: 20 Years (Govt Universities- Member)	E-mail: dr.pswapna@andhrauniversity.edu.in Mobile No: 9642715499	Dr.P. Swapna D.NO 5-319 SIG Nagar Rimalayam Street Old dairy farm Near Ravindra Nagar Visakhapatnam Pin 530040 A.P Mobile No: 9642715499
3	Dr. G. Prasanna Kumar Professor Experience: 15 Years (Autonomous Colleges – Member)	E-mail: prasannakumar.g@vishnu.edu.in Mobile No: 9491966854.	Dr. G. Prasanna Kumar H.No: 1-117,Goraganamudi , Palkoderu Mandal, West Godavari District, AP- 534244.
4	Dr. A.Pravin Professor Experience: 22 Years (Autonomous Colleges – Member)	E-mail: akula.pravin@gmail.com Mobile No: 9177547999	Dr. A.Pravin Professor ECE Department BVC Engineering College (A) Odalarevu, Allavaram Mandal, East Godavari District, Andhra Pradesh, INDIA - 533210. Mobile no: 9177547999 Mail id: akula.pravin@gmail.com

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC

Accredited by NBA (B. Tech – CSE, ECE & EEE)

Balusumudi, Bhimavaram – 534 202, W.G. Dist., (A.P.)

Email: dnrcet@gmail.com, web: www.dnrcet.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

5	Dr.Leenendra Chowdary Gunna Assistant Professor Experience: 14 Years (Deemed University - Member)	E-mail: leenendra.c@srmap.edu.in Mobile No: 9959356777	Dr.Leenendra Chowdary Gunna Assistant Professor ECE SRM University, Andhra Pradesh Neerukonda, Mangalagiri Mandal, Guntur District, Mangalagiri, Andhra Pradesh 522240
---	--	--	---

K. Veni Gopal
HOD / ECE
Department of ECE
D.N.R. College of Engg. & Te
BHIMAVARAM-534 202.

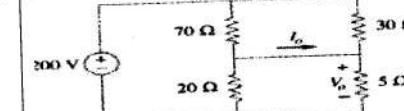
DNR COLLEGE OF ENGINEERING & TECHNOLOGY		DR24 regulations
I.B.Tech.I Semester MODEL QUESTION PAPER		

BASIC ELECTRICAL & ELECTRONICS ENGINEERING
CSE, CSIT, ECE,EEE&IT

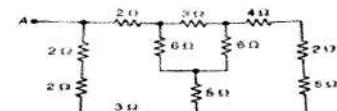
Max.Marks:70M

Time:3 Hrs.

PART- A:BASIC ELECTRICAL ENGINEERING


Answer ONE Question from EACH UNIT

10 x 1 = 10 Marks


			CO	BL	M
1.	a).	What is meant by unilateral and bilateral circuit?	1	1	1
	b).	What is the principle to vary speed, below rated speed in a DC motor?	1	1	1
	c).	List and give the applications of different types of DC machines.	2	1	1
	d).	What is Hydel power?	2	1	1
	e).	What is Alternator?	3	1	1
	f).	What is the operating point of transistor amplifier?	3	1	1
	g).	What is OR gate?	4	1	1
	h).	What is continuity equation?	4	1	1
	i).	Write the input characteristic of NPN transistor.	5	1	1
	j).	What is Knee Voltage ?	5	1	1

3x 10 = 30 Marks

UNIT-1

2.	a).	Calculate V and I in the circuit shown in figure.	1	3	6
	b).		1	3	4

OR

3.	a).	Calculate the effective resistance between the points A and B in the circuit shown in figure. Derive the formulae used.	1	3	6
	b).		1	2	4

UNIT-2

4.	a.	A dc generator has an armature e.m.f of 100 V when the useful flux per pole is 20 m Wb and the speed is 800 r.p.m. Calculate the generated e.m.f (i) with the same rated flux and a speed of 1000 r.p.m (ii) with a flux per pole of 25 m Wb and a speed of 900 r.p.m..	2	3	4
	b.	The induced e.m.f in a dc machine while running at 500 rpm is 180 V. Assuming constant magnetic flux per pole. Calculate the induced e.m.f when the machine runs at 600 rpm.	2	3	6
OR					
5.	a.	Discuss the function of no-volt and over load release in the three point starter. In which circuit these devices are connected and why?	2	3	5
	b.	The wave connected armature of a two-pole 200 V generator has 400 conductors and runs at 300 rpm. Calculate the useful flux per pole.	2	4	5
UNIT-3					
6.	a.	Explain about Layout and operation of various Wind Power Generation systems	3	2	5
	b.	Discuss about Safety Precautions to avoid shock.	3	3	5
OR					
7.	a.	Explain about two-part electricity tariff with an example	3	2	4
	b.	Explain about Personal safety measures for Earthing and its types.	3	2	6

PART-B: BASIC ELECTRONICS ENGINEERING

3x 10 = 30 Marks

		UNIT-1	CO	BL	M
8.	a.	Draw energy band diagram of semiconductors and write its characteristics.	1	3	6
	b.	Explain the current conduction in Pn junction diode.	1	3	4
OR					
9.	a.	Draw and explain the input-output characteristics of CE amplifier.	1	3	5
	b.	Draw and explain the V-I characteristics of a Si (Silicon) diode.	1	2	5
UNIT-2					
10.	a.	Derive the efficiency and ripple factor of half wave rectifier.	2	3	5
	b.	Describe the operation of full wave bridge rectifier. Write the Idc, Vdc expression of a full wave rectifier.	2	2	5
OR					
11.	a.	Draw the circuit diagram of common Emitter amplifier and derive expression for voltage gain, current gain, input impedance and output admittance using approximate model.	2	3	4
	b.	Explain the Block diagram description of a DC power supply.	2	2	6
UNIT-3					
12.	a.	Convert the following numbers with the given radix to decimal and then to binary. (a) 44335 (b) 119912 (c) 56547 (d) 12213	3	3	4
	b.	Explain combinational circuits.	1	3	6
OR					
13.	a.	Design and implement a two bit comparator using logic gates	3	6	5
	b.	Find the complement of the following Boolean functions and reduce them to minimum number of literals. a) $(b'c' + a'd)$ $(ab' + cd')$ b) $(b'd + a'b'c' + a'c)$ $d + a'b'c$	3	3	5

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A⁺⁺ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DR24

COURSE STRUCTURE & SYLLABUS M.Tech ECE
Digital Electronics & Communication Systems (DECS)
Program

(Applicable for batches admitted from 2024-2025)

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

I Semester

S. No.	Course Type/Code	Course Name	Teaching Scheme			Credits
			L	T	P	
1	Core 1	Digital System Design	3	0	0	3
2	Core 2	Digital Data Communications	3	0	0	3
3	Prog. Specific Elective	Elective I a. Transform Techniques b. VLSI Technology and Design c. Radar Signal Processing	3	0	0	3
4	Prog. Specific Elective	Elective II a. Statistical Signal Processing b. Optical Communication Technology c. Network Security & Cryptography	3	0	0	3
5	Lab 1	System Design Using Verilog HDL Laboratory	0	0	4	2
6	Lab2	Data Communications Laboratory	0	0	4	2
7		Research Methodology and IPR	2	0	0	2
8	Aud 1	Audit Course 1	2	0	0	0
Total Credits			16	0	8	18

II Semester

S. No.	Course Type/Code	Name of the Subject	Teaching Scheme			Credits
			L	T	P	
1	Core 3	Image and Video Processing	3	0	0	3
2	Core 4	Wireless Communications and Networks	3	0	0	3
3	Prog. Specific Elective	Elective III a. CMOS Analog & Digital IC Design b. Advanced Computer Architecture c. Soft Computing Techniques	3	0	0	3
4	Prog. Specific Elective	Elective IV a. DSP Processors and Architectures b. EMI/ EMC c. Object Oriented Programming	3	0	0	3
5	Lab 1	Advanced Communications Laboratory	0	0	4	2
6	Lab2	Advanced digital Image & video processing Laboratory	0	0	4	2
7		Mini Project	0	0	4	2
8	Aud 2	Audit Course 2	2	0	0	0
Total Credits			14	0	12	18

III Semester

S. No.	Course Type/Code	Subject	Teaching Scheme			Credits
1	Prog. Specific Elective	a) Detection & Estimation Theory b) Advanced Digital Signal Processing c) Coding Theory and Applications	3	0	0	3
2	Open Elective	a) Business Analytics b) Industrial Safety c) Operations Research d) Cost Management of Engineering Projects e) Composite Materials f) Waste to Energy	3	0	0	3
3	Dissertation	Dissertation Phase – I	0	0	20	10
Total			6	0	20	16

IV Semester

S. No.	Course Code	Subject	Teaching Scheme			Credits
			L	T	P	
1	Dissertation	Dissertation Phase – II	--	--	32	16
Total Credits			--	--	32	16

Audit course 1 & 2

1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by Yoga
8. Personality Development through Life Enlightenment Skills.

I Year I Semester

DIGITAL SYSTEM DESIGN(ELECTIVE – I)

L	T	P	C
3	0	0	3

OBJECTIVES:

The main objectives of this course are given below:

1. The basic concepts of K-map, tabular method, QM method are revised and higher order minimization techniques like CAMP algorithm and Cubical operations are explained.
2. PLA folding using COMPACT algorithms studied for various cases.
3. ASM charts are revised and design techniques of digital circuit realization are explained.
4. Digital system design is approached using CPLD, FPGA and ASIC.
5. Fault Diagnosis in Combinational Circuits are performed using various techniques like fault detection test, path sensitization method and Boolean difference method, Kohavi algorithm.
6. Fault Diagnosis in sequential circuits is performed using Circuit test approach, Hamming Experiments, synchronizing experiments, distinguishing and adaptive distinguishing experiments on different cases.

UNIT-I: Minimization Procedures and CAMP Algorithm:

Review on minimization of switching functions using tabular methods, k-map, QM algorithm, CAMP-I algorithm, Phase-I: Determination of Adjacencies, DA, CSC, SSMs and EPCs., CAMP-I algorithm, Phase-II: Passport checking, Determination of SPC, CAMP-II algorithm: Determination of solution cube, Cube based operations, determination of selected cubes are wholly within the given switching function or not, Introduction to cube based algorithms.

UNIT-II: PLA Design, Minimization and Folding Algorithms:

Introduction to PLDs, basic configurations and advantages of PLDs, PLA-Introduction, Block diagram of PLA, size of PLA, PLA design aspects, PLA minimization algorithm(IISc algorithm), PLA folding algorithm(COMPACT algorithm)-Illustration of algorithms with suitable examples.

UNIT -III: Design of Large Scale Digital Systems:

Algorithmic state machinecharts-Introduction, Derivation of SM Charts, Realization of SM Chart, control implementation, control unit design, data processor design, ROM design, PAL design aspects, digital system design approaches using CPLDs, FPGAs and ASICs.

UNIT-IV: Fault Diagnosis in Combinational Circuits:

Faults classes and models, fault diagnosis and testing, fault detection test, test generation, testing process, obtaining a minimal complete test set, circuit under test methods- Path sensitization method, Boolean difference method, properties of Boolean differences, Kohavi algorithm, faults in PLAs, DFT schemes, built in self-test.

UNIT-V: Fault Diagnosis in Sequential Circuits:

Fault detection and location in sequential circuits, circuit test approach, initial state identification,

ENGINEERING & TECHNOLOGY(AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202, W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

Haming experiments, synchronizing experiments, machine identification, distinguishing experiment, adaptive distinguishing experiments.

TEXT BOOKS:

1. Logic Design Theory-N. N. Biswas, PHI
2. Switching and Finite Automata Theory-Z. Kohavi , 2nd Edition, 2001, TMH
3. Digital system Design using PLDd-Lala

REFERENCE BOOKS:

1. Fundamentals of Logic Design – Charles H. Roth, 5th Ed., Cengage Learning.
2. Digital Systems Testing and Testable Design – Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman- John Wiley & Sons Inc.

OUTCOMES:

At the end of this course the student can able to:

1. Understand the basic concepts of a Karnaugh Map (“K-map”) for a 2-, 3-, 4-, or 5-variable logic function and to identify the prime implicants, essential prime implicants, and nonessential prime implicants of a function depicted on a K-map.
2. Perform the minimization of a Boolean function using tabular method, QM algorithm and CAMP algorithm and determine the Adjacencies, DA, CSC, SSMs, EPCs and SPCs.
3. Perform the minimization of PLA using IISc algorithm and folding using COMPACT algorithm.
4. Can design a digital circuit by steps involving ASM chart.
6. Understand the digital system design approaches using CPLDs, FPGAs and ASICs.
7. Rectify a single fault and multiple faults in combinational circuits using Path sensitization method, Boolean difference method and Kohavi algorithm.
8. Perform fault diagnosis in sequential circuits.

I Year I Semester

L	T	P	C
3	0	0	3

DIGITAL DATA COMMUNICATIONS

Course objectives

The main objectives of this subject are:

1. Different modulation techniques to improve the bandwidth and their properties.
2. Networking and different protocol systems.
3. Error estimation and correction, asynchronous and synchronous protocols.
4. Multiplexing techniques, different networking connections and interfacing devices.
5. Multiple access techniques and analysis.

UNIT -I:

Digital Modulation Schemes:

BPSK, QPSK, 8PSK, 16PSK, 8QAM, 16QAM, DPSK – Methods, Band Width Efficiency, Carrier Recovery, Clock Recovery.

UNIT -II:

Basic Concepts of Data Communications, Interfaces and Modems:

Data Communication Networks, Protocols and Standards, UART, USB, Line Configuration, Topology, Transmission Modes, Digital Data Transmission, DTE-DCE interface, Categories of Networks – TCP/IP Protocol suite and Comparison with OSI model.

UNIT -III:

Error Correction: Types of Errors, Vertical Redundancy Check (VRC), LRC, CRC, Checksum, Error Correction using Hamming code

Data Link Control: Line Discipline, Flow Control, Error Control

Data Link Protocols: Asynchronous Protocols, Synchronous Protocols, Character Oriented Protocols, Bit-Oriented Protocol, Link Access Procedures.

UNIT -IV:

Multiplexing: Frequency Division Multiplexing (FDM), Time Division Multiplexing (TDM), Multiplexing Application, DSL.

Local Area Networks: Ethernet, Other Ether Networks, Token Bus, Token Ring, FDDI.

Metropolitan Area Networks: IEEE 802.6, SMDS

Switching: Circuit Switching, Packet Switching, Message Switching.

Networking and Interfacing Devices: Repeaters, Bridges, Routers, Gateway, Other Devices.

UNIT -V:

Multiple Access Techniques: Frequency- Division Multiple Access (FDMA), Time - Division Multiple Access (TDMA), Code - Division Multiple Access (CDMA), OFDM and OFDMA. Random Access, Aloha- Carrier Sense Multiple Access (CSMA)- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Controlled Access- Reservation- Polling- Token Passing, Channelization.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY(AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A⁺ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

TEXT BOOKS:

1. Data Communication and Computer Networking - B. A. Forouzan, 2nd Ed., 2003, TMH.
2. Advanced Electronic Communication Systems - W. Tomasi, 5th Ed., 2008, PEI.

REFERENCE BOOKS:

1. Data Communications and Computer Networks - Prakash C. Gupta, 2006, PHI.
2. Data and Computer Communications - William Stallings, 8th Ed., 2007, PHI.
3. Data Communication and Tele Processing Systems - T. Housley, 2nd Ed, 2008, BSP.
4. Data Communications and Computer Networks- Brijendra Singh, 2nd Ed., 2005, PHI.

Course outcomes:

At the end of this course the student can able to:

1. Model digital communication system using appropriate mathematical techniques (error probability, constellation diagrams, pharos diagrams).
2. Understanding the basic concepts of how digital data is transferred across computer networks.
3. Independently understand basic computer network technology.
4. Understand and explain Data Communications System and its components.
5. Identify the different types of network topologies and protocols.
6. Enumerate the layers of the OSI model and TCP/IP. Explain the function(s) of each layer.
7. Identify the different types of network devices and their functions within a network
8. Understand and building the skills of sub netting and routing mechanisms.
9. Familiarity with the basic protocols of computer networks, and how they can be used
10. To assist in network design and implementation.

I Year I Semester

L	T	P	C
3	0	0	3

**TRANSFORM TECHNIQUES
(ELECTIVE – I)**

UNIT -I:

Fourier Analysis:

Fourier series, Examples, Fourier Transform, Properties of Fourier Transform, Examples of Fourier transform, sampling theorem, Partial sum and Gibbs phenomenon, Fourier analysis of Discrete time Signals, Discrete Fourier Transform.

Time – Frequency Analysis: Window function, Short Time Fourier Transform, Discrete Short Time Fourier Transform, Continuous wavelet transform, Discrete wavelet transform, wavelet series, Interpretations of the Time-Frequency plot.

UNIT -II:

Transforms:

Walsh, Hadamard, Haar and Slant Transforms, DCT, DST, KLT, Singular value Decomposition – definition, properties and applications

UNIT -III:

Continuous Wavelet Transform (CWT):

Short comings of STFT, Need for wavelets, Wavelet Basis- Concept of Scale and its relation with frequency, Continuous time wavelet Transform Equation- Series Expansion using Wavelets- CWT- Tiling of time scale plane for CWT. Important Wavelets: Haar, Mexican Hat, Meyer, Shannon, Daubechies.

UNIT -IV:

Multi Rate Analysis and DWT:

Need for Scaling function – Multi Resolution Analysis, Two-Channel Filter Banks, Perfect Reconstruction Condition, Relationship between Filter Banks and Wavelet Basis, DWT, Structure of DWT Filter Banks, Daubechies Wavelet Function, Applications of DWT.

UNIT -V:

Wavelet Packets and Lifting: Wavelet Packet Transform, Wavelet packet algorithms, Thresholding- Hard thresholding, Soft thresholding, Multidimensional Wavelets, Bi-orthogonal basis- B-Splines, Lifting Scheme of Wavelet Generation, Multi Wavelets

TEXT BOOKS:

1. A Wavelet Tour of Signal Processing theory and applications -Raghavendra Rao and Ajit S. Bopardikar, Pearson Edu, Asia, New Delhi, 2003.
2. K.P.Soman and K.I. Ramachandran, " Insight into Wavelets – from theory to practice" PHI, Second edition, 2008

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY(AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A⁺⁺ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

REFERENCE BOOKS:

1. Fundamentals of Wavelets- Theory, Algorithms and Applications -Jaideva C Goswami, Andrew K Chan, John Wiley & Sons, Inc, Singapore, 1999.
2. Jaideva C. Goswami and Andrew K. Chan, " Fundamentals of Wavelets" Wiley publishers, 2006
3. A Wavelet Tour of Signal Processing-Stephen G. Mallat, Academic Press, 2 Ed
4. Digital Image Processing – S.Jayaraman, S.Esakkirajan, T.Veera Kumar – TMH,2009

Course Outcomes: On completion of this course student will be able to:

1. The student will learn basics of two-dimensional transforms.
2. Understand the definition, properties and applications of various two-dimensional transform.
3. Understand the basic concepts of wavelet transform.
4. Understand the special topics such as wavelet packets, Bi-orthogonal wavelets e.t.c.

I Year I Semester	L	T	P	C
	3	0	0	3

VLSI TECHNOLOGY AND DESIGN
(ELECTIVE – I)

UNIT-I:

VLSI Technology: Fundamentals and applications, IC production process, semiconductor processes, design rules and process parameters, layout techniques and process parameters.

VLSI Design: Electronic design automation concept, ASIC and FPGA design flows, SOC designs, design technologies: combinational design techniques, sequential design techniques, state machine logic design techniques and design issues.

UNIT-II:

CMOS VLSI Design: MOSTechnology and fabrication process of pMOS, nMOS, CMOS and BiCMOS technologies, comparison of different processes.

Building Blocks of a VLSI circuit: Computer architecture, memory architectures, communication interfaces, mixed signal interfaces.

VLSI Design Issues: Design process, design for testability, technology options, power calculations, package selection, clock mechanisms, mixed signal design.

UNIT-III:

Basic electrical properties of MOS and BiCMOS circuits, MOS and BiCMOS circuit design processes, Basic circuit concepts, scaling of MOS circuits-qualitative and quantitative analysis with proper illustrations and necessary derivations of expressions.

UNIT-IV:

Subsystem Design and Layout: Some architectural issues, switch logic, gate logic, examples of structured design (combinational logic), some clocked sequential circuits, other system considerations.

Subsystem Design Processes: Some general considerations and an illustration of design processes, design of an ALU subsystem.

UNIT-V:

Floor Planning: Introduction, Floor planning methods, off-chip connections.

Architecture Design: Introduction, Register-Transfer design, high-level synthesis, architectures for low power, architecture testing.

Chip Design: Introduction and design methodologies.

TEXT BOOKS:

1. Essentials of VLSI Circuits and Systems, K. Eshraghian, Douglas A. Pucknell, SholehEshraghian, 2005, PHI Publications.
2. Modern VLSI Design-Wayne Wolf, 3rd Ed., 1997, Pearson Education.
3. VLSI Design-Dr.K.V.K.K.Prasad, KattulaShyamala, Kogent Learning Solutions Inc., 2012.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY(AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

REFERENCE BOOKS:

1. VLSI Design Technologies for Analog and Digital Circuits, Randall L.Geiger, Phillip E.Allen, Noel R.Strader, TMH Publications, 2010.
2. Introduction to VLSI Systems: A Logic, Circuit and System Perspective- Ming-BO Lin, CRC Press, 2011.
3. Principles of CMOS VLSI Design-N.H.E Weste, K. Eshraghian, 2nd Edition, Addison Wesley.

Course Outcomes

- 1. Review of FET fundamentals for VLSI design.
- 2. To acquires knowledge about stick diagrams and layouts.
- 3. Enable to design the subsystems based on VLSI concepts.

I Year I Semester

L	T	P	C
3	0	0	3

RADAR SIGNAL PROCESSING(ELECTIVE -I)

Core Objectives:

The main objectives of this subject are:

- 1. Derivation of Radar range and Design of matched filter for different noises.
- 2. Signal detection techniques at receiver.
- 3. Optimum Radar Waveforms for Detection of signals in Clutter and various Families.
- 4. The characteristics of a Linear pulse and digital compression to Radar signals.
- 5. The principles of different phase coding techniques and analysis.

UNIT -I:

Introduction:

Radar Block Diagram, Bistatic Radar, Monostatic Radar, Radar Equation, Information Available from Radar Echo. Review of Radar Range Performance— General Radar Range Equation, Radar Detection with Noise Jamming, Beacon and Repeater Equations, MTI and Pulse Doppler Radar.

Matched Filter Receiver – Impulse Response, Frequency Response Characteristic and its Derivation, Matched Filter and Correlation Function, Correlation Detection and Cross-Correlation Receiver, Efficiency of Non-Matched Filters, Matched Filter for Non-White Noise.

UNIT -II:

Detection of Radar Signals in Noise:

Detection Criteria – Neyman-Pearson Observer, Likelihood-Ratio Receiver, Inverse Probability Receiver, Sequential Observer, Detectors—Envelope Detector, Logarithmic Detector, I/Q Detector. Automatic Detection-CFAR Receiver, Cell Averaging CFAR Receiver, CFAR Loss, CFAR Uses in Radar. Radar Signal Management—Schematics, Component Parts, Resources and Constraints.

UNIT -III:

Waveform Selection [3, 2]:

Radar Ambiguity Function and Ambiguity Diagram – Principles and Properties; Specific Cases – Ideal Case, Single Pulse of Sine Wave, Periodic Pulse Train, Single Linear FM Pulse, Noise Like Waveforms, Waveform Design Requirements, Optimum Waveforms for Detection in Clutter, Family of Radar Waveforms.

UNIT -IV:

Pulse Compression in Radar Signals:

Introduction, Significance, Types, Linear FM Pulse Compression – Block Diagram, Characteristics, Reduction of Time Side lobes, Stretch Techniques, Generation and Decoding of FM Waveforms – Block Schematic and Characteristics of Passive System, Digital Compression, SAW Pulse Compression.

UNIT V:

Phase Coding Techniques:

Principles, Binary Phase Coding, Barker Codes, Maximal Length Sequences (MLS/LRS/PN), Block

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY(AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

Diagram of a Phase Coded CW Radar.

Poly Phase Codes : Frank Codes, Costas Codes, Non-Linear FM Pulse Compression, Doppler Tolerant PC Waveforms – Short Pulse, Linear Period Modulation (LPM/HFM), Sidelobe Reduction for Phase Coded PC Signals.

TEXT BOOKS:

1. Radar Handbook - M.I. Skolnik, 2nd Ed., 1991, McGraw Hill.
2. Radar Design Principles : Signal Processing and The Environment - Fred E. Nathanson, 2nd Ed., 1999, PHI.
3. Introduction to Radar Systems - M.I. Skolnik, 3rd Ed., 2001, TMH.

REFERENCE BOOKS:

1. Radar Principles - Peyton Z. Peebles, Jr., 2004, John Wiley.
2. Radar Signal Processing and Adaptive Systems - R. Nitzberg, 1999, Artech House.

Core Outcomes:

At the end of this course the student can able to:

1. Understand the operation of Radar and characteristics of Matched filter for non-white noise.
2. Understand the various detection criterion and types of detectors that can be used to detect the Radar signals in noise.
4. Understand the waveform design requirements and optimum waveforms for the detection of signals in clutter.
5. Know the significance and types of pulse compression techniques for analog and digital signals.
6. Understand the requirements of phase coding in Radar and various poly phase codes used for phase coding.

I Year I Semester

L	T	P	C
3	0	0	3

**STATISTICAL SIGNAL PROCESSING
 (ELECTIVE - II)**

UNIT I

Signal models and characterization: Types and properties of statistical models for signals and how they relate to signal processing, Common second-order methods of characterizing signals including autocorrelation, partial correlation, cross-correlation, power spectral density and cross-power spectral density.

UNIT II

Spectral estimation: Nonparametric methods for estimation of power spectral density, autocorrelation, cross-correlation, transfer functions, and coherence from finite signal samples.

UNIT III

Review of signal processing: A review on random processes, A review on filtering random processes, Examples. **Statistical parameter estimation:** Maximum likelihood estimation, maximum a posterior estimation, Cramer-Rao bound.

UNIT IV

Eigen structure based frequency estimation: Pisarenko, MUSIC, ESPRIT their application sensor array direction finding. **Spectrum estimation:** Moving average (MA), Auto Regressive (AR), Auto Regressive Moving Average (ARMA), Various non-parametric approaches.

UNIT V

Wiener filtering: The finite impulse case, causal and non-causal infinite impulse responses cases, Least mean squares adaptation, recursive least squares adaptation, Kalman filtering.

TEXT BOOKS:

1. Steven M. Kay, fundamentals of statistical signal processing: estimation Theory, Prentice-Hall, 1993.
2. Monsoon H. Hayes, Statistical digital signal processing and modeling, USA, Wiley, 1996.

REFERENCE BOOKS:

1. Dimitris G. Manolakis, Vinay K. Ingle, and Stephen M. Kogon, Statistical and adaptive signal processing, Artech House, Inc, 2005, ISBN 1580536107

Course Outcomes:

1. Analyse signals and develop their statistical models for efficient processing
2. Formulate filtering problems from real life applications and design filtering solutions to estimate a desired signal from a given mixture by minimizing a cost function
3. Design and analyse efficient algorithms for estimation of various parameters of signals with different constraints
4. Develop efficient methods for spectrum and frequency estimation suiting the requirements derived from practical problems

Year I Semester

L	T	P	C
3	0	0	3

OPTICAL COMMUNICATION TECHNOLOGY(ELECTIVE -II)

Course Objectives

1. To expose the students to the basics of signal propagation through optical fibers , fiber impairments
2. students should be familiar with commonly used components and subsystems in optical communication and network systems
3. To know the Optical Modulation and demodulation and Error Detection and Correction codes.
4. Learn about optical amplifier Transmission system model, power penalty-transmitter, power penalty-transmitter, receiver Scope – receiver optical amplifiers, crosstalk, dispersion,
5. Learn about necessity of wavelength division multiplexing (WDM), working principle and techniques of multiplexing, and Overall System Design considerations and optical networks

UNIT -I:

Signal propagation in Optical Fibers:

Geometrical Optics approach and Wave Theory approach, Loss and Bandwidth, Chromatic Dispersion, Non Linear effects- Stimulated Brillouin and Stimulated Raman Scattering, Propagation in a Non-Linear Medium, Self-Phase Modulation and Cross Phase Modulation, Four Wave Mixing, Principle of Solitons.

UNIT -II:

Fiber Optic Components for Communication & Networking:

Couplers, Isolators and Circulators, Multiplexers, Bragg Gratings, Fabry-Perot Filters, Mach Zender Interferometers, Arrayed Waveguide Grating, Tunable Filters, High Channel Count Multiplexer Architectures, Optical Amplifiers, Direct and External Modulation Transmitters, Pump Sources for Amplifiers, Optical Switches and Wavelength Converters.

UNIT -III:

Modulation and Demodulation:

Signal formats for Modulation, Subcarrier Modulation and Multiplexing, Optical Modulations – Duobinary, Single Side Band and Multilevel Schemes, Ideal and Practical receivers for Demodulation, Bit Error Rates, Timing Recovery and Equalization, Reed-Solomon Codes for Error Detection and Correction.

UNIT -IV:

Transmission System Engineering:

System Model, Power Penalty in Transmitter and Receiver, Optical Amplifiers, Crosstalk and Reduction of Crosstalk, Cascaded Filters, Dispersion Limitations and Compensation Techniques.

UNIT -V:

Fiber Non-linearities and System Design Considerations:

Limitation in High Speed and WDM Systems due to Non-linearities in Fibers, Wavelength Stabilization against Temperature Variations, Overall System Design considerations – Fiber Dispersion, Modulation, Non-Linear Effects, Wavelengths, All Optical Networks.

TEXT BOOKS:

1. Optical Networks: A Practical Perspective - Rajiv Ramaswami and Kumar N. Sivarajan, 2nd Ed., 2004, Elsevier Morgan Kaufmann Publishers (An Imprint of Elsevier).
2. Optical Fiber Communications – Gerd Keiser, 3rd Ed., 2000, McGraw Hill.

REFERENCE BOOKS:

1. Optical Fiber Communications: Principles and Practice – John.M.Senior, 2nd Ed., 2000, PE.
2. Fiber Optics Communication – Harold Kolimbris, 2nd Ed., 2004. PEI

ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

- 3. Optical Networks: Third Generation Transport Systems – Uyless Black, 2nd Ed., 2009, PEI
- 4. Optical Fiber Communications – GovindAgarwal, 2nd Ed., 2004, TMH.
- 5. Optical Fiber Communications and Its Applications – S.C.Gupta, 2004, PHI.

Course outcomes

At the end of this course the student can able to:

- 1. Able to analyze characteristics of optical fiber and signal propagation through optical fibers
- 2. Know the commonly used components and subsystems in optical communication and network systems ,Working principle of optical communication components ,amplifiers, filters
- 3. Able to analyze Transmission system model
- 4. Understand the importance of wavelength division multiplexing (WDM) and de-multiplexing,

I Year I Semester

L	T	P	C
3	0	0	3

**NETWORK SECURITY AND CRYPTOGRAPHY
(ELECTIVE -II)**

UNIT -I:

Introduction:

Attacks, Services and Mechanisms, Security attacks, Security services, A Model for Internetwork security. Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques.

Modern Techniques:

- Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operations.

UNIT -II:

Encryption Algorithms:

Triple DES, International Data Encryption algorithm, Blowfish, RC5, CAST-128, RC2, Characteristics of Advanced Symmetric block ciphers. **Conventional Encryption:** Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT -III:

Public Key Cryptography: Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptography. **Number Theory:** Prime and Relatively prime numbers, Modular arithmetic, Fermat's and Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT -IV:

Message Authentication and Hash Functions: Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs. **Hash and Mac Algorithms**

- MD File, Message digest Algorithm, Secure Hash Algorithm, RIPEMD-160, HMAC. Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards.

Authentication Applications : Kerberos, X.509 directory Authentication service. Electronic Mail Security: Pretty Good Privacy, S/MIME.

UNIT -V:

IP Security:

Overview, Architecture, Authentication, Encapsulating Security Payload, Combining security Associations, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction.

Intruders, Viruses and Worms

Intruders, Viruses and Related threats.

Fire Walls: Fire wall Design Principles, Trusted systems.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202, W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

TEXT BOOKS:

1. Cryptography and Network Security: Principles and Practice - William Stallings, Pearson Education.
2. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.

REFERENCE BOOKS:

1. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
2. Network Security - Private Communication in a Public World by Charlie Kaufman, Radia Perlman and Mike Speciner, Pearson/PHI.
3. Principles of Information Security, Whitman, Thomson.
4. Network Security: The complete reference, Robert Bragg, Mark Rhodes, TMH
5. Introduction to Cryptography, Buchmann, Springer.

Course Outcomes:

At the end of the course, students will be able to:

1. Identify and utilize different forms of cryptography techniques.
2. Incorporate authentication and security in the network applications.
3. Distinguish among different types of threats to the system and handle the same.

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A+ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

I Year I Semester

L T P C
0 0 4 0

SYSTEM DESIGN USING VERILOG HDL LABORATORY

List of Experiments:

- 1) Verilog implementation of 8:1 Mux/Demux, Full Adder, 8-bit Magnitude comparator, Encoder/decoder, Priority encoder, D-FF, 4-bit Shift registers (SISO, SIPO, PISO, bidirectional), 3-bit Synchronous Counters, Binary to Gray converter, Parity generator.
- 2) Sequence generator/detectors, Synchronous FSM – Mealy and Moore machines.
- 3) Vending machines - Traffic Light controller, ATM, elevator control.
- 4) PCI Bus & arbiter and downloading on FPGA.
- 5) UART/ USART implementation in Verilog.
- 6) Realization of single port SRAM in Verilog.
- 7) Verilog implementation of Arithmetic circuits like serial adder/ subtractor, parallel adder/subtractor, serial/parallel multiplier.
- 8) Discrete Fourier transform/Fast Fourier Transform algorithm in Verilog.

Course Outcomes:

At the end of the laboratory work, students will be able to:

- 1. Identify, formulate, solve and implement problems in signal processing, communication systems etc using RTL design tools.
- 2.
- 3. Use EDA tools like Cadence, Mentor Graphics and Xilinx.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com., web: www.dnrcet.org

I Year I Semester

L	T	P	C
0	0	4	0

DATA COMMUNICATIONS LAB

List of Experiments:

1. Study of serial interface RS – 232
2. Study of pc to pc communication using parallel port
3. To establish pc-pc communication using LAN
4. Study of LAN using star topology, bus topology and tree topology
5. Study and configure modem of a computer
6. To configure a hub/switch
7. To study the interconnections of cables for data communication
8. Study of a wireless communication system
9. Set up of time division multiplexing using fiber optics
10. Digital Fiber Optical Transmitter and Receiver

I Year I Semester

L	T	P	C
2	0	0	0

RESEARCH METHODOLOGY AND IPR

Unit 1: Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2: Effective literature studies approaches, analysis Plagiarism, Research ethics,

Unit 3: Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit 4: Nature of Intellectual Property: Patents, Designs, Trademarks and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 5: Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Unit 6: New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:

1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
3. Ranjit Kumar, 2nd Edition , "Research Methodology: A Step by Step Guide for beginners"
4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
5. Mayall , "Industrial Design", McGraw Hill, 1992.
6. Niebel , "Product Design", McGraw Hill, 1974.
7. Asimov , "Introduction to Design", Prentice Hall, 1962.
8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, " Intellectual Property in New Technological Age", 2016.
9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Course Outcomes:

At the end of this course, students will be able to

1. Understand research problem formulation.
2. Analyze research related information
3. Follow research ethics
4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasize the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about economic growth and social benefits

I Year II Semester

L	T	P	C
3	0	0	3

IMAGE AND VIDEO PROCESSING

Course objectives :

- The basic concepts and methods to develop foundation in digital image processing and video processing are introduced and The Importance of various image transforms, image transform properties are discussed.
- Understanding the image enhancement techniques in both spatial domain and frequency domain.
- The process of recovering image that has been degraded by noise or any other degradation phenomenon.
- Understanding the importance of image segmentation and various methods used for segmentation, The importance of reducing the data for digital image representation by using various image compression techniques
- To understand the importance of video processing in multimedia and the various video formation models, motion estimation techniques in video processing
- Applications of motion estimation in video processing

UNIT –I:

Fundamentals of Image Processing and Image Transforms:

Introduction, Image sampling, Quantization, Resolution, Image file formats, Elements of image processing system, Applications of Digital image processing

Introduction, Need for transform, image transforms, Fourier transform, 2 D Discrete Fourier transform and its transforms, Importance of phase, Walsh transform, Hadamard transform, Haar transform, slant transform Discrete cosine transform, KL transform, singular value decomposition, Radon transform, comparison of different image transforms.

UNIT –II:

Image Enhancement:

Spatial domain methods: Histogram processing, Fundamentals of Spatial filtering, Smoothing spatial filters, Sharpening spatial filters.

Frequency domain methods: Basics of filtering in frequency domain, image smoothing, image sharpening, Selective filtering.

Image Restoration:

Introduction to Image restoration, Image degradation, Types of image blur, Classification of image restoration techniques, Image restoration model, Linear and Nonlinear image restoration techniques, Blind deconvolution

UNIT –III:Image Segmentation: Introduction to image segmentation, Point, Line and Edge Detection, Region based segmentation., Classification of segmentation techniques, Region approach to image segmentation, clustering techniques, Image segmentation based on thresholding, Edge based segmentation, Edge detection and linking, Hough transform, Active contour

Image Compression:

Introduction, Need for image compression, Redundancy in images, Classification of redundancy in images, image compression scheme, Classification of image compression schemes, Fundamentals of information theory, Run length coding, Shannon – Fano coding, Huffman coding, Arithmetic coding, Predictive coding, Transformed based compression, Image compression standard,

Wavelet-based image compression, JPEG Standards.

UNIT -IV:

Basic Steps of Video Processing:

Analog Video, Digital Video, Time-Varying Image Formation models: Three-Dimensional Motion Models, Geometric Image Formation, Photometric Image Formation, Sampling of Video signals, Filtering operations.

UNIT -V:

2-D Motion Estimation:

Optical flow, General Methodologies, Pixel Based Motion Estimation, Block-Matching Algorithm, Mesh based Motion Estimation, Global Motion Estimation, Region based Motion Estimation, Multi resolution motion estimation, Waveform based coding, Block based transform coding, Predictive coding, Application of motion estimation in Video coding.

TEXT BOOKS:

1. Digital Image Processing – Gonzalez and Woods, 3rd Ed., Pearson.
2. Video Processing and Communication – Yao Wang, JoemOstermann and Ya-quin Zhang, 1st Ed., PH Int.
3. S.Jayaraman, S.Esakkirajan and T.VeeraKumar, “Digital Image processing, Tata McGraw Hill publishers, 2009

REFERENCE BOOKS:

1. Digital Image Processing and Analysis-Human and Computer Vision Application with CVIP Tools – Scott Umbaugh, 2nd Ed, CRC Press, 2011.
2. Digital Video Processing – M. Tekalp, Prentice Hall International.
3. Multi dimensional Signal, Image and Video Processing and Coding – John Woods, 2nd Ed, Elsevier.
4. Digital Image Processing with MATLAB and Labview – Vipula Singh, Elsevier.
5. Video Demystified – A Hand Book for the Digital Engineer – Keith Jack, 5th Ed., Elsevier.

Course Outcomes

1. Know digital image, representation of digital image, importance of image resolution, applications in image processing, the advantages of representation of digital images in transform domain, application of various image transforms. Understand and analyze the image enhancement and image degradation, image restoration techniques using spatial filters and frequency domain.
2. Understand and analyze the detection of point, line and edges in images, edge linking and various segmentation techniques and the redundancy in images, various image compression techniques.
3. Describe the video technology from analog color TV systems to digital video systems, how video signal is sampled and filtering operations in video processing.
4. Describe the general methodologies for 2D motion estimation, various coding used in video processing.

I Year II Semester

L	T	P	C
3	0	0	3

WIRELESS COMMUNICATIONS AND NETWORKS

OBJECTIVES:

1. The Aim of this course is to introduce the fundamental technologies for wireless communications and networking.
2. It introduces the Key concepts of Cellular and Mobile communications.
3. Introducing the concepts of Multiple Access Schemes.
4. Introducing the important concepts of Wireless networking, WLAN, WLL, IEEE 802 standards.

UNIT -I:

The Cellular Concept-System Design Fundamentals:

Introduction, Frequency Reuse, Interference and system capacity – Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference , Power Control for Reducing interference, Improving Coverage & Capacity in Cellular Systems- Cell Splitting, Sectoring, Channel Assignment Strategies, Handoff Strategies- Prioritizing Handoffs, Practical Handoff Considerations, Trunking and Grade of Service

UNIT -II: Mobile Radio Propagation: Large-Scale Path Loss: Introduction to Radio Wave Propagation, Free Space Propagation Model, Relating Power to Electric Field, Basic Propagation Mechanisms, Reflection: Reflection from Dielectrics, Brewster Angle, Reflection from perfect conductors, Ground Reflection (Two-Ray) Model, Diffraction: Fresnel Zone Geometry, Knife-edge Diffraction Model, Multiple knife-edge Diffraction, Scattering, Outdoor Propagation Models- Longley-Ryce Model, Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model, Indoor Propagation Models- Partition losses (Same Floor), Partition losses between Floors, Log-distance path loss model, Ericsson Multiple Breakpoint Model, Attenuation Factor Model, Signal penetration into buildings, Ray Tracing and Site Specific Modeling.

UNIT -III:

Mobile Radio Propagation: Small –Scale Fading and Multipath

Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke's model for flat fading, spectral shape due to Doppler spread in Clarke's model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT -IV:

Equalization and Diversity

Introduction, Fundamentals of Equalization, Training a Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Non-linear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer, Algorithms for adaptive equalization-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. Diversity -Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, Practical Space Diversity Consideration-Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

UNIT -V:

Wireless Networks

Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access Control, Comparison of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, HiperLan, WLL.

TEXT BOOKS:

1. Wireless Communications, Principles, Practice – Theodore, S. Rappaport, 2nd Ed., 2002, PHI.
2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press.
3. Mobile Cellular Communication – Gottapu Sasibhushana Rao, Pearson Education, 2012.

REFERENCE BOOKS:

1. Principles of Wireless Networks – Kaveh Pahlavan and P. Krishna Murthy, 2002, PE
2. Wireless Digital Communications – Kamil Feher, 1999, PHI.
3. Wireless Communication and Networking – William Stallings, 2003, PHI.
4. Wireless Communication – Open Dalal, Oxford Univ. Press
5. Wireless Communications and Networking – Vijay K. Gary, Elsevier.

Course Outcomes: At the end of this course, students will be able to

1. Understand Cellular communication concepts
2. Study the mobile radio propagation
3. Study the wireless network different type of MAC protocols

I Year II Semester

L	T	P	C
3	0	0	3

**CMOS ANALOG AND DIGITAL IC DESIGN
(ELECTIVE-III)**

UNIT-I:

MOS Devices and Modeling :The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, CMOS Device Modeling - Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Computer Simulation Models, Sub-threshold MOS Model.

MOS Design:Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.

UNIT-II:

Combinational MOS Logic Circuits:MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates , AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates.

Sequential MOS Logic Circuits:Behaviour of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop.

UNIT -III:

Dynamic Logic Circuits:Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits.

Semiconductor Memories:Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory- NOR flash and NAND flash.

UNIT -IV:

Analog CMOS Sub-Circuits:MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT-V:

CMOS Amplifiers:Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures. **CMOS Operational Amplifiers**:Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

TEXT BOOKS:

1. Digital Integrated Circuit Design – Ken Martin, Oxford University Press, 2011.
2. CMOS Digital Integrated Circuits Analysis and Design – Sung-Mo Kang, Yusuf Leblebici, TMH, 3rd Ed., 2011.
3. CMOS Analog Circuit Design - Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.
4. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY(AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A⁺ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

REFERENCE BOOKS:

1. Analog Integrated Circuit Design- David A. Johns, Ken Martin, Wiley Student Edn, 2016.
2. Design of Analog CMOS Integrated Circuits- BehzadRazavi, TMH Edition.
3. CMOS: Circuit Design, Layout and Simulation- Baker, Li and Boyce, PHI.
4. Digital Integrated Circuits – A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan, BorivojeNikolic, 2nd Ed., PHI.

Course Outcomes:

At the end of this course, students will be able to

1. Analyze, design, optimize and simulate analog and digital circuits using CMOS constrained by the designmetrics.
2. Connect the individual gates to form the building blocks of a system.
3. Use EDA tools like Cadence, Mentor Graphics and other open source software tools like Ngspice.

I Year II Semester

L T P C
3 0 0 3

**ADVANCED COMPUTER ARCHITECTURE
(ELECTIVE-III)**

UNIT-I: Fundamentals of Computer Design:

Fundamentals of Computer design, Changing faces of computing and task of computer designer, Technology trends, Cost price and their trends, measuring and reporting performance, Quantitative principles of computer design, Amdahl's law. Instruction set principles and examples- Introduction, classifying instruction set- memory addressing-type and size of operands, Operations in the instruction set.

UNIT-II: Pipelines:

Introduction, basic RISC instruction set, Simple implementation of RISC instruction set, Classic five stage pipe lined RISC processor, Basic performance issues in pipelining, Pipeline hazards, Reducing pipeline branch penalties.

Memory Hierarchy Design: Introduction, review of ABC of cache, Cache performance, Reducing cache miss penalty, Virtual memory.

UNIT-III:

Instruction Level Parallelism (ILP)-The Hardware Approach: Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach, Branch prediction, High performance instruction delivery- Hardware based speculation.

ILP Software Approach: Basic compiler level techniques, Static branch prediction, VLIW approach, Exploiting ILP, Parallelism at compile time, Cross cutting issues - Hardware verses Software.

UNIT-IV: Multi Processors and Thread Level Parallelism:

Multi Processors and Thread level Parallelism- Introduction, Characteristics of application domain, Systematic shared memory architecture, Distributed shared – Memory architecture, Synchronization.

UNIT-V: Inter Connection and Networks:

Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters.

Intel Architecture: Intel IA-64 ILP in embedded and mobile markets Fallacies and pit falls.

TEXT BOOKS:

1. John L. Hennessy, David A. Patterson - Computer Architecture: A Quantitative Approach, 3rd Edition, an Imprint of Elsevier.

REFERENCE BOOKS:

1. John P. Shen and Miikko H. Lipasti -, Modern Processor Design : Fundamentals of Super Scalar Processors
2. Computer Architecture and Parallel Processing - Kai Hwang, Faye A. Briggs., MC Graw Hill.
3. Advanced Computer Architecture - A Design Space Approach, DezsoSima, Terence Fountain, Peter Kacsuk, Pearson Ed.

Course Outcomes: At the end of this course, students will be able to

1. Understand parallelism and pipelining concepts, the design aspects and challenges.
2. Evaluate the issues in vector and arrayprocessors.
3. Study and analyze the high performance scalable multithreaded and multiprocessor systems.

I Year II Semester

L	T	P	C
3	0	0	3

SOFT COMPUTING TECHNIQUES

(ELECTIVE -III)

UNIT -I:

Introduction:

Approaches to intelligent control, Architecture for intelligent control, Symbolic reasoning system, Rule-based systems, the AI approach, Knowledge representation - Expert systems.

UNIT -II:

Artificial Neural Networks:

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron, Learning and Training the neural network, Data Processing: Scaling, Fourier transformation, principal-component analysis and wavelet transformations, Hopfield network, Self-organizing network and Recurrent network, Neural Network based controller.

UNIT -III:

Fuzzy Logic System:

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning, Introduction to fuzzy logic modeling and control, Fuzzification, inferencing and defuzzification, Fuzzy knowledge and rule bases, Fuzzy modeling and control schemes for nonlinear systems, Self-organizing fuzzy logic control, Fuzzy logic control for nonlinear timedelay system.

UNIT -IV:

Genetic Algorithm:

Basic concept of Genetic algorithm and detail algorithmic steps, Adjustment of free parameters, Solution of typical control problems using genetic algorithm, Concept on some other search techniques like Tabu search and anD-colony search techniques for solving optimization problems.

UNIT -V:

Applications:

GA application to power system optimisation problem, Case studies: Identification and control of linear and nonlinear dynamic systems using MATLAB-Neural Network toolbox, Stability analysis of Neural-Network interconnection systems, Implementation of fuzzy logic controller using MATLAB fuzzy-logic toolbox, Stability analysis of fuzzy control systems.

TEXT BOOKS:

1. Introduction to Artificial Neural Systems - Jacek.M.Zurada, Jaico Publishing House, 1999.
2. Neural Networks and Fuzzy Systems - Kosko, B., Prentice-Hall of India Pvt. Ltd., 1994.

ENGINEERING & TECHNOLOGY(AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A⁺ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202, W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

REFERENCE BOOKS:

1. Fuzzy Sets, Uncertainty and Information - Klir G.J. & Folger T.A., Prentice-Hall of India Pvt. Ltd., 1993.
2. Fuzzy Set Theory and Its Applications - Zimmerman H.J. Kluwer Academic Publishers, 1994.
3. Introduction to Fuzzy Control - Driankov, Hellendoorn, Narosa Publishers.
4. Artificial Neural Networks - Dr. B. Yagananarayana, 1999, PHI, New Delhi.
5. Elements of Artificial Neural Networks - KishanMehrotra, Chelkuri K. Mohan, Sanjay Ranka, Penram International.
6. Artificial Neural Network -Simon Haykin, 2nd Ed., Pearson Education.
7. Introduction Neural Networks Using MATLAB 6.0 - S.N. Shivanandam, S. Sumati, S. N. Deepa, 1/e, TMH, New Delhi.

Course Outcomes

At the end of this course the student can able to:

1. Understand the basic concepts of Artificial neural network systems.
2. Understand the McCulloch-Pitts neuron model, simple and multilayer Perception, Adeline and Madeline concepts.
3. Data processing, Hopfield and self-organizing network.
4. Difference between crisp sets to fuzzy sets, fuzzy models, fuzzification, inference,
5. membership functions, rule based approaches and defuzzification.
6. Self – organizing fuzzy logic control, non linear time delay systems.
7. Understand the concept of Genetic Algorithm steps. Tabu, anD-colony search techniques for solving optimization problems.
8. GA applications to power system optimization problems, identification and control of linear and nonlinear dynamic systems using MATLAB-Neural network toolbox.
9. Know the application and importance stability analysis

I Year II Semester

L	T	P	C
3	0	0	3

**DIGITAL SIGNAL PROCESSORS AND ARCHITECTURES
(ELECTIVE -IV)**

Course Objectives:

- 1) To recall the digital transform techniques (Fourier and z-domain).
- 2) To introduce architectural features of programmable DSP Processors of Texas Instruments (TI's) and Analog Devices (AD's).
- 3) To give practical examples of DSP Processor architectures for better understanding.
- 4) To develop the programming knowledge using Instruction set of DSP Processors.
- 5) To understand interfacing techniques to memory and I/O devices.

UNIT -I:

Introduction to Digital Signal Processing:

Introduction, A Digital signal-processing system, The sampling process, Discrete time sequences, Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear time-invariant systems, Digital filters, Decimation and interpolation.

Computational Accuracy in DSP Implementations:

Number formats for signals and coefficients in DSP systems, Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors, Compensating filter.

UNIT -II:

Architectures for Programmable DSP Devices:

Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation UNIT, Programmability and Program Execution, Speed Issues, Features for External interfacing.

UNIT -III:

Programmable Digital Signal Processors:

Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX instructions and Programming, On-Chip Peripherals, Interrupts of TMS320C54XX processors, Pipeline operation of TMS320C54XX Processors.

UNIT -IV:

Analog Devices Family of DSP Devices:

Analog Devices Family of DSP Devices – ALU and MAC block diagram, Shifter Instruction, Base Architecture of ADSP 2100, ADSP-2181 high performance Processor.

Introduction to Blackfin Processor - The Blackfin Processor, Introduction to Micro Signal Architecture, Overview of Hardware Processing Units and Register files, Address Arithmetic Unit, Control Unit, Bus Architecture and Memory, Basic Peripherals.

UNIT –V:

Interfacing Memory and I/O Peripherals to Programmable DSP Devices:

Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).

TEXT BOOKS:

1. Digital Signal Processing – Avtar Singh and S. Srinivasan, Thomson Publications, 2004.
2. A Practical Approach to Digital Signal Processing - K Padmanabhan, R. Vijayarajeswaran, Ananthi. S, New Age International, 2006/2009
3. Embedded Signal Processing with the Micro Signal Architecture Publisher: Woon-Seng Gan, Sen M. Kuo, Wiley-IEEE Press, 2007

REFERENCE BOOKS:

1. Digital Signal Processors, Architecture, Programming and Applications – B. Venkataramani and M. Bhaskar, 2002, TMH.
2. Digital Signal Processing – Jonathan Stein, 2005, John Wiley.
3. DSP Processor Fundamentals, Architectures & Features – Lapsley et al. 2000, S. Chand & Co.
4. Digital Signal Processing Applications Using the ADSP-2100 Family by The Applications Engineering Staff of Analog Devices, DSP Division, Edited by Amy Mar, PHI
5. *The Scientist and Engineer's Guide to Digital Signal Processing* by Steven W. Smith, Ph.D., California Technical Publishing, ISBN 0-9660176-3-3, 1997
6. *Embedded Media Processing* by David J. Katz and Rick Gentile of Analog Devices, Newnes, ISBN 0750679123, 2005

Course Outcomes:

At the end of this course, students will be able to

- 1) Understand the basics concepts of Digital Signal Processing (DSP) and transforms.
- 2) To distinguish between the architectural features of General purpose processors and Programmable DSP processors.
- 3) Understand the architectures of TMS320C54xx devices.
- 4) Understand the architectures of ADSP 2100 DSP devices and Black fin Processor.
- 5) Interface various devices to DSP Processors.
- 6) Able to write simple assembly language programs using instruction set of TMS320C54xx.

ENGINEERING & TECHNOLOGY (AUTONOMOUS)
 Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
 Accredited with A++ Grade by NAAC
 Accredited by NBA (B. Tech – CSE, ECE & EEE)
 Balusumudi, Bhimavaram – 534 202, W.G. Dist., (A.P.)
 Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

I Year II Semester

L	T	P	C
3	0	0	3

ELECTROMAGNETIC INTERFERENCE AND ELECTROMAGNETIC COMPATIBILITY
(EMI / EMC)
(ELECTIVE-IV)

Course objectives:

1. To introduce enough knowledge regarding the Electromagnetic interference/ Electromagnetic compatibility, Its practical experiences and concerns, and various sources both the natural and Nuclear sources of EMI.
2. To know the practical experiences due to EMI such as mains power supply, switches and relaysetc and Analyze EM Propagation and Crosstalk
3. To know various methods of the measurements radiated and conducted interference in open area test sites and in chambers.
4. To Learn about the various methods of minimizing the EMI.
5. To know the National/International EMC Standards.

UNIT -I:

Introduction, Natural and Nuclear Sources of EMI / EMC: Electromagnetic environment, History, Concepts, Practical experiences and concerns, frequency spectrum conservations, An overview of EMI / EMC, Natural and Nuclear sources of EMI.

UNIT -II:

EMI from Apparatus, Circuits and Open Area Test Sites: Electromagnetic emissions, Noise from relays and switches, Non-linearities in circuits, passive intermodulation, Cross talk in transmission lines, Transients in power supply lines, Electromagnetic interference (EMI), Open area test sites and measurements.

UNIT -III:

Radiated and Conducted Interference Measurements and ESD: Anechoic chamber, TEM cell, GH TEM Cell, Characterization of conduction currents / voltages, Conducted EM noise on power lines, Conducted EMI from equipment, Immunity to conducted EMI detectors and measurements, ESD, Electrical fast transients / bursts, Electrical surges.

UNIT -IV:

Grounding, Shielding, Bonding and EMI filters: Principles and types of grounding, Shielding and bonding, Characterization of filters, Power lines filter design.

UNIT -V:

Cables, Connectors, Components and EMC Standards:

EMI suppression cables, EMC connectors, EMC gaskets, Isolation transformers, optoisolators, National / International EMC standards.

TEXT BOOKS:

1. Engineering Electromagnetic Compatibility - Dr. V.P. Kodali, IEEE Publication, Printed in India by S. Chand & Co. Ltd., New Delhi, 2000.
2. Electromagnetic Interference and Compatibility IMPACTseries, IIT – Delhi, Modules 1-9

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusunudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

REFERENCE BOOKS:

1. Introduction to Electromagnetic Compatibility - Ny, John Wiley, 1992, by C.R. Pal.

Course outcomes

At the end of this course the student can able to:

1. Understand the electromagnetic environment the definitions of EMI and EMC, history of EMI some examples of practical experiences due to EMI such as mains power supply, switches and relays etc.
2. Understand the celestial electromagnetic noise the occurrence of lightning discharge and their effects, the charge accumulation and discharge in an electrostatic discharge, model ESD wave form, the various cases of nuclear explosion and the transients.
3. Understand the methods to measure RE and RS in the open are test sites
4. Understand the measurement facilities and procedures using anechoic chamber, TEM cell, reverberating chamber GTEM cell.

I Year II Semester

L	T	P	C
3	0	0	3

OBJECT-ORIENTED PROGRAMMING
(ELECTIVE IV)

OBJECTIVES:

The main objectives of this course are given below:

- Its main objective is to teach the basic concepts and techniques and java program structure which form the object oriented programming paradigm

UNIT I:

Objective: Focus on object oriented concepts and java program structure and its installation

Introduction to OOP

Introduction, Need of Object Oriented Programming, Principles of Object Oriented Languages, Procedural languages Vs OOP, Applications of OOP, History of JAVA, Java Virtual Machine, Java Features, Installation of JDK1.6

UNIT II:

Objective: Comprehension of java programming constructs, control structures in Java

Programming Constructs

Variables , Primitive Datatypes, Identifiers- Naming Conventions, Keywords, Literals, Operators-Binary,Unary and ternary, Expressions, Precedence rules and Associativity, Primitive Type Conversion and Casting, Flow of control-Branching,Conditional, loops.,

Classes and Objects- classes, Objects, Creating Objects, Methods, constructors-Constructor overloading, Garbage collector, Class variable and Methods-Static keyword, this keyword, Arrays, Command line arguments

UNIT III:

Objective: Implementing Object oriented constructs such as various class hierarchies, interfaces and exception handling

Inheritance: Types of Inheritance, Deriving classes using extends keyword, Method overloading, super keyword, final keyword, Abstract class

Interfaces, Packages and Enumeration: Interface-Extending interface, Interface Vs Abstract classes, Packages-Creating packages , using Packages, Access protection, java.lang package

Exceptions & Assertions - Introduction, Exception handling techniques-try...catch, throw, throws, finally block, user defined exception, Assertions

UNIT IV:

Objective: Understanding of Thread concepts and I/O in Java

Multithreading :java.lang.Thread, The main Thread, Creation of new threads, Thread priority, Multithreading, Syncronization, suspending and Resuming threads, Communication between Threads

Input/Output: reading and writing data, java.io package

UNIT V:

Objective: Being able to build dynamic user interfaces using applets and Event handling in java
Applets- Applet class, Applet structure, An Example Applet Program, Applet Life Cycle, paint(),update() and repaint()

Event Handling -Introduction, Event Delegation Model, java.awt.event Description, Event Listeners, Adapter classes, Inner classes

Understanding of various components of Java AWT and Swing and writing code snippets using them

Abstract Window Toolkit

Why AWT?, java.awt package, Components and Containers, Button, Label, Checkbox, Radio buttons, List boxes, Choice boxes, Text field and Text area, container classes, Layouts, Menu, Scroll bar

Swing:Introduction , JFrame, JApplet, JPanel, Components in swings, Layout Managers, JList and JScrollPane, Split Pane, JTabbedPane, Dialog Box

Text Books:

1. The Complete Reference Java, 8ed, Herbert Schildt, TMH
2. Programming in JAVA, Sachin Malhotra, Saurabhchoudhary, Oxford.
3. JAVA for Beginners, 4e, Joyce Farrell, Ankit R. Bhavsar, Cengage Learning.
4. Object oriented programming with JAVA, Essentials and Applications, Raj Kumar Bhuyya, Selvi, Chu TMH
5. Introduction to Java programming, 7thed, Y Daniel Liang, Pearson

Reference Books:

1. JAVA Programming, K.Rajkumar.Pearson
2. Core JAVA, Black Book, NageswaraRao, Wiley, Dream Tech
3. Core JAVA for Beginners, RashmiKanta Das, Vikas.
4. Object Oriented Programming through JAVA , P Radha Krishna , University Press.

OUTCOMES:

At the end of this course the student can able to:

1. The model of object oriented programming: abstract data types, encapsulation, inheritance and polymorphism
2. Fundamental features of an object oriented language like Java: object classes and interfaces, exceptions and libraries of object collections
3. How to take the statement of a business problem and from this determine suitable logic for solving the problem; then be able to proceed to code that logic as a program written in Java.
4. How to test, document and prepare a professional looking package for each business project using java doc.

I Year II Semester

L	T	P	C
0	0	4	2

ADVANCED COMMUNICATIONS LAB

Note:

- A. Minimum of 10 Experiments have to be conducted
- B. All Experiments may be Simulated using MATLAB and to be verified using related training kits.
 - 1. Measurement of Bit Error Rate using Binary Data
 - 2. Verification of minimum distance in Hamming code
 - 3. Determination of output of Convolutional Encoder for a given sequence
 - 4. Determination of output of Convolutional Decoder for a given sequence
 - 5. Efficiency of DS Spread- Spectrum Technique
 - 6. Simulation of Frequency Hopping (FH) system
 - 7. Effect of Sampling and Quantization of Digital Image
 - 8. Verification of Various Transforms (FT / DCT/ Walsh / Hadamard) on a given Image (Finding Transform and Inverse Transform)
 - 9. Point, Line and Edge detection techniques using derivative operators.
 - 10. Implementation of FIR filter using DSP Trainer Kit (C-Code/ Assembly code)
 - 11. Implementation of IIR filter using DSP Trainer Kit (C-Code/ Assembly code)
 - 12. Determination of Losses in Optical Fiber
 - 13. Observing the Waveforms at various test points of a mobile phone using Mobile Phone Trainer
 - 14. Study of Direct Sequence Spread Spectrum Modulation & Demodulation using CDMA-DSS-BER Trainer
 - 15. Study of ISDN Training System with Protocol Analyzer
 - 16. Characteristics of LASER Diode.

Course Outcomes:

At the end of this course, students will be able to

- 1. Identify the different types of network devices and their functions within a network.
- 2. Understand and build the skills of sub-netting and routing mechanisms.
- 3. Understand basic protocols of computer networks, and how they can be used to assist in network design and implementation.

I Year II Semester

L	T	P	C
0	0	4	2

Advanced Digital Image and Video Processing lab

List of Experiments:

1. Perform basic operations on images like addition, subtraction etc.
2. Plot the histogram of an image and perform histogram equalization
3. Implement segmentation algorithms
4. Perform video enhancement
5. Perform video segmentation
6. Perform image compression using lossy technique
7. Perform image compression using lossless technique
8. Perform image restoration
9. Convert a colour model into another
10. Calculate boundary features of an image
11. Calculate regional features of an image
12. Detect an object in an image/video using template matching/Bayes classifier

Course Outcomes:

At the end of this course, students will be able to

1. Perform and analyze image and video enhancement and restoration
2. Perform and analyze image and video segmentation and compression
3. work and process viz., detection, extraction on the image/video

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A⁺⁺ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

I Year II Semester

L	T	P	C
0	0	4	2

MINI PROJECT

Syllabus Contents

The students are required to search / gather the material / information on a specific a topic comprehend it and present / discuss in the class.

Course Outcomes

At the end of this course, students will be able to

1. Understand of contemporary / emerging technology for various processes and systems.
2. Share knowledge effectively in oral and written form and formulate documents

III Semester

L	T	P	C
3	0	0	3

**DETECTION AND ESTIMATION THEORY
(ELECTIVE IV)**

UNIT –I:

Random Processes: Discrete Linear Models, Markov Sequences and Processes, Point Processes, and Gaussian Processes.

UNIT –II:

Detection Theory: Basic Detection Problem, Maximum A posteriori Decision Rule, Minimum Probability of Error Classifier, Bayes Decision Rule, Multiple-Class Problem (Bayes)- minimum probability error with and without equal a priori probabilities, Neyman-Pearson Classifier, General Calculation of Probability of Error, General Gaussian Problem, Composite Hypotheses.

UNIT –III:

Linear Minimum Mean-Square Error Filtering: Linear Minimum Mean Squared Error Estimators, Nonlinear Minimum Mean Squared Error Estimators. Innovations, Digital Wiener Filters with Stored Data, Real-time Digital Wiener Filters, Kalman Filters.

UNIT –IV:

Statistics: Measurements, Nonparametric Estimators of Probability Distribution and Density Functions, Point Estimators of Parameters, Measures of the Quality of Estimators, Introduction to Interval Estimates, Distribution of Estimators, Tests of Hypotheses, Simple Linear Regression, Multiple Linear Regression.

UNIT –V:

Estimating the Parameters of Random Processes from Data: Tests for Stationarity and Ergodicity, Model-free Estimation, Model-based Estimation of Autocorrelation Functions, Power Special Density Functions.

TEXT BOOKS:

1. Random Signals: Detection, Estimation and Data Analysis - K. Sam Shanmugan & A.M. Breipohl, Wiley India Pvt. Ltd, 2011.
2. Random Processes: Filtering, Estimation and Detection - Lonnie C. Ludeman, Wiley India Pvt. Ltd., 2010.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A+ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

REFERENCE BOOKS:

1. Fundamentals of Statistical Signal Processing: Volume I Estimation Theory– Steven.M.Kay, Prentice Hall, USA, 1998.
2. Fundamentals of Statistical Signal Processing: Volume I Detection Theory– Steven.M.Kay, Prentice Hall, USA, 1998.
3. Introduction to Statistical Signal Processing with Applications - Srinath, Rajasekaran, Viswanathan, 2003, PHI.
4. Statistical Signal Processing: Detection, Estimation and Time Series Analysis – Louis L.Scharf, 1991, Addison Wesley.
5. Detection, Estimation and Modulation Theory: Part – I – Harry L. Van Trees, 2001, John Wiley & Sons, USA.
6. Signal Processing: Discrete Spectral Analysis – Detection & Estimation – Mischa Schwartz, Leonard Shaw, 1975, McGraw Hill.

Course Outcomes:

At the end of this course, students will be able to

1. Understand the mathematical background of signal detection and estimation
2. Use classical and Bayesian approaches to formulate and solve problems for signal detection and parameter estimation from noisy signals.
3. Derive and apply filtering methods for parameter estimation.

III Semester

L	T	P	C
3	0	0	3

**ADVANCED DIGITAL SIGNAL PROCESSING
(ELECTIVE IV)**

UNIT -I:

Review of DFT, FFT, IIR Filters and FIR Filters:

Multi Rate Signal Processing: Introduction, Decimation by a factor D, Interpolation by a factor I, Sampling rate conversion by a rational factor I/D, Multistage Implementation of Sampling Rate Conversion, Filter design & Implementation for sampling rate conversion.

UNIT -II:

Applications of Multi Rate Signal Processing: Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, Implementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Sub-band Coding of Speech Signals, Quadrature Mirror Filters, Trans-multiplexers, Over Sampling A/D and D/A Conversion.

UNIT -III:

Non-Parametric Methods of Power Spectral Estimation: Estimation of spectra from finite duration observation of signals, Non-parametric Methods: Bartlett, Welch & Blackman-Tukey methods, Comparison of all Non-Parametric methods

UNIT -IV:

Implementation of Digital Filters: Introduction to filter structures (IIR & FIR), Frequency sampling structures of FIR, Lattice structures, Forward prediction error, Backward prediction error, Reflection coefficients for lattice realization, Implementation of lattice structures for IIR filters, Advantages of lattice structures.

UNIT -V:

Parametric Methods of Power Spectrum Estimation: Autocorrelation & Its Properties, Relation between auto correlation & model parameters, AR Models - Yule-Walker & Burg Methods, MA & ARMA models for power spectrum estimation, Finite word length effect in IIR digital Filters – Finite word-length effects in FFT algorithms.

TEXT BOOKS:

1. Digital Signal Processing: Principles, Algorithms & Applications - J.G.Proakis& D. G. Manolakis, 4th Ed., PHI.
2. Discrete Time Signal Processing - Alan V Oppenheim & R. W Schaffer, PHI.
3. DSP – A Practical Approach – Emmanuel C. Ifeache, Barrie. W. Jervis, 2 Ed., Pearson Education.

REFERENCE BOOKS:

1. Modern Spectral Estimation: Theory & Application – S. M .Kay, 1988, PHI.
2. Multi Rate Systems and Filter Banks – P.P.Vaidyanathan – Pearson Education.
3. Digital Signal Processing – S.Salivahanan, A.Vallavaraj, C.Gnanapriya, 2000,TMH
4. Digital Spectral Analysis – Jr. Marple

Course Outcomes:

At the end of this course, students will be able to

1. To understand theory of different filters and algorithms
2. To understand theory of multirate DSP, solve numerical problems and write algorithms
3. To understand theory of prediction and solution of normal equations
4. To know applications of DSP at block level

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

III Semester

L	T	P	C
3	0	0	3

CODING THEORY AND APPLICATIONS (ELECTIVE IV)

UNIT -I:

Coding for Reliable Digital Transmission and Storage: Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

Linear Block Codes: Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT -II:

Cyclic Codes: Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding ,Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT -III:

Convolutional Codes: Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT -IV:

Burst -Error-Correcting Codes: Decoding of Single-Burst error Correcting Cyclic codes, Single-Burst-Error-Correcting Cyclic codes, Burst-Error-Correcting Convolutional Codes, Bounds on Burst Error-Correcting Capability, Interleaved Cyclic and Convolutional Codes, Phased-Burst -Error-Correcting Cyclic and Convolutional codes.

UNIT -V:

BCH – Codes: BCH code- Definition, Minimum distance and BCH Bounds, Decoding Procedure for BCH Codes- Syndrome Computation and Iterative Algorithms, Error Location Polynomials and Numbers for single and double error correction

TEXT BOOKS:

1. Error Control Coding- Fundamentals and Applications –Shu Lin, Daniel J.Costello,Jr, Prentice Hall, Inc.
2. Error Correcting Coding Theory-Man Young Rhee- 1989, McGraw-Hill Publishing.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

REFERENCE BOOKS:

1. Digital Communications-Fundamental and Application - Bernard Sklar, PE.
2. Digital Communications- John G. Proakis, 5th Ed., 2008, TMH.
3. Introduction to Error Control Codes-Salvatore Gravano-oxford
4. Error Correction Coding – Mathematical Methods and Algorithms – Todd K.Moon, 2006, Wiley India.
5. Information Theory, Coding and Cryptography – Ranjan Bose, 2nd Ed, 2009, TMH.

Course Outcomes:

On completion of this course student will be able to

1. Learning the measurement of information and errors.
2. Obtain knowledge in designing Linear Block Codes and Cyclic codes.
3. Construct tree and trellies diagrams for convolution codes
4. Design the Turbo codes and Space time codes and also their applications

III Semester

L	T	P	C
0	0	20	10

(DISSERTATION) DISSERTATION PHASE – I AND PHASE – II

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following

- Relevance to social needs of society
- Relevance to value addition to existing facilities in the institute
- Relevance to industry need
- Problems of national importance
- Research and development in various domain

The student should complete the following:

- Literature survey Problem Definition
- Motivation for study and Objectives
- Preliminary design / feasibility / modular approaches
- Implementation and Verification
- Report and presentation

The dissertation stage II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

- Experimental verification / Proof of concept.
- Design, fabrication, testing of Communication System.
- The viva-voce examination will be based on the above report and work.

Guidelines for Dissertation Phase – I and II at M. Tech. (Electronics):

- As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June.
- The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.
- After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, white papers, product catalogues should be referred and reported.
- Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.
- Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.
- Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

- During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.
- Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, a record of continuous progress.
- Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work

Course Outcomes:

At the end of this course, students will be able to

1. Ability to synthesize knowledge and skills previously gained and applied to an in-depth study and execution of new technical problem.
2. Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify their design.
3. Ability to present the findings of their technical solution in a written report.
4. Presenting the work in International/ National conference or reputed journals.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

III Semester

L	T	P	C
3	0	0	3

OPEN ELECTIVES BUSINESS ANALYTICS

Unit1:

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics.

Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

Unit 2:

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression, Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology

Unit 3:

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

Unit 4:

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.

Monte Carlo Simulation and Risk Analysis: Monte Carlo Simulation

Using Analytic Solver Platform, New-Product Development Model, NewsVendor Model, Overbooking Model, Cash Budget Model.

Unit 5:

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

Unit 6:

Recent Trends in : Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism

Reference:

1. Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FTPress.
2. Business Analytics by James Evans, personsEducation.

COURSE OUTCOMES

1. Students will demonstrate knowledge of data analytics.
2. Students will demonstrate the ability of think critically in making decisions based on data and deep analytics.
3. Students will demonstrate the ability to use technical skills in predictive and prescriptive modeling to support business decision-making.
4. Students will demonstrate the ability to translate data into clear, actionable insights

III Semester

L	T	P	C
3	0	0	3

**OPENELECTIVES
INDUSTRIALSAFETY**

Unit-1:

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

Unit-2:

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Unit-3:

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

Unit-4:

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their generalcauses.

Unit-5:

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Reference:

1. Maintenance Engineering Handbook, Higgins & Morrow, Da InformationServices.
2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
3. Pump-hydraulic Compressors, Audels, McGrawHillPublication.
4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & HallLondon

**OPENELECTIVES
OPERATIONSRESEARCH**

Unit 1:

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Unit 2

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Unit 3:

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Unit 4

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Unit 5

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

References:

1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008
4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
5. Pannerselvam, Operations Research: Prentice Hall of India 2010
6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

Course Outcomes:

At the end of the course, the student should be able to

1. Students should be able to apply the dynamic programming to solve problems of discrete and continuous variables.
2. Students should be able to apply the concept of non-linear programming
3. Students should be able to carry out sensitivity analysis
4. Student should be able to model the real world problem and simulate it.

III Semester

L	T	P	C
3	0	0	3

**OPEN ELECTIVE
COST MANAGEMENT OF ENGINEERING PROJECTS**

Introduction and Overview of the Strategic Cost Management Process

Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non-technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking, Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

References:

1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
2. Charles T. Horngren and George Foster, Advanced Management Accounting
3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202, W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

III Semester

L	T	P	C
3	0	0	3

**OPEN ELECTIVE
COMPOSITE MATERIALS**

UNIT-I:

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

UNIT – II:

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

UNIT – III:

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostaticpressing. Properties and applications. **Manufacturing of Ceramic Matrix Composites:** Liquid Metal Infiltration – Liquid phase sintering. **Manufacturing of Carbon – Carbon composites:** Knitting, Braiding, Weaving. Properties and applications.

UNIT-IV:

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepgs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT – V:

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hydrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS:

1. Material Science and Technology – Vol 13 – Composites by R.W.Cahn – VCH, West Germany.
2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition,2007.

References:

1. Hand Book of CompositeMaterials-ed-Lubin.
2. Composite Materials – K.K.Chawla.
3. Composite Materials Science and Applications – Deborah D.L.Chung.
4. Composite Materials Design and Applications – Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

III Semester

L	T	P	C
3	0	0	3

**OPEN ELECTIVE
WASTE TO ENERGY**

Unit-I:

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Unit-II:

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Unit-III:

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation

Unit-IV:

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Unit-V:

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants - Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

References:

1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
2. Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
4. Biomass Conversion and Technology, C. Y. WereKo-Broby and E. B. Hagan, John Wiley & Sons, 1996.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

IV Semester

L	T	P	C
0	0	32	16

(DISSERTATION) DISSERTATION PHASE – I AND PHASE – II

Syllabus Contents:

The dissertation / project topic should be selected / chosen to ensure the satisfaction of the urgent need to establish a direct link between education, national development and productivity and thus reduce the gap between the world of work and the world of study. The dissertation should have the following

- Relevance to social needs of society
- Relevance to value addition to existing facilities in the institute
- Relevance to industry need
- Problems of national importance
- Research and development in various domain

The student should complete the following:

- Literature survey Problem Definition
- Motivation for study and Objectives
- Preliminary design / feasibility / modular approaches
- Implementation and Verification
- Report and presentation

The dissertation stage II is based on a report prepared by the students on dissertation allotted to them. It may be based on:

- Experimental verification / Proof of concept.
- Design, fabrication, testing of Communication System.
- The viva-voce examination will be based on the above report and work.

Guidelines for Dissertation Phase – I and II at M. Tech. (Electronics):

- As per the AICTE directives, the dissertation is a yearlong activity, to be carried out and evaluated in two phases i.e. Phase – I: July to December and Phase – II: January to June.
- The dissertation may be carried out preferably in-house i.e. department's laboratories and centers OR in industry allotted through department's T & P coordinator.
- After multiple interactions with guide and based on comprehensive literature survey, the student shall identify the domain and define dissertation objectives. The referred literature should preferably include IEEE/IET/IETE/Springer/Science Direct/ACM journals in the areas of Computing and Processing (Hardware and Software), Circuits-Devices and Systems, Communication-Networking and Security, Robotics and Control Systems, Signal Processing and Analysis and any other related domain. In case of Industry sponsored projects, the relevant application notes, white papers, product catalogues should be referred and reported.
- Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and phase wise work distribution, and submit the proposal within a month from the date of registration.
- Phase – I deliverables: A document report comprising of summary of literature survey, detailed objectives, project specifications, paper and/or computer aided design, proof of concept/functionality, part results, A record of continuous progress.
- Phase – I evaluation: A committee comprising of guides of respective specialization shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend repeating the Phase-I work.

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

- During phase – II, student is expected to exert on design, development and testing of the proposed work as per the schedule. Accomplished results/contributions/innovations should be published in terms of research papers in reputed journals and reviewed focused conferences OR IP/Patents.
- Phase – II deliverables: A dissertation report as per the specified format, developed system in the form of hardware and/or software, a record of continuous progress.
- Phase – II evaluation: Guide along with appointed external examiner shall assess the progress/performance of the student based on report, presentation and Q & A. In case of unsatisfactory performance, committee may recommend for extension or repeating the work

Course Outcomes:

At the end of this course, students will be able to

- 1. Ability to synthesize knowledge and skills previously gained and applied to an in-depth study and execution of new technical problem.
- 2. Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify their design.
- 3. Ability to present the findings of their technical solution in a written report.
- 4. Presenting the work in International/ National conference or reputed journals.
-

AUDIT 1 and 2: ENGLISH FOR RESEARCH PAPER WRITING

Course objectives:

Students will be able to:

Understand that how to improve your writing skills and level of readability

Learn about what to write in each section

Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

Syllabus

Units	CONTENTS	Hours
1	Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness	4
2	Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction	4
3	Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.	4
4	key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,	4
5	skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions	4
6	useful phrases, how to ensure paper is as good as it could possibly be the first- time submission	4

Suggested Studies:

1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook .
4. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

AUDIT 1 and 2: DISASTER MANAGEMENT

Course Objectives: -Students will be able to:

- learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in

Syllabus

Units	CONTENTS	Hours
1	Introduction Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.	4
2	Repercussions Of Disasters And Hazards: Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.	4
3	Disaster Prone Areas In India Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics	4
4	Disaster Preparedness And Management Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.	4
5	Risk Assessment Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.	4

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

6	<p>Disaster Mitigation Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.</p> <p>Suggested Readings:</p> <ol style="list-style-type: none">1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies" "New Royal book Company.2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice HallOf India, New Delhi.3. Goel S. L. , Disaster Administration And Management Text And Case Studies" ,Deep & DeepPublication Pvt. Ltd., New Delhi.	4
---	--	---

AUDIT 1 and 2: SANSKRIT FOR TECHNICAL KNOWLEDGE

Course Objectives

1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world
2. Learning of Sanskrit to improve brain functioning
3. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
4. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

Syllabus

Unit	Content	Hours
1	<ul style="list-style-type: none">• Alphabets in Sanskrit,• Past/Present/Future Tense,• Simple Sentences	8
2	<ul style="list-style-type: none">• Order• Introduction of roots• Technical information about Sanskrit Literature	8
3	<ul style="list-style-type: none">• Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics	8

Suggested reading

1. "Abhyaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

Course Output

Students will be able to

1. Understanding basic Sanskrit language
2. Ancient Sanskrit literature about science & technology can be understood
3. Being a logical language will help to develop logic in students

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

AUDIT 1 and 2: VALUE EDUCATION

Course Objectives

Students will be able to

1. Understand value of education and self- development
2. Imbibe good values in students
3. Let the should know about the importance of character

Syllabus

Unit	Content	Hours
1	<ul style="list-style-type: none">• Values and self-development –Social values and individual attitudes.• Work ethics, Indian vision of humanism.• Moral and non- moral valuation. Standards and principles.• Value judgements	4
2	<ul style="list-style-type: none">• Importance of cultivation of values.• Sense of duty. Devotion, Self-reliance. Confidence, Concentration.• Truthfulness, Cleanliness.• Honesty, Humanity. Power of faith, National Unity.• Patriotism. Love for nature ,Discipline	6
3	<ul style="list-style-type: none">• Personality and Behavior Development - Soul and Scientific attitude.• Positive Thinking, Integrity and discipline.• Punctuality, Love and Kindness.• Avoid fault Thinking.• Free from anger, Dignity of labour.• Universal brotherhood and religious tolerance.• True friendship.• Happiness Vs suffering, love for truth.• Aware of self-destructive habits.• Association and Cooperation.• Doing best for saving nature	6

**D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)**
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC

Accredited by NBA (B. Tech – CSE, ECE & EEE)

Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

4	<ul style="list-style-type: none"> • Character and Competence –Holy books vs Blind faith. • Self-management and Good health. • Science of reincarnation. • Equality, Nonviolence ,Humility, Role of Women. • All religions and same message. • Mind your Mind, Self-control. • Honesty, Studying effectively 	6
---	---	---

Suggested reading

1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Course outcomes

Students will be able to 1.Knowledge of self-development
2. Learn the importance of Human values 3.Developing the overall personality

AUDIT 1 and 2: CONSTITUTION OF INDIA

Course Objectives:

Students will be able to:

1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
2. To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Syllabus

Units	Content	Hour s
1	<ul style="list-style-type: none"> • History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working) 	4
2	<ul style="list-style-type: none"> • Philosophy of the Indian Constitution: Preamble Salient Features 	4

D.N.R. COLLEGE OF
ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada

Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202. W.G. Dist., (A.P.)

Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

3	<ul style="list-style-type: none"><input type="checkbox"/> Contours of Constitutional Rights & Duties:<input type="checkbox"/> Fundamental Rights<input type="checkbox"/> Right to Equality<input type="checkbox"/> Right to Freedom<input type="checkbox"/> Right against Exploitation<input type="checkbox"/> Right to Freedom of Religion<input type="checkbox"/> Cultural and Educational Rights<input type="checkbox"/> Right to Constitutional Remedies<input type="checkbox"/> Directive Principles of State Policy<input type="checkbox"/> Fundamental Duties.	4
4	<ul style="list-style-type: none"><input type="checkbox"/> Organs of Governance:<input type="checkbox"/> Parliament<input type="checkbox"/> Composition<input type="checkbox"/> Qualifications and Disqualifications<input type="checkbox"/> Powers and Functions<ul style="list-style-type: none">• Executive<input type="checkbox"/> President<input type="checkbox"/> Governor<input type="checkbox"/> Council of Ministers<input type="checkbox"/> Judiciary, Appointment and Transfer of Judges, Qualifications<input type="checkbox"/> Powers and Functions	4
5	<ul style="list-style-type: none"><input type="checkbox"/> Local Administration:<input type="checkbox"/> District's Administration head: Role and Importance,<input type="checkbox"/> Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.<input type="checkbox"/> Pachayati raj: Introduction, PRI: ZilaPachayat.<input type="checkbox"/> Elected officials and their roles, CEO ZilaPachayat: Position and role.<input type="checkbox"/> Block level: Organizational Hierarchy (Different departments),<input type="checkbox"/> Village level: Role of Elected and Appointed officials,<input type="checkbox"/> Importance of grass root democracy	0
6	<ul style="list-style-type: none"><input type="checkbox"/> Election Commission:<input type="checkbox"/> Election Commission: Role and Functioning.<input type="checkbox"/> Chief Election Commissioner and Election Commissioners.<input type="checkbox"/> State Election Commission: Role and Functioning.<input type="checkbox"/> Institute and Bodies for the welfare of SC/ST/OBC and women.	4

Suggested reading

1. The Constitution of India, 1950 (Bare Act), Government Publication.
2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course Outcomes:

Students will be able to:

1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
4. Discuss the passage of the Hindu Code Bill of 1956.

AUDIT 1 and 2: PEDAGOGY STUDIES

Course Objectives:

Students will be able to:

4. Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
5. Identify critical evidence gaps to guide the development.

Syllabus

Units	Content	Hours
1	<ul style="list-style-type: none"><input type="checkbox"/> Introduction and Methodology:<input type="checkbox"/> Aims and rationale, Policy background, Conceptual framework and terminology<input type="checkbox"/> Theories of learning, Curriculum, Teacher education.<input type="checkbox"/> Conceptual framework, Research questions.<input type="checkbox"/> Overview of methodology and Searching.	4

2	<ul style="list-style-type: none"> Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education. 	2
3	<ul style="list-style-type: none"> Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies. 	4
4	<ul style="list-style-type: none"> Professional development: alignment with classroom practices and follow-up support Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes 	4
5	<ul style="list-style-type: none"> Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact. 	2

Suggested reading

1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, *Compare*, 31 (2): 245-261.
2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, *Journal of Curriculum Studies*, 36 (3): 361-379.
3. Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? *International Journal Educational Development*, 33 (3): 272-282.
5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
6. Chavan M (2003) Read India: A mass scale, rapid, „learning to read“ campaign.
7. www.pratham.org/images/resource%20working%20paper%202.pdf

ENGINEERING & TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada
Accredited with A++ Grade by NAAC
Accredited by NBA (B. Tech – CSE, ECE & EEE)
Balusumudi, Bhimavaram – 534 202, W.G. Dist., (A.P.)
Fax No: 08816-221236, Phone: 08816-221237, 38, Email: dnrcet@gmail.com, web: www.dnrcet.org

Course Outcomes:

Students will be able to understand:

1. What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
2. What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
3. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

AUDIT 1 and 2: STRESS MANAGEMENT BY YOGA

Course Objectives

1. To achieve overall health of body and mind
2. To overcome stress

Syllabus

Unit	Content	Hours
1	<ul style="list-style-type: none">• Definitions of Eight parts of yog. (Ashtanga)	8
2	Yam and Niyam. Do's and Don't's in life. i) Ahinsa, satya, astheya, bramhacharya and aparigraha <ul style="list-style-type: none">• Shaucha, santosh, tapa, swadhyay, ishwarpranidhan	8
3	<ul style="list-style-type: none">• Asan and Pranayam1. Various yog poses and their benefits for mind & body• Regularization of breathing techniques and its effects-Types of pranayam	8
	<p>Suggested reading</p> <p>1. „Yogic Asanas for Group Tarining-Part-I” : Janardan Swami YogabhyasiMandal, Nagpur 2. “Rajayoga or conquering the Internal Nature” by Swami</p> <p>Course Outcomes: Students will be able to:</p> <ol style="list-style-type: none">1. Develop healthy mind in a healthy body thus improving social health also2. Improve efficiency	

**AUDIT 1 and 2: PERSONALITY DEVELOPMENT THROUGH LIFE
 ENLIGHTENMENT SKILLS**

Course Objectives

1. To learn to achieve the highest goal happily
2. To become a person with stable mind, pleasing personality and determination
3. To awaken wisdom in students

Syllabus

Unit	Content	Hours
1	Neetisatakam-Holistic development of personality <ul style="list-style-type: none"> • Verses- 19,20,21,22 (wisdom) • Verses- 29,31,32 (pride & heroism) • Verses- 26,28,63,65 (virtue) • Verses- 52,53,59 (dont's) • Verses- 71,73,75,78 (do's) 	8
2	<ul style="list-style-type: none"> • Approach to day to day work and duties. • Shrimad Bhagwad Geeta : Chapter 2-Verses 41, 47,48, • Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35, • Chapter 18-Verses 45, 46, 48. 	8
3	<ul style="list-style-type: none"> • Statements of basic knowledge. • Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68 • Chapter 12 -Verses 13, 14, 15, 16,17, 18 • Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, • Chapter 4-Verses 18, 38,39 • Chapter18 – Verses 37,38,63 	8

Suggested reading

1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata
2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Course Outcomes

Students will be able to

1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
3. Study of Neetishatakam will help in developing versatile personality of students